#simulaiton using GLR to test sigma=0 simulation1<-function(m,tt){ set.seed(1234123) times<-0 for(i in 1:tt){ y<-rep(.5,5*m) #generate epsilon from normal distribution epsilon<-rnorm(5*m,0,1) y<-y+epsilon #print (y) #estimators uhat<-mean(y) tauhat0<-sum((y-uhat)^2)/(m*5) #print (uhat) # print (tauhat0) temp1<-NULL temp2<-0 for(j in 1:m){ temp3<-y[((j-1)*5+1):((j-1)*5+5)] temp4<-mean(temp3) temp5<-sum((temp3-temp4)^2) temp2<-temp2+temp5 temp1<-c(temp1,temp4) } tauhat<-temp2/(m*4) temp6<-sum((temp1-uhat)^2) sigmahat<-max(0,((5/m)*temp6-tauhat)/5) #print(uhat) # print(tauhat0) # print(tauhat) # print(sigmahat) n<-5*m # teststatistics R<-n*log(tauhat0)+n-(n-m)*log(tauhat)-m*log(tauhat+5*sigmahat)- n*tauhat0/tauhat+(sigmahat/tauhat)*(25/(tauhat+5*sigmahat))*temp6 #qchisq(.95,1)=3.841459 if(R<3.841459){times<-times+1} #print (R) } result<-times/tt result }