
Stat 445/545: Analysis of Variance and
Experimental Design

Chapter 19: Two factor ANOVA—equal sample size

Instructor: Yan Lu
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ANOVA with two factors and replication

Consider an experiment on beetles’ survival time under different
insecticides and doses

Four different insecticides and three different doses (low,
medium, high) are interested
——There are twelve combinations
——Suppose each combination is replicated four times, which
results in 48 observations.

Response: the survival time of the beetles.
—— time is measured in fractions of a 10 minute interval.
(So 0.4 means 4 minutes.)

The doses of high, medium, and low, are really ordinal (we
don’t know if they are equally spaced, but they can be ranked)
—— ANOVA will treat them as qualitative, like having three
different brands without knowing the rankings.
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Crossing: Every level of Insecticides occurs within every level of
doses.

Dose

Insecticides 1 2 3

nij = 4

A n11 n12 n13

B n21 n22 n23

C n31 n32 n33

D n41 n42 n43

48
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General case:

Factor A: a levels

Factor B: b levels

Treatment: one of the possible ab combinations of a level of
factor A and a level of factor B

Some commonly used models:

Complete factorial design: all ab treatment combinations are
used.

Fractional factorial design: only some of the ab treatment
combinations are used or treatment combinations have been
carefully selected

Fixed effects model: both factors are fixed

Random effects model: both factors are random

Mixed effeccts model: One factor fixed, one factor random
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Why using multifactor designs?

When the factors don’t interact with each other, the two-way
ANOVA gives the same precision for the main effects of A and
B, as a single factor study, but study two factors at once

Can assess interaction between the factors that are not be
assessed by one factor experiment

Additional factors can be used to account for other sources of
variation and provide a more sensitive test for the factor of
interest.
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Mean structure

Factor B

Factor A 1 2 · · · b Row level means

1 µ11 µ12 · · · µ1b µ1.

2 µ21 µ22 · · · µ2b µ2.
...

...
... · · ·

...
...

a µa1 µa2 · · · µab µa.
Column level means µ.1 µ.2 · · · µ.b µ..

µi . =
1

b

b∑
j=1

µij , µ.j =
1

a

a∑
i=1

µij

µ.. =
1

ab

a∑
i=1

b∑
j=1

µij =
1

a

a∑
i=1

µi . =
1

b

b∑
j=1

µ.j
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ANOVA with two factors and replication

beetles.long <- read.table

(file="~/Desktop/jenn/teaching/stat445545/data/beetle",

header = TRUE)

> head(beetles.long)

dose insecticide number hours10

1 low A t1 0.31

2 low B t1 0.82

3 low C t1 0.43

4 low D t1 0.45

5 medium A t1 0.36

6 medium B t1 0.92
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ANOVA with two factors and replication

> beetles.mean.di

dose insecticide m

1 low A 0.4125

2 low B 0.8800

3 low C 0.5675

4 low D 0.6100

5 medium A 0.3200

6 medium B 0.8150

7 medium C 0.3750

8 medium D 0.6675

9 high A 0.2100

10 high B 0.3350

11 high C 0.2350

12 high D 0.3250
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ANOVA with two factors and replication

Balanced ANOVA examples have an advantage in interpretation

marginal is calculated by average of the averages. For example, the
average of low doses 0.618 is the average of the averages for each
combination of low dose and insecticide
(0.413 + 0.880 + 0.568 + 0.610)/4 = 0.61775.
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ANOVA with two factors and replication

Looking at the margins, the survival time was lowest for insecticides
A and C.

Higher doses also lead to lower survival times on average

The survival times are not equally spaced—the difference in average
survival times between doses 3 versus 2 is larger than for doses 2
versus 1
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You can do boxplots for looking at the responses for combinations
of predictors.

library(ggplot2)

p <- ggplot(beetles.long, aes(x = dose, y = hours10,

colour = insecticide))

p <- p + geom_boxplot()

print(p)

It looks like there are problems with the equal variances
assumption! To make the assumptions not so badly violated, one
possibility is to transform the data, such as using log of the
survival times.
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Interactions

To understand interaction, suppose you (conceptually) plot the
means in each row of the population table, giving what is known as
the population mean profile plot. In practice, we plot the sample
mean profile plot.
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No interaction is present: if the plot has perfectly parallel
profiles, as in the plot below for a 2 × 3 experiment. The levels of
A and B do not interact.
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Parallel profiles

µij − µhj is independent of j for each i and h
——-difference between levels of A does not depend on level
of B

µij − µ̄i · = µhj − µ̄h· for all i , j , h

µij − µ̄i · = µ̄·j − µ̄·· for all i , j

µij − µ̄i · − µ̄·j + µ̄·· for all i , j

—–interaction effect (αβ)ij = 0 for all i , j
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Interaction is present if the profiles are not perfectly parallel. An
ex- ample of a profile plot for two-factor experiment (2 × 4) with
interaction is given below.
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Comments on interactions:

The roles of A and B can be reversed in the profile plots
without changing the assessment of a presence or absence of
interaction.
——It is often helpful to view the interaction plot from both
perspectives.

A qualitative check for interaction can be based on the sample
means profile plot,
——but keep in mind that profiles of sample means are never
perfectly parallel even when the factors do not interact in the
population.
——The Interaction SS measures the extent of
non-parallelism in the sample mean profiles.
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Profile plots
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The profile plots indicate that the main effects are significant
——the insecticides have noticeably different mean survival
times averaged over doses, with insecticide A having the
lowest mean survival time averaged over doses.
——higher doses tend to produce lower survival times.

Interaction seems not significant.
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Looking back at the table of cell means, the idea is the differences
between columns are similar, and the differences between rows are
similar.
—– For example, going from dose 1 to dose 2 (low to medium),
the change in average survival for insecticide A is (0.413-0.320) =
0.093 (i.e., .93 minutes or 55 seconds), and the difference for
insecticide B is (0.880 - 0.815) = 0.065 (i.e., 39 seconds). Given
the variability in the data, the change going from low to medium
doses is similar for insecticides A and B.
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ANOVA with interaction

Consider a balanced two-factor experiment with n responses at
each combination of the a levels of factor A (F1), and with the b
levels of factor B (F2). We express the ANOVA model in terms of
cell (treatment) means µij as

Yijk = µij + εijk

Yijk is the k th response at the i th level of A and the j th
level of B.

µij are parameters, cell mean for treatment ij

εijk are independent N(0, σ2)

i = 1, · · · , a; j = 1, · · · , b; k = 1, · · · , n
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The Factor Effects or interaction model expresses the population
means as

µij = µ.. + αi + βj + (αβ)ij

µ.. is a grand mean, µ.. =
∑

i

∑
j µij/ab

αi is the effect for the ith level of F1
—–αi = µi . − µ..,

∑a
i=1 αi = 0

βj is the effect for the jth level of F2

—–βj = µ.j − µ..,
∑b

j=1 βj = 0

(αβ)ij is the interaction effect when factor A is at the ith level
and factor B is at the jth level.

(αβ)ij = µij − µi . − µ.j + µ..
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The interaction model is written as

Yijk = µ.. + αi + βj + (αβ)ij + εijk

where

µ.. is a constant
αi are constants subject to the restriction

∑
αi = 0

βj are constants subject to the restriction
∑
βj = 0

(αβ)ij are constants subject to the restrictions:∑
i

(αβ)ij = 0, j = 1, · · · , b

∑
j

(αβ)ij = 0, i = 1, · · · , a

εijk are independent N(0, σ2)
i = 1, 2, · · · , a, j = 1, 2, · · · , b and k = 1, 2, · · · , n.
Informally,

Response = Grand mean+F1 effect+F2 effect+F1-by-F2 interaction

+residual.
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Additive Model:
The model with no interaction is called an additive model or main
effects model

Yijk = µ.. + αi + βj + εijk

µ.. is a constant

αi are constants subject to the restriction
∑
αi = 0

βj are constants subject to the restriction
∑
βj = 0

εijk are independent N(0, σ2)

i = 1, 2, · · · , a, j = 1, 2, · · · , b and k = 1, 2, · · · , n.
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Define

ȳij . =
1

n

n∑
k=1

yijk

ȳi ·· =
1

bn

b∑
j=1

n∑
k=1

Yijk

ȳ·j · =
1

an

a∑
i=1

n∑
k=1

Yijk

ȳ··· =
1

abn

a∑
i=1

b∑
j=1

n∑
k=1

Yijk
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Estimators:

Parameter Estimator

µ.. Ȳ···
αi Ȳi ·· − Ȳ···
βj Ȳ·j · − Ȳ···

(αβ)ij Ȳij · − Ȳi ·· − Ȳ.j . + Ȳ···
µij Ȳij .
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Breakdown the total sum of squares

Yijk − Ȳ... = Yij . − Ȳ... + Yijk − Ȳij .

Yijk − Ȳ...: total deviation
Yij . − Ȳ...: deviation of estimated treatment mean around overall
mean
Yijk − Ȳij .: deviation around estimated treatment mean
Square both sides∑

i

∑
j

∑
k

(Yijk − Ȳ...)
2 = n

∑
i

∑
j

(Ȳij . − Ȳ...)
2

+
∑
i

∑
j

∑
k

(Yijk − Ȳij .)
2

This is a one-way model approach, SSTO = SSTR + SSE
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Assess the factor effects and interaction effects

Yijk−Ȳ... = (Yi ..−Ȳ...)+(Ȳ.j .−Ȳ...)+(Yij .−Ȳi ..−Ȳ.j .+Ȳ...)+(Yijk−Ȳij .)

Yijk − Ȳ...: Total variability

Yi .. − Ȳ...: A main effect

Ȳ.j . − Ȳ...: B main effect

Yij . − Ȳi .. − Ȳ.j . + Ȳ...: AB interaction effect

Yijk − Ȳij .: Deviation around estimated treatment mean
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∑
i

∑
j

∑
k

(Yijk − Ȳ...)
2 = nb

∑
i

(Yi.. − Ȳ...)
2

+ na
∑
j

(Y.j. − Ȳ...)
2

+ n
∑
i

∑
j

(Yij. − Ȳi.. − Ȳ.j. + Ȳ...)
2

+
∑
i

∑
j

∑
k

(Yijk − Ȳij.)
2

SSTO = SSA + SSB + SSAB + SSE

SSTO =
∑
i

∑
j

∑
k

(Yijk − Ȳ...)
2

SSA = bn
∑
i

(Yi.. − Ȳ...)
2,SSB = an

∑
j

(Y.j. − Ȳ...)
2

SSAB = n
∑
i

∑
j

(Yij. − Ȳi.. − Ȳ.j. + Ȳ...)
2, SSE =

∑
i

∑
j

∑
k

(Yijk − Ȳij.)
2
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ANOVA table for two-factor study with fixed factor levels and with
balanced design.

Sources df SS MS E(MS)

A a-1 SSA
SSA

a− 1
σ2 + nb

∑
(µi. − µ..)2

a− 1

B b-1 SSB
SSB

(b − 1)
σ2 + na

∑
(µ.j − µ..)2

b − 1

AB (a-1)(b-1) SSAB
SSAB

(a− 1)(b − 1)
σ2 +

n
∑

i

∑
j (µij − µi. − µ.j + µ..)2

(a− 1)(b − 1)

Error ab(n-1) SSE
SSE

ab(n − 1)
σ2

SSTO abn-1 SSTO

αi = µi. − µ.. = 0→ E [MSA] = E [MSE ], Otherwise, E [MSA] > E [MSE ]

βj = µ.j − µ.. = 0→ E [MSB] = E [MSE ], Otherwise, E [MSB] > E [MSE ]

(αβ)ij = µij − µi. − µ.j + µ.. = 0→ E [MSAB] = E [MSE ]
Otherwise, E [MSAB] > E [MSE ]

Suggests that F∗ test statistics based on the ratios of MSA/MSE , MSB/MSE ,
MSAB/MSE will provide info about the main effects and interactions of the two
factors, with large values of the F∗ indicating the presence of effects.
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Test of no A effect

H0 : α1 = α2 = · · · = αa = 0

Hα : not all αi equal to 0

F ∗A =
MSA

MSE

Under H0, F ∗A statistic is distributed as F with a− 1
numerator degrees of freedom and ab(n − 1) denominator
degrees of freedom.

Reject H0 if F ∗A > F (1 − α; a− 1, ab(n − 1))
——H0 is rejected when the Factor A marginal means Ȳi ··
vary significantly relative to the within sample variation.
Equivalently, H0 is rejected when the sum of squared factor A
effects (between sample variation) is large relative to the
within sample variation.
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Test of no Factor B effect

H0 : β1 = β2 = · · · = βb = 0

Hα : not all βj equal to 0

Test statistic

F ∗B =
MSB

MSE

Under H0, F ∗B statistic is distributed as F with b − 1
numerator degrees of freedom and ab(n − 1) denominator
degrees of freedom

Reject H0 if F ∗B > F (1 − α; b − 1, ab(n − 1))
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Test of no interaction

H0 : (αβ)11 = · · · = (αβ)ab = 0

Hα : not all (αβ)ij equal to 0

Test statistic

F ∗AB =
MSAB

MSE

Under H0, F ∗AB statistic is distributed as F with (a− 1)(b− 1)
numerator degrees of freedom and ab(n − 1) denominator
degrees of freedom.

Reject H0 if F ∗AB > F (1 − α; (a− 1)(b − 1), ab(n − 1))
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ANOVA with interaction

When there are two factors, it is possible that the effect of one factor
depends on the value of the other factor. For this example, this could
mean that the effect of the dose depends on the insecticide.

> ##fit ANOVA model

> myfit <- aov(hours10~ dose*insecticide, data=beetles.long)

> summary(myfit) #ANOVA table

Df Sum Sq Mean Sq F value Pr(>F)

dose 2 1.0330 0.5165 23.222 3.33e-07 ***

insecticide 3 0.9212 0.3071 13.806 3.78e-06 ***

dose:insecticide 6 0.2501 0.0417 1.874 0.112

Residuals 36 0.8007 0.0222
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interaction.plot(beetles.long$dose, beetles.long$insecticide,

beetles.long$hours10 , main = "insecticide by dose")

interaction.plot(beetles.long$insecticide, beetles.long$dose,

beetles.long$hours10, main = "dose by insecticide")
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ANOVA with interaction

The idea behind the plots is that we can see whether the effect of
the insecticide depends on the dose, or similarly, whether the effect
of the dose depends on the insecticide.

In the left plot on the previous slide, there is a rank ordering
of insecticides based on survival times.
——-Here lower survival times means a more effective
insecticide, and for each dose, we appear to have that
insecticide A has the lowest survival time, followed by C, then
followed by D, and finally B.

If there were a strong interaction between dose and
insecticide, you might find that one insecticide is the most
effective at low doses, while another is the the most effective
at higher doses. In this case, the rank ordering of insecticides
doesn’t change much.
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ANOVA with interaction

A statistical test for interaction is testing whether the lines in the
interaction plot are parallel, taking into account variability in the
data.
——This does not necessarily mean that the lines are straight, but
that the spacing in between the lines doesn’t change significantly
from level to level of the factor on the horizontal axis.
—— An interaction can show up in the interaction plots either by
curves crossing or by being significantly non-parallel.
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Comments:

Always test the interaction first, can’t really interpret the
effects of factors A and B separately if interaction is
significant.
If there is an interaction present, A and B main effects should
not be tested

Interaction test at αAB , A test at αA, B test at αB

The family of these three tests has a level of significance that
is at least at large as the largest of αAB , αA and αB .
Three tests are not independent, since each F-test has MSE
as its denominator. Two ways to approximate the overall
family level of significance
Bonferroni’s method,overall family level of significance
≤ αA + αB + αAB

Kimball’s inequality family level of significance
≤ 1 − (1 − αA)(1 − αB)(1 − αAB)

Example: αA = αB = αAB = 0.05 the family level of significance
≤ 1 − 0.95 ∗ 0.95 ∗ 0.95 = 0.143
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Diagnostics

Plot of the standard deviation vs mean shows an increasing trend.
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Diagnostic plots of the model with interactions
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Diagnostic plots show the following features

The normal quantile plot shows an “S” shape rather than a
straight line, suggesting the residuals are not normal.

The residuals vs the fitted (predicted) values show that the
higher the predicted value the more variability (horn shaped).
This could be seen from the plot of standard deviation v.s.
mean.

A couple of outliers shown in the residual vs dose plot and qq
plot
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Transformations

#transformation

par(mfrow=c(1,1))

library(MASS)

boxcox(myfit, lambda = seq(-3, 3, length = 10),

plotit = TRUE)

λ = −1 is within the 95% confidence interval, we will try a
transformation of y∗ = 1/y

the inverse survival time has a natural interpretation as the
dying rate. For example, if you survive 2 hours, then 1/2 is the
proportion of your remaining lifetime expired in the next hour.
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##transformations on $y$

myfit2 <- aov(1/hours10 ~ dose*insecticide, data = beetles.long)

summary(myfit2)

> summary(myfit2)

Df Sum Sq Mean Sq F value Pr(>F)

dose 2 34.88 17.439 72.64 2.31e-13 ***

insecticide 3 20.41 6.805 28.34 1.38e-09 ***

dose:insecticide 6 1.57 0.262 1.09 0.387

Residuals 36 8.64 0.240
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Diagnostic plots of the transformed model
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Diagnostic plots of the transformed model show the following
features

The normal quantile plot shows a rough straight line,
suggesting the residuals are normal.

The residuals vs the fitted (predicted) values show a random
pattern.

No outliers detected from the studentized deleted residual plot

Normality assumption and constant variance assumption seem
not violated.
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Recall Additive Model: The model with no interaction is called an
additive model or main effects model

Yijk = µ.. + αi + βj + εijk

µ.. is a constant

αi are constants subject to the restriction
∑
αi = 0

βj are constants subject to the restriction
∑
βj = 0

εijk are independent N(0, σ2)

i = 1, 2, · · · , a, j = 1, 2, · · · , b and k = 1, 2, · · · , n.
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Test of no Factor A effect

H0 : α1 = α2 = · · · = αa = 0

Hα : not all αi equal to 0

F ∗A =
MSA

MSE

Under H0, F ∗A statistic is distributed as F with a− 1
numerator degrees of freedom and abn − a− b + 1
denominator degrees of freedom.

Reject H0 if F ∗A > F (1 − α; a− 1, abn − a− b + 1)
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Test of no Factor B effect

H0 : β1 = β2 = · · · = βb = 0

using an F test
Hα : not all βi equal to 0

based on

F ∗B =
MSB

MSE

Under H0, F ∗B statistic is distributed as F with b − 1
numerator degrees of freedom and abn − a− b + 1
denominator degrees of freedom.

Reject H0 if F ∗B > F (1 − α; b − 1, abn − a− b + 1)

Comments: If there is an interaction, the F tests we did for
additive model are conservative (don’t reject often enough), since
MSE includes interaction MS effect and may be too big.
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Reduced Model: Drop the nonsignificant interaction term,
refit model

> ##refit model without interaction term

>

> myfit3 <- aov(1/hours10 ~ dose+insecticide,

data = beetles.long)

> summary(myfit3)

Df Sum Sq Mean Sq F value Pr(>F)

dose 2 34.88 17.439 71.71 2.86e-14 ***

insecticide 3 20.41 6.805 27.98 4.19e-10 ***

Residuals 42 10.21 0.243
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Diagnostic plots of the reduced transformed model
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Diagnostic plots of the reduced transformed model show the
following features

The normal quantile plot shows a rough straight line,
suggesting the residuals are normal.

The residuals vs the fitted (predicted) values show a random
pattern.

No outliers detected from the studentized deleted residual
plot.

Normality assumption and constant variance assumption seem
not violated.
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