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where €;; ~ N(0,02)
Questions:
@ Error Assumption: Are errors independent, normal random
variables with common variance?
@ Nonindependence of error terms

@ Outlier Detection: Are there outliers i.e a response that is
vastly different from other responses?

@ Predictor Range: Are there one or more important predictor
variables that have been omitted from the model?
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Type of Residuals
o Raw residual: ej = Yj; — Y:
@ Semi-studentized residual:

x ejj
&jj
MSE

MSE is an approximation of the standard deviation of ¢;
@ Studentized Residual:
€ij €ij

T S(ey) T \/MSE(L— hy)

where hj; j; is the diagonal element of hat matrix
H = X(X'X)"1X’, and ¥ = HY
—-for ANOVA model, the leverage of Yj; is given by

1
hij i = — therefore s(e;;) = \/MSE(n; — 1)/n;

1
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€j

V(ej)
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e Studentized deleted residual (rstudent):
—tj; is the studentized residual with Yj; deleted from the
analysis
—Let Y; (j) be the mean of Y’s in ith level with jth
observation deleted
——deleted residual

&j() = Yi = Yi()
b= €ij(j)
T s(ey)
After some algebra,
1/2
n—r—1

tij = ejj 1
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Diagnosis of Departures from ANOVA Model

Nonconstancy of error variance

Nonindependence of error terms

°
o QOutliers
@ Omission of important explanatory variables
°

Nonnormality of error terms
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1. Checking for non-constant error variance

o Plot Residuals v.s Fitted Values
—When the group sizes are not large and do not differ
greatly, the appropriateness of this assumption can be studied
by using the residuals, semistudentized residuals, or
studentized residuals.
—When the group sizes differ greatly, studentized residuals
should be used in these plots.

@ If error variance is constant, these plots have about the same
extent of scatter of the residuals aorund zero e = 0 for each
factor level.

_Zjlzl €ij = 0

o If there is a problem with the constancy of variance

assumption, ¢;'s will show some trend.
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## Generate Data

mul <- 10
mu2 <- 3
mu3<- 5

epsl <- rnorm(50, mean=0, sd=5) #constant variance

eps2 <- rnorm(50, mean=0, sd=5)

eps3 <- rnorm(50, mean=0, sd=5)

y1 <- mul + epsl

y2 <- mu2 + eps2

y3 <- mu3 + eps3

y<-c(y1,y2,y3)

group<-c(rep(1,50),rep(2,50),rep(3,50))

ex.data<-data.frame (y,group)

myfit = aov(y ~ factor(group), data=ex.data)

plot (myfit$fit,myfit$resid,xlab="Fitted",
ylab="Residuals",main="Residual-Fitted plot")
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Residual-Fitted plot
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## Generate Data

mul <- 10
mu2 <- 3
mu3<- 5

epsl <- rnorm(50, mean=0, sd=1) #unequal variance

eps2 <- rnorm(50, mean=0, sd=5)

eps3 <- rnorm(50, mean=0, sd=10)

y1 <- mul + epsl

y2 <- mu2 + eps2

y3 <- mu3 + eps3

y<-c(y1,y2,y3)

group<-c(rep(1,50),rep(2,50),rep(3,50))

ex.data<-data.frame (y,group)

myfit2 = aov(y ~ factor(group), data=ex.data)

plot (myfit2$fit,myfit2¢resid,xlab="Fitted",
ylab="Residuals",main="Residual-Fitted plot")

V+ VVVVVVVVVVVVVVYV
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Residual-Fitted plot
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2. Checking for independence of Error terms

Whenever data are obtained in a time sequence, a residual
sequence plot should be prepared to examine if the error terms are
serially correlated to the sequence in which the observations are
obtained.

@ Plot e; v.s time sequence (order in which data is collected)
@ Independence would result in a random scatter of points.

@ Non independence would result in a trend in the plot
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Example: an experiment on group interactions.

@ Three different treatments were applied, and the group
interactions were recorded on videotapes.

@ Seven replications were made for each treatment.

@ Aterward, the experimenter measured the number of
interactions by viewing the tapes in randomized order.

o Figure 18.3 strongly suggests that the experimenter discerned
a larger number of interactions as more experience in viewing
the tapes was gained.

—As a result, the residuals in Figure 18.3 appear to be
serially correlated.

——1In this instance, an inclusion in the model of a linear term
for the time effect might be sufficient to assure independence
of the error terms in the revised model.
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@ Time-related effects may also lead to increases or decreases in
the error variance over time.

—-For instance, an experimenter may make more precise
measurements over time.

—-On the other hand, an experimenter may make less precise
measurements over time when it is close to midnight.
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Figure: A residual plot that displays an increasing variance looks roughly
like a horn opening to the right, and a residual plot indicating a
decreasing variance is a horn opening to the left.
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3. Checking for Outliers

Outliers are observations whose values are far from “typical”
values in the sample

Plot studentized deleted residuals vs fitted value,

Outliers (y observations) can easily be spotted on a residual
plot, especially if studentized residuals are used. Look for
residuals that are far from the main set of residual values.

It is wise practice to discard outlying observations only if they
can be identified as being due to such specific casuses as
instrumentation malfunctioning, miscalculation, oberver
measurement blunder, or recording error.
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4. Omission of Important Explanatory Variables

@ Residual analysis may also be used to study whether or not
the signle-factor ANOVA model is an adequate model.
Example: In a learning experiment involving three
motivational treatments, the residual shown in Figure 18.5
show no unusual overall pattern.

But the treatment effects do fiffer according to gender, with
residual for female subjects are below 0, and residuals for male
subjects are above 0.

We may need to add gender as an explanatory variable.
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5. Checking for normality

@ Whether the distribution of the errors is far enough away from
normal. Look at the residuals’ distribution. Use a normal
quantile plot (qqgplot) and a histogram plot.

@ Normal quantile plot: A graph of the residuals versus the
expected order statistics of the standard normal distribution.
It plots quantiles of the data versus quantiles of a distribution.
The Q-Q plot may be constructed using raw, studentized or
jack-knifed residuals
—-If the observations come from a normal distribution we
would expect the observed order statistics to be reasonably
close to the expected order statistics. We should get
approximately a straight line
—-In general, Q-Q plots showing curvature indicate skew
distributions, with downward concavity corresponding to
negative skewness (long tail to the left) and upward concavity
indicating positive skewness. On the other hand, S-shaped
Q-Q plots indicate heavy tails, or an excess of extreme values,
relative to the normal distribution. 14/39



For the simulated data with equal variance, the following normal
qq plot shows approximately a straight line.

> par(mfrow=c(2,2)) # optional layout
plot (myfit) # diagnostic plots
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Figure: Normal probability plots when error term distribution is not
normal

FIGURE 3.9 Normal Probability Plots when Error Term Distribution Is Not Normal.
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Robustness:
A statistical procedure is robust if it is not greatly affected by a
violation of the assumptions
@ Nonnormality: F test is robust with respect to nonnormality,
the larger the n is, the more robust it is. Don't worry about
moderate departures from normality
@ Unequal variances: F test is robust if all n;'s are equal,
balanced designs are good. But F test is not robust for
unbalanced design
—If big n;'s go with big variances, then F* is small, P-value
from test > true p value, don't reject Hy often enough
—If big n;'s go with small variance, then F* is large, P-value
from test < true p-value, reject more often than we should

> 22;(ni —1)S?
n—r

MSTR

MSE

MSE =

*
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@ Nonindependence: F test is not robust, if most common
observations are positively correlated, MSE too small,
MSTR/MSE too large, p-value too small, reject too often
——solutions: randomize as much as possible, collect data in a
way that independence assumption is justified
—or use method for analysis of dependent data
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Some Tests for Checking Assumptions:
Brown-Forsythe Test (modified Levene's test)

Ho:02 =03 =--- =03

@ BF test is robust from departures from normality, which often
occur together with unequal variances. It doesn’t require
equal sample sizes.

@ Test procedure:

(1) Let Y; = median of Yjj, for example, Y, is the median of
Y11, Y12, Yim
(2) Define

dj = |Yjj = Yil

absolute deviation between observation Yj; and median for the
observations in that level.
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(3) Use djj to perform the one-way ANOVA

« _ MSTR
BF — "MSE
where , _ -
MSTR — > iz ni(di. —d.)
n—1
MSE — Z?:l Jr'll(dij - C_/i.)2
n—r
(4) Reject Hp: 02 =03 =--- =02 if Fir > F(l—a;r—1,n—r)
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Example: The ABF Electronics Corporation performed an
experiment to evaluate five types of flux for use in soldering printed
circuit boards. A major concern of the firm's reliability engineers
was the strentgh of the soldered joints. To test the five types of
flux,

@ 40 printed circuit boards were selected at random,

@ Each of the five flux types was randomly assigned to 8 of the
40 circuit boards and an electornic switch was slodered to
each board using the designated flux type.

@ The force (in pounds) required to break a joint, termed the
pull strength, is the response of interest.
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> abt<-read.table(file=

+ "~/Desktop/jenn/teaching/stat445545/data/CH18TA02. txt",
+ col.names=c("force", "type", "obs"))

> nrow(abt)

[1] 40
> abt[1:10,]

force type obs
14.87 1
16.81
15.83
15.47
13.60
14.76
17.40
14.62
.43
.76
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e
> abt$type<-factor(abt$type)
> attach(abt)
> tapply(force,type,mean) #group means

1 2 3 4 5
15.42000 18.52750 15.00375 9.74125 12.34000
> med<-tapply(force,type,median) #group medians
> med

1 2 3 4 5
15.170 18.595 15.255 10.010 12.105

> tapply(force,type,var) #group variance

1 2 3 4 5
.5305143 1.5699357 6.1833982 0.6668411 0.5920000

abt$temp<-c(rep(med[1],8),rep(med[2],8),rep(med[3],8),
rep(med[4],8),rep(med[5],8))

abt$dij<-abs(abt$force - abt$temp)

myfit<-aov(abt$dij type)

summary (myfit)

vV V.V + Vv
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e
Df Sum Sq Mean Sq F value Pr(>F)
type 4 9.348 2.337 2.936 0.0341 =*
Residuals 35 27.861 0.796

Signif. codes: 0 ‘*xx’ 0.001 ‘%%’ 0.01 ‘*’ 0.05 “.” 0.1 ¢

> library(car)
> leveneTest (force type)

Levene's Test for Homogeneity of Variance (center = median
Df F value Pr(>F)

group 4 2.9358 0.03414 *
35

Signif. codes: 0O “*x**’ 0.001 ‘**’ 0.01 ‘%’ 0.05-=°.7:0.1.¢
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The absolute deviations for the first observation is

dip = |Yi1 — V4| = [14.87 — 15.17| = 0.300
The Ff = 2.94, F(0.95; 4,35) = 2.64

Since Fgr = 2.94 > 2.64, we coclude H,,, that the error terms do
not have constant variance.
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Tests for Normality

@ correlation test, based approximately on the coefficient of
correlation between the ordered residuals and their expected
values under normality Hp : error terms are normally
distributed
Reject Hy, if correlation < critical value given in Table B.6

o Lilliefors's test
@ Shapiro-Wilk Test

> shapiro.test (myfit$resid)
Shapiro-Wilk normality test

data: myfit$resid

W = 0.96613, p-value = 0.2696

In the ABT example, p-value for normality test is 0.2696, we do
not reject the normality assumption.

23/39



Test for outliers
Rstudent ¢ is the studentized deleted residual with Yj; being
deleted from the analysis

dj = Yi = Y

1/2
oo d,'j — e (n —r— 1)n,~
Y se(dy) V| SSE(ni — 1) — nje}

Ho : observation Yj; is not an outlier

Under Hy, tj ~ th—r—1
@ Examine the largest absolute tj;,
@ The appropriate Bonferroni critical value at « level test is

t(l—%,n—r—l).

@ Rejects Hy if

«
max|(tj)| > t(l—ﬂ,n—r—l).
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> rresid<-rstudent (myfit)
> rresid[1:24]

1 2 3 4 5

-0.7834677 0.8138268 -0.3519790 -0.7834677 0.7289769 -0.

8 9 10 11 12

-0.4828940 -0.9053050 -0.9053050 0.7168938 -0.4828940 O.

15 16 17 18 19

0.6085359 1.5553304 -0.2319493 1.3118722 1.6757417 O.

22 23 24
-1.7057342 2.9083377 -2.0340581

> outlierTest (myfit)

No Studentized residuals with Bonferonni p < 0.05
Largest |rstudent]:

rstudent unadjusted p-value Bonferonni p
23 2.908338 0.0063599 0.25439
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Summary for Diagnostics

e Plot, plot, plot, always check the plots first. Although graphic
analysis of residuals is only an informal method of analysis, in
many cases it suffices for examining the aptness of a model.
——Use the significance tests if you are uncertain what to
conclude after examining the plots. Tests are not a
replacement for the plots, but a supplement to them.

@ Plot residuals (t;; for checking outliers) vs. fitted values (check
for constant variance, outliers,important predictor variables)

@ qgplot and histogram of residuals (check normality)
@ Plot residual vs. time sequgence (check independence)

@ In practice, several types of departures may occur together.
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Transformation

When both the model assumptions of constancy of the error
variance and normality of the error distributions are violated, a
transformation of the response variable is often useful.

Simple guides to finding a transformation

If o; =~ c(u;)? use transformation

[ Vi ez
Y log(Yy) ifa=1
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Table: Variance stabilizing transformations

Mean, Variance Relationship Transformation
O; X /Ui \/Y,'J'OF Y,'J'—l-\/m
gi o Hi log(Yy)
07 o puf 1/}
Response is a proportion 2sin~1(\/vh)

@ Square root transformation is often found when Y is a count,
for example, number of attempts by a subject before the
correct solution is found.

@ Log transformaiton is often found when Y is the amount, for
example, revenue of a company.

@ use s; to estimate o, use Y. to estimate y;, plot 5,2/\7, si/Yi.
or 5,/\7,2 for each level, approximate constancy of the three
statistics over all factor levels would suggest the corresponding
tranformation as useful for stabilizing the error variance and

making the error distributions more nearly normal.
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—-or plot log(s;) versus log(Y;.), if slope is 3, try transformation
with power of Y of 1 —

o = kpy®

log(c;) = log(k) + (1 — a)log ().
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Example: Servo-data, Inc, operates mainframe computers at three
different locations. The computers are identical as to make and
model, but are subject to different degrees of voltage fluctuation in
the power lines serving the respective installations. Yj;: the lengths
of time beteen computer failures for the three locations, for five
failure intervals each.
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>
+
+

servo<-read.table(file=
"~/Desktop/jenn/teaching/stat445545/data/CH18TA05. txt",
col.names=c("time", "location", "obs"))

> nrow(servo)

[1] 15

>

DO WN

v Vv

servo[1:6,]

time location obs

4.41 1 1
100.65 1 2
14 .45 1 3
47 .13 1 4
85.21 1 5
8.24 2 1
servo$location<-factor (servo$location)

attach(servo)

boxplot (time~location)
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>
>
>
>

>
>

m<-tapply(time,location,mean) #group means
v<-tapply(time,location,var) #group variance
ratiol<-v/m

ratiol

1 2 3
35.51206 49.86237 133.38597

ratio2<-sqrt(v)/m
ratio2

1 2 3
.8396571 1.5010521 1.0490337

ratio3<-sqrt(v)/m"2
ratiod

1 2 3
.016669785 0.067828835 0.008654822
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> myfit<-aov(time~location)
> summary (myfit)

Df Sum Sq Mean Sq F value Pr(>F)
location 2 260563 13027 2.06 0.171
Residuals 12 76239 6353

> par (mfrow=c(2,2))
> plot(myfit)
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Residuals vs Fitted Normal Q-Q
n 0
§ i o4 ;35 o 4 140
2 g | g ™
> — = e
2 —° 8 S 7] o©
& o - I °
5_—6\5 -‘3 © OOOOUO
o - ) % o o
S Bt BT ow O
toT T T T T T T T
20 40 60 80 100 120 -1 0 1
Fitted values Theoretical Quantiles
Constant Leverage:
Scale-Location Residuals vs Factor Levels
% oy 2 14
ERNNCIN ER ©
§ - 2
<] N
- 9 4 8%
[ Q= o
N o N 8
F= B
g 3 —g/g//o § o9 g3
g o g ° 2
8 g 0 815
o o ] (%]
S ‘ ‘ ‘ ‘ ‘ location ‘ ‘
20 40 60 80 100 120 1 2 3
Fitted values Factor Level Combinations

31/39



> par (mfrow=c(1,1))
> hist(myfit$residuals)

Histogram of myfit$residuals

Frequency

-100 -50 0 50 100 150 200 250
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@ Residual versus fitted value plot looks like a horn opening to
the right, with more residuals below O;

@ QQ plot shows upward concavity, indicating skewness to the
right.

May try transformations to fix the problems.
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Table: Statistics based on Servo-Data

S; S; Si
Yo Vi Y7
1 355 0.84 0.017
2 499 150 0.068
3 1334 1.05 0.009

The relationship s;/Y;. is the most stable, hence the logarithmic
transformation may be helpful here.
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Box-Cox Transformation

Commonly used transformation is the power transformation
(Box-Cox transformation)

«_ [y A#0
Y Z iy if x=0

Power transformation relies on the method of maximum likelihood
estimation to estimate the exponent A that provides data that are
approximately normal in distribution and have approximate
constant variance across the levels.
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> #box-cox transformation
> boxCox(myfit, lambda = seq(-3, 3, length = 10))

-120 -100 -80

log-likelihood

-140

-160
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@ )\ =1 is not included in the 95% confidence interval,

@ A\ =0 is included in the 95% confidence interval, go ahead
with log transformation
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> time2<-log(time)
> tapply(time2,location,mean) #group means after transform:

1 2 3
3.412849 2.297029 4.436669

> myfit2<-aov(time2~location)
> summary (myfit2)

Df Sum Sq Mean Sq F value Pr(>F)
location 2 11.45 5.726 3.789 0.053 .
Residuals 12 18.14 1.511

Signif. codes: O “*x**’ 0.001 ‘**’ 0.01 ‘*x’> 0.05 ‘.” 0.1 ¢

> par (mfrow=c(2,2))
> plot(myfit2)
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Residuals

|Standardized residuals|
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Analyze transformed data:
Testing Ho : 1 = po = p13

~ MSTR _ 5.7264

F* = 3.789

MSE 15112

For o = 0.05, p — value = 0.053, we do not reject equal mean
hypothesis.

If we take ov = 0.10, F(0.90; 2, 12) = 2.81, since

F* =3.789 > 2.81, we conclude H,, that the three means are not
equal.
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BESSNN———
Multiple comparisons:
The transformed means for the three groups are 3.412849,
2.297029, and 4.436669, respectively.
Conduct Boneferroni pairwise comparison at 0.10 level,
s2(D) = MSE <1 + 1) =1.511 <1 + 1> = 0.6044
n;i n; 5 5

A

So that s(D) = 0.775

B = t(1—0.05/3; n— r) = £(0.9833; 12) = 2.402.

The resulting 90 percent Bonferroni pairwise confidence intervals
are
—2.984 < pp — pg <0.752

—0.884 < pz — p1 < 2.892
0.272 < pz — 2 < 4.008

Therefore, at 90% confidence, we conclude that location 3 has

longer average time computer failures than location. 2.
38/39



Check model assumptions:

o After transformation, the residual versus fitted value plot
looks randomly scattered around 0 for each level,

@ Normal qq plot appears to be more reasonably close to a
straight line.

@ We don't have information on time order for collecting data,
therefore, independence assumption can't be assessed by
residual plots.

@ No outlier is detected from residual plots.
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