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Example 1: A hospital research staff wished to determine the best
dosage level among three dosages levels for a standard type of drug
therapy to treat a medical condition.

@ 30 patients with the medical problem were recruited to
participate in a pilot study.

@ Each patient was randomly assigned to one of the three drug
dosage levels
—with exactly 10 patients studied in each drug dosage level
group
——the design is balanced, because each treatment is
replicated the same number of times

This is an example of balanced completely randomized design,
based on a single, three-level quantitative factor.
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Example 2: Want to investigate absorptive properties of four
different formulations of a paper towel.

@ Five sheets of paper towel were randomly selected from each
of the four types, total of 20 paper towels.

@ Twenty 6-ounce beakers of water were prepared, and the 20
paper towels were randomly assigned to the beakers.

paper towels were fully submerged in the beaker water for

10 seconds, withdrawn, and the amount of water absorbed by

each paper towel sheet was determined and recorded

This is an example of balanced completely randomized design,
based on a single, four-level quantitative factor.
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Example 3: Four machines in a plant were studied with respect to
the diameters of ball bearings they produced.

@ the purpose of the study was to determine whether substantial
differences in the diameters of ball bearings existed betweent
the machines.

This is an observational study, as no randomization of treatments
to experimental units occured.
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Relation between Regression and Analysis of Variance (ANOVA)

@ Both Regression and ANOVA models are concerned with the
statistical relation between one or more predictor variables and
a response variable.

@ Regression:
—In ordinary regression, both the predictor and response
variables are quantitative.
——The regression function describes the nature of the
statistical relation between the mean response and the levels
of the predictor variable(s).

e ANOVA:
—-The response varialbe is continuous (quantitative)
—-The predictor variables are usually qulitative/categorical
(gender, geographic location, plant shift, etc.)
—-If the predictor variables are quantitative, no assumption is
made in ANOVA model about the nature of the statistical
relation between them and the response variable.
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Example: a consultant for an electrical distributor is studying the
relationship between the number of bids requested by sonstruction
contractors for basic lighting equipment during a week and the
time required to prepare the bids.

E(Y)=95+22X

@ X is the number of bids prepared in a week
@ Y is the number of hours required to prepare the bids
@ suppose X = 45, then E(Y) = 9.5+ 2.2 %45 = 104
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FIGURE 1.6 Illustration of Simple Linear Regression Model (1.1).
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@ For each level of the predictor variable, there is a probability
distribution of number of hours required.

@ The mean of these probability distributions fall on the
regression curve, which describes the statistical relation
between hours required and number of bids prepared in a week
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Example: ANOVA model for a study of the effects of three
different types of incentive pay systems on employee productivity.

@ each type of incentive pay system corresponds to a different
population, each with a probaiblity distribution of emplyee
productivities (Y)

@ there is no regression model representation

@ want to compare the means of employee productivity by the
three incentive pay system
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Notation:

@ Factor: an independent or predictor variable to be studied for
its effect
—ex: dosage

@ Factor level: a particular form of that factor
—ex: three dosage levels

© Single-factor analysis: only one factor involved
—-ex: dosage example
Multi-factor analysis: at least 3 factors involved
—-ex: dosage (3 levels), types of medicine (2 levels), time to
take medicine (2 levels, before meal or after meal)

@ Dependent or response variable: the variable that is actually
measured, which is thought to depend on the value of the
factor in some way.

—-ex: pain level measured after taking medicine
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© Treatment:
—-single-factor study: a factor level such as dosage level
—-multi-factor study: a combination of factor levels
X: dosage (3 levels), types of medicine (2 levels), time to take
medicine (2 levels, before meal or after meal)
total of 3 %2 %2 = 12 combinations
ex: dosage level 1 and medicine type 1 and taking medicine
before meal

O Experimental factors: the levels of the factor are assigned to
experimental units randomly

@ Classification factors: a factor describes a characteristic of an
experimental unit. The levels of the factor can't be assigned
to the experiment.

—-ex: formulation of paper towel
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One-way ANOVA

@ The one-way analysis of variance is a generalization of the two
sample t-test to r > 2 groups.
—— Assume that the populations of interest have the
following (unknown) population means and standard

deviations:
population 1 population 2 ---  population r
mean 251 2 T Hr
std dev o1 oo e o,
@ A usual interest in ANOVA is whether uy = o = -+ = p,. If
not, then we wish to know which means differ, and by how
much.
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Data Structure
@ Select samples from each of the r populations

o Let Yj; denote the j*® observation in the i*! level/group,
i=1,2,---,randj=1,2,---n;

sample/level r

sample/level 1 sample/level 2
Y].l;"' 7Y].n1 Y217"' ;Y2n2 le;"' ?anr
size ny no ny
mean Y. Yo. Y,.
SE S1 S, S,
— n;
where Y. = > Yji/n;.
j=1

o total sample size nt=n +np +---

14 /47



o let Y. be the average response over all samples, that is

2 ; Yij Z n,-\_/,-.
=22 =
n n

Note that Y. is not the average of the sample means, unless
the sample sizes n; are equal.
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L Test mean
One way ANOVA model—-Cell means model
Yi=pi+eifori=12-- rj=12--n; (1)

where

@ Yj; is the value of the response variable in the jth trial for the
ith factor level /sample/group/treatment

@ 1;'s are means of response values for level i, they are
parmeters to be estimated

o ¢ are independent N(0,02), i=1,---,r;j=1---n;

E(Yy) = pi, V(Yj) = 02, Y are independent N(u;,0?)

——Independence assumption is usually considered to be
satistified by completely randomized design.
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Least square estimators

Yi = pi +€j
Consider the deviation of Yj; from its expected value [Yj; — p;]
@ Measure:
r n;
0 = XS
i=1 j=1

m n; ny
= > (Yy—m)P+ ) (Yo—m)+ -+ > (Y= )
Jj=1 j=1 j=1

= Z Qi
i—1

@ Objective: to find estimate of u;, for which Q is minimum
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o Differentiating with respect to u;, we obtain

dQ;
@ =Y —2(Yy— )
J

dp;

Set Zjn':1 —2(Yjj —pi) =0, so that ZJ"’ZI Y = njfi;, therefore
° [li=1Yi
@ The same estimators are obtained by the method of maximum
likelihood. The likelihood function is

1 1
L(Mb e 7#”02) - Wexp 7? ZZ(YIJ B Mi)z
i

Maximizing this likelihood function with respect to the
parameters p; is equivalent to minimizing the sum

i (Y — i)? in the exponent, which is the least squares
criterion.
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Yi = pi +€j
with LS estimators fi; = Y.
o Predicted (fitted or mean) value of Yj; is:
5A/ij =Y.
—the fitted value SA/,-J- is not the same as Yj;
—Y/; is the observed value, and \A/,-j is the predicted value
@ Residual ejj = Yj; — Y,-j: vertical deviation between Yj; and the
estimated u;
@ Error term €;; = Yj; — u;: vertical deviation between Yj; and
the true group mean p;
@ Residual ej is a prediction of ¢j;
— & 7 €
A normal scores plot or histogram of the residuals should
resemble a sample from a population.
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n; n;
ej =) (Yij—Yi)=0
j=1 j=1
]
Yi = Yitey

= Y. + (y?.‘— SZ.) + €j
@ Cell mean model can also be written as
Yij = p. +7i + €,

where p is the overall mean, 7; represents the treatment
effect, and ¢;; are the errors.
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Example: The Kenton Food Company wished to test 4 different
package designs for a new breakfast cereal.

@ 20 stores, with approximately equal sales volumes, were
selected as the experimental units
—-comparable in location and sales volume.
—-other relevant conditions, that could affect sales, such as
price, amount and location of shelf space and special
promotional effors, were kept the same for all the stores in the
experiment.

@ Each store was randomly assigned one of the package designs
—-each package design is assigned to 5 stores

@ Missing data: a fire occured in one store during the study
period, so it is dropped from the study.

@ Response: sales in number of cases were observed and
recorded for the study period.
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sales<-read.table(file=""/Desktop/jenn/teaching/
stat445545/data/CH16TAOL . txt",
col.names=c("salevolume","design","obs"))

> #### Example: Comparison of sales

> sales<-read.table(file=""/Desktop/jenn/teaching/stat4455:

+ col.names=c("salevolume", "design", "obs"))

> sales

salevolume design obs

11
17
16
14
15
12
10
15

0 N O O WN -

1

NN R P R R

W N = O WN -

21/47



##{Numerical summaries}

19
11
23
20
18
17
27
33
22
26
28

O D D DWW W W NN

O WNEFE WD~ O

#Calculate the mean, sd, n, and se for the four designs
#The plyr package is an advanced way to apply a function
#to subsets of data, splitting, applying and combining

#data"
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> library(plyr)

> # ddply "dd" means the input and output

> #are both data.frames

> sales.summary <-ddply(sales,

+ "design",

+ function(X) {

+ data.frame( m = mean(X$salevolume),
+ s = sd(X$salevolume),

+ n = length(X$salevolume)
+ )P

> sales.summary

design m s n
1 14.6 2.302173 5
2 13.4 3.646917 5
3 19.5 2.645751 4
4 27.2 3.962323 5

D W N -
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@ The mean sales per store with package design 1 are estimated
to be 14.6 cases for the population of stores under study

@ The fitted value for each of the observations for package
design 1is Yy; = Y7, = 14.6

@ Residual of the first observation from design 1 is
Yii1—Yi1=11-146=-3.6
—-all the residuals are listed in the following table
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Store (j)

Design (i) 1 2 3 4 5  Total
1 -3.6 24 1.4 -06 04 0
2 -1.4 -3.4 1.6 56 -2.4 0
3 35 05 -1.5 -25 NA 0
4 -0.2 5.8 -5.2 -1.2 0.8 0

All design 0




Decompsition of Total Sum of Squares

@ Given a set of measurements (Y};'s) and no information about
the level associated with each Y, the Total Sum of Squares is

SSTO = ZZ (Y; —Y.)

@ If we have information about the factor levels and that the
levels have different means, we would use the deviations
Yiji — Yi. to assess the variation within the levels

Kj—\_/.-:\_/i.—\_’,.+y,j—\7i.

—-Y; — Y. deviation of estimated factor level mean around
overall mean
—-Yjj — Yi.: deviation around estimated factor level mean
@ square both sides and take summation
) ID DI AT S AR A g o (AR A
i i i
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Sum of Squares (SS)

@ SSTR: standing for treatment sum of squares . A measure of the
extent of differences between the estimated factor level means,
based on the deviations of the estimated factor level means Y;.
around the overall mean Y. The more the estimated factor level
means differ, the larger will be SSTR.

SSTR=> ni(Vi. = Y.)?
i
@ SSE: standing for error sum of squares, a measure of the random
variation of the observations around the respective estimated factor

level means. The more the observations for each factor level differ
among themselves, the larger will be SSE.

SSE= YN (%~ V= Y304

SSTO = SSTR + SSE
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Degrees of Freedom (df)

@ The df(SSTR) is the number of groups minus one, r — 1.

@ The df(SSE) is the total number of observations minus the
number of groups: (n —1)+(n2—1)+---+(n,—1)=n—r.

@ These two df add to give df(SSTO)
=(r—1)+(n—r)=n—-1.
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The Mean Square for each source of variation is the corresponding
SS divided by its df.

o

MSTO = SSTO/(n —1)
o

MSTR = SSTR/(r — 1)
o

MSE = SSE/(n—r)
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ANOVA Table

Source of df SS MS E(MS)
variation
- - SSTR (i — )2
Between  r—1 SSTR=3,m(Vi—V.? MSTR=2"% o?+ 2 milp - )
r— r—
treatment
L c \2 SSE N
Within n—r SSE=3%33>(Y;—Yi) MSE = o
n—r
treatment
(Error)
Total n—1 SS5TO =73 ,;(Y;—Y.)?
N lL;
n
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The MSE is identical to the pooled variance estimator of ¢ in a
two-sample problem when r = 2.

> (Y= Vi) (n-2)

i=1 j=1
S (Yy - Y1) Y2 (Yo — Vo)
— -1 = —1
_ n —1 (m )+ n—1 (n2 )
ni+ny—2
. (m =18+ (m—1)S3
N n—+n—2
In general,
np —1)S2 4+ (np — 1)S2 + -+ + (n, — 1)S?

MSE:( 1 ) 1 (2 ) 2 ( ) :Sgooled

n—r
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(m —1)S + (2 —1)S3 +--- + (n, — 1)S? _ g2
n—r P
is a weighted average of the sample variances.
@ The MSE is known as the pooled estimator of variance, and
estimates the assumed common population variance.
o If all the sample sizes are equal, the MSE is the average
sample variance.

ooled

MSE =

E(S7)=0°

So that )
(n—r)o? = o>

E(MSE) =
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Review two models:
FOF I: 1727"' 5randj:n]_,n2"" ’nr
Cell mean model

Yi = pi + €

Factor effect model

Yi=pu +71+e€
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Test mean
Test of equivalence of the means

Hypothesis:
Ho : 1 = pp = --- = u, versus H, : at least two of them are not equal
or
Ho:m=m=--=1
Test statistic
« _ MSTR
- MSE

Reject Hp, if
F*>F(l—a;r—=1,n—r)

Do not reject Hy, if
FF<Fl—a;r—1,n—r)

where F(1 — «;r —1,n— r) is the upper-a percentile from an
F(r —1,n— r) distribution with numerator degrees of freedom

r — 1 and denominator degrees of freedom n —.r
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Test mean

F with 4 and 20 degrees of freedom

o = .05 (fixed)

o T : )
Fcrit Reject Hp for Fs here ——>
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Test mean

F with 4 and 20 degrees of freedom

Fs not significant

p—value (random)

[l

Fs

/PC‘% a 5 6
Fcrit
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Test mean

Comments:

SSTO = SSTR + SSE

If Ho: p1 = pog = - -- = p, is true, then
—Y; — Y issmall, i.e., SSTR is small.
—SSE is close to SSTO
—F* is small
If Hy: 1 = po = --- = pr is not true, then
—SSTR is large
—SSE is small
—- F* is large, reject Hp.
@ Large values of F* indicate large variability among the sample

means Yi., Yo.,..., Y, relative to the spread of the data
within samples. That is, large values of F* suggest that Hy is
false.

35/47



Test mean

o
E(MSE) = o2
Ay — 2
E(MSTR) — o2 4 2= Ml — 1) : i)
r_
If Ho is true, py = pp = -+ = pip = pu,

E(MSTR) = 0 = E(MSE)
Fr=~1
If Hp is not true,
E(MSTR) > 0 = E(MSE)

_ MSTR
 MSE

*

>1

A rough way to reject Hp.
@ The p-value for the test is the area under the F-probability
curve to the right of F*.
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Test mean
Randomization Test

Example: two treatments (t1, t2), 4 experimental units (a, b, ¢, d),

results are as follows
Treatment 1  Treatment 2

Y]_j Y2j
3 8
7 10

want to test if there are treatment effect or not.

Y1 = (3+7)/2 =5, Yo, = (8+10)/2 =9, Y. = (3+7+8+10)/4 =

2
SSTR = Z
2(5 -

7% 4+29-7)%=16

MSTR =16/(2 — 1) = 16
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Test mean

2 2
SSE = Y N (Y- V)

i=1 j=1
= (3-52+(7-52+(8-9)*+(10-9)*=10
MSE = SSE/(n—r) =10/(4—2) =5
F* = MSTR/MSE = 16/5 = 3.2
P(F(1,2) >3.2) = 0.22

We fail to reject Hp that there is no treatment effect between t1
and t2 assuming ANOVA model is applicable.
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Test mean

Now want to test if there are treatment effect or not without
assuming the distribution of error terms (sample size of 4 is not
convincing to assume a distribution).

Randomization can provide the basis for making inferences without
requiring assumptions about the distribution of the error terms e.

Step 1: Ranodmly assign treatment t; and t» to the four experimental
units, which has a total of 4!/212! = 6 assignments.
—If there is no treatment effect, the response Yj; could with
equal likelihood have been observed for any of the treatments.
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Test mean

Treatment 1  Treatment 2

Y1) Yo,

3 8

7 10

a b ¢ d obsn F*  Probability
1 t1 t1 t2 t2 3 7 8 10 3.20 1/6
2 t1 t2 t1 t2 3 8 7 10 1.06 1/6
3 t1 t2 t2 t1 3 10 7 8 0.08 1/6
4 t2 t1 t2 t1 7 8 3 10 0.08 1/6
5 t2 tl t1 t2 7 10 3 8 1.06 1/6
6 t2 t2 t1 t1 8 10 3 7 320 1/6

The last two columns give the randomization distribution of test
statistic F* under Hy.
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Test mean

From the original data set, we have F* = 3.20,
P(F* > 3.20) =2/6 = 0.33

using the randomization distribution.
This P-value is somewhat different than the usual (normal theory)

P-value
P(F(1,2) >3.2) =0.22

We fail to reject Hp that there is no treatment effect between t1
and t2.
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Test mean
Regression approach to signle-factor analysis of variance

Factor effects model with unweighted mean
Yi=p +1itefori=1,2---rj=12---n

where ny = np = --- n,,

Som=> (wi—p)=Y pi—rp=0 (2)
i=1 i i

Recall that g = >"7_; njpi/n=>__ pi/r when
m=m=--=n
Because of the restriction in (2),

Tr=—T1—T2— "= Tr-1,
we shall use only the parameters p_, 71, -+ ,7,—1 for the linear

model.
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Test mean

An simple example for illustration:
Consider a single-factor study with r = 3 factor levels and with
ni=ny=n3=2. Let

@ X be the design matrix

@ (3 be the vector of parameters

@ & be the error vector

@ Y be the response vector

1 1 0 €11 Y11
1 1 0 [ €12 Y12
|1 0 1 | | e _ | Ya
X= 1 0 1 ’6_ :1 &= €22 7Y_ Y22
1 -1 -1 2 €31 Y31

L 1 -1 -1 ] L €32 | L Y32 |
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Test mean

We have
Y=X3+e.
E[Y]-l] 1 1 0 M. + 71
E[Y12] 1 1 0 M M. + 711
. E[Y21] - o 1 0 1 : - wn. + 1
E(Y) = E[Yn] | X8 = 1 0 1 :1 - .+
E[Ya1] 1 -1 -1 2 L. — T — T
E[Y32] 1 -1 -1 . —T1 — T2

3= —11— T2, E(Yy) = pu. + 7

We need to define indicator variables that take on values 0, 1 or -1.
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Test mean

Let Xjj1 denote the value of indicator variable X; for the jth case
from the ith factor level; Xjj» denote the value of indicator variable
Xa for the jth case from the ith factor level, and so on. The
multiple regression model then is as follows:

Yi = p + 11X + o Xjo + - 71 X —1 g

where
1 if case is from factor level 1
Xij1 = —1 if case is from factor level r
0 otherwise

1 if case is from factor level r-1
Xijr—1= —1 if case is from factor level r
0 otherwise

The intercept term is p, and the regression coefficients are
T1,72,° ", Tr—1-
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Test mean

@ The least square estimator of u. is the average of the cell
smaple means:
-
. > &7
r

——this quantity is generally not the same as the overall mean
Y . unless the cell smaple sizes are equal.

@ The least square estimators of the ith factor effect is

=Y -
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Test mean

@ To test the equality of the treatment means u; by means of
the regression approach,

Ho:m =m=---=m7_1 =0 versus not all 7; equal zero
Reduced model is therefore
Yi=n +ej

The general linear test for whether there is a regression
relation is
SSE(R) — SSE(F) SSTO — SSE
dfE(R) — dfE(F) n—1—(n—r)

o= SSE(F)  ~  MSE
dfE(F)
SSTR/(r—1) MSTR
MSE ~ MSE

Reject Hp, when F* > F(1—a;r—1,n—r)
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