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Example 1: A hospital research staff wished to determine the best
dosage level among three dosages levels for a standard type of drug
therapy to treat a medical condition.

30 patients with the medical problem were recruited to
participate in a pilot study.

Each patient was randomly assigned to one of the three drug
dosage levels
—–with exactly 10 patients studied in each drug dosage level
group
—–the design is balanced, because each treatment is
replicated the same number of times

This is an example of balanced completely randomized design,
based on a single, three-level quantitative factor.
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Example 2: Want to investigate absorptive properties of four
different formulations of a paper towel.

Five sheets of paper towel were randomly selected from each
of the four types, total of 20 paper towels.

Twenty 6-ounce beakers of water were prepared, and the 20
paper towels were randomly assigned to the beakers.
——paper towels were fully submerged in the beaker water for
10 seconds, withdrawn, and the amount of water absorbed by
each paper towel sheet was determined and recorded

This is an example of balanced completely randomized design,
based on a single, four-level quantitative factor.
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Example 3: Four machines in a plant were studied with respect to
the diameters of ball bearings they produced.

the purpose of the study was to determine whether substantial
differences in the diameters of ball bearings existed betweent
the machines.

This is an observational study, as no randomization of treatments
to experimental units occured.
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Relation between Regression and Analysis of Variance (ANOVA)

Both Regression and ANOVA models are concerned with the
statistical relation between one or more predictor variables and
a response variable.

Regression:
—–In ordinary regression, both the predictor and response
variables are quantitative.
—–The regression function describes the nature of the
statistical relation between the mean response and the levels
of the predictor variable(s).

ANOVA:
—-The response varialbe is continuous (quantitative)
—-The predictor variables are usually qulitative/categorical
(gender, geographic location, plant shift, etc.)
—-If the predictor variables are quantitative, no assumption is
made in ANOVA model about the nature of the statistical
relation between them and the response variable.
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Example: a consultant for an electrical distributor is studying the
relationship between the number of bids requested by sonstruction
contractors for basic lighting equipment during a week and the
time required to prepare the bids.

E (Y ) = 9.5 + 2.2X

X is the number of bids prepared in a week

Y is the number of hours required to prepare the bids

suppose X = 45, then E (Y ) = 9.5 + 2.2 ∗ 45 = 104
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For each level of the predictor variable, there is a probability
distribution of number of hours required.

The mean of these probability distributions fall on the
regression curve, which describes the statistical relation
between hours required and number of bids prepared in a week
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Example: ANOVA model for a study of the effects of three
different types of incentive pay systems on employee productivity.

each type of incentive pay system corresponds to a different
population, each with a probaiblity distribution of emplyee
productivities (Y )

there is no regression model representation

want to compare the means of employee productivity by the
three incentive pay system
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Notation:

1 Factor: an independent or predictor variable to be studied for
its effect
—–ex: dosage

2 Factor level: a particular form of that factor
—–ex: three dosage levels

3 Single-factor analysis: only one factor involved
—-ex: dosage example
Multi-factor analysis: at least 3 factors involved
—-ex: dosage (3 levels), types of medicine (2 levels), time to
take medicine (2 levels, before meal or after meal)

4 Dependent or response variable: the variable that is actually
measured, which is thought to depend on the value of the
factor in some way.
—-ex: pain level measured after taking medicine
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5 Treatment:
—-single-factor study: a factor level such as dosage level
—-multi-factor study: a combination of factor levels
X: dosage (3 levels), types of medicine (2 levels), time to take
medicine (2 levels, before meal or after meal)
total of 3 ∗ 2 ∗ 2 = 12 combinations
ex: dosage level 1 and medicine type 1 and taking medicine
before meal

6 Experimental factors: the levels of the factor are assigned to
experimental units randomly

7 Classification factors: a factor describes a characteristic of an
experimental unit. The levels of the factor can’t be assigned
to the experiment.
—-ex: formulation of paper towel

12 / 47



Test mean

One-way ANOVA

The one-way analysis of variance is a generalization of the two
sample t-test to r > 2 groups.
—— Assume that the populations of interest have the
following (unknown) population means and standard
deviations:

population 1 population 2 · · · population r

mean µ1 µ2 · · · µr
std dev σ1 σ2 · · · σr

A usual interest in ANOVA is whether µ1 = µ2 = · · · = µr . If
not, then we wish to know which means differ, and by how
much.
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Data Structure

Select samples from each of the r populations

Let Yij denote the jth observation in the i th level/group,
i = 1, 2, · · · , r and j = 1, 2, · · · ni

sample/level 1 sample/level 2 · · · sample/level r

Y11, · · · ,Y1n1 Y21, · · · ,Y2n2 · · · Yr1, · · · ,Yrnr

size n1 n2 · · · nr
mean Ȳ1· Ȳ2· · · · Ȳr ·

SE S1 S2 · · · Sr

where Ȳi · =
ni∑
j=1

Yij/ni .

total sample size nT = n1 + n2 + · · ·+ nr
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let Ȳ·· be the average response over all samples, that is

Ȳ·· =

r∑
i=1

ni∑
j=1

Yij

n
=

r∑
i=1

ni Ȳi ·

n
.

Note that Ȳ·· is not the average of the sample means, unless
the sample sizes ni are equal.
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One way ANOVA model—-Cell means model

Yij = µi + εij for i = 1, 2, · · · , r ; j = 1, 2, · · · , ni (1)

where

Yij is the value of the response variable in the jth trial for the
ith factor level/sample/group/treatment

µi ’s are means of response values for level i , they are
parmeters to be estimated

εij are independent N(0, σ2), i = 1, · · · , r ; j = 1, · · · ni
—–

E (Yij) = µi ,V (Yij) = σ2,Yij are independent N(µi , σ
2)

—–Independence assumption is usually considered to be
satistified by completely randomized design.
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Least square estimators

Yij = µi + εij

Consider the deviation of Yij from its expected value [Yij − µi ]
Measure:

Q =
r∑

i=1

ni∑
j=1

(Yij − µi )2

=

n1∑
j=1

(Y1j − µ1)2 +

n2∑
j=1

(Y2j − µ2)2 + · · ·+
nr∑
j=1

(Yrj − µr )2

=
r∑

i=1

Qi

Objective: to find estimate of µi , for which Q is minimum
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Differentiating with respect to µi , we obtain

dQi

dµi
=

∑
j

−2(Yij − µi )

Set
∑ni

j=1−2(Yij −µi ) = 0, so that
∑ni

j=1 Yij = ni µ̂i , therefore

µ̂i = Ȳi ·

The same estimators are obtained by the method of maximum
likelihood. The likelihood function is

L(µ1, · · · , µr , σ2) =
1

(2πσ2)n/2
exp

− 1

2σ2

∑
i

∑
j

(Yij − µi )2


Maximizing this likelihood function with respect to the
parameters µi is equivalent to minimizing the sum∑

i

∑
j(Yij − µi )2 in the exponent, which is the least squares

criterion.
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Residuals

Yij = µi + εij

with LS estimators µ̂i = Ȳi ·

Predicted (fitted or mean) value of Yij is:

Ŷij = Ȳi ·

—the fitted value Ŷij is not the same as Yij

—Yij is the observed value, and Ŷij is the predicted value
Residual eij = Yij − Ŷij : vertical deviation between Yij and the
estimated µi
Error term εij = Yij − µi : vertical deviation between Yij and
the true group mean µi
Residual eij is a prediction of εij
—- eij 6= εij
A normal scores plot or histogram of the residuals should
resemble a sample from a population.
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ni∑
j=1

eij =

ni∑
j=1

(Yij − Ȳi .) = 0

Yij = Ȳi . + eij

= Ȳ.. + (Ȳi . − Ȳ..) + eij

Cell mean model can also be written as

Yij = µ. + τi + εij ,

where µ is the overall mean, τi represents the treatment
effect, and εij are the errors.
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Example: The Kenton Food Company wished to test 4 different
package designs for a new breakfast cereal.

20 stores, with approximately equal sales volumes, were
selected as the experimental units
—-comparable in location and sales volume.
—-other relevant conditions, that could affect sales, such as
price, amount and location of shelf space and special
promotional effors, were kept the same for all the stores in the
experiment.

Each store was randomly assigned one of the package designs
—-each package design is assigned to 5 stores

Missing data: a fire occured in one store during the study
period, so it is dropped from the study.

Response: sales in number of cases were observed and
recorded for the study period.
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sales<-read.table(file="~/Desktop/jenn/teaching/

stat445545/data/CH16TA01.txt",

col.names=c("salevolume","design","obs"))

> #### Example: Comparison of sales

> sales<-read.table(file="~/Desktop/jenn/teaching/stat445545/data/CH16TA01.txt",

+ col.names=c("salevolume","design","obs"))

> sales

salevolume design obs

1 11 1 1

2 17 1 2

3 16 1 3

4 14 1 4

5 15 1 5

6 12 2 1

7 10 2 2

8 15 2 3
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9 19 2 4

10 11 2 5

11 23 3 1

12 20 3 2

13 18 3 3

14 17 3 4

15 27 4 1

16 33 4 2

17 22 4 3

18 26 4 4

19 28 4 5

> ##{Numerical summaries}

> #Calculate the mean, sd, n, and se for the four designs

> #The plyr package is an advanced way to apply a function

> #to subsets of data, splitting, applying and combining

> #data"

>

>
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> library(plyr)

> # ddply "dd" means the input and output

> #are both data.frames

> sales.summary <-ddply(sales,

+ "design",

+ function(X) {

+ data.frame( m = mean(X$salevolume),

+ s = sd(X$salevolume),

+ n = length(X$salevolume)

+ )})

> sales.summary

design m s n

1 1 14.6 2.302173 5

2 2 13.4 3.646917 5

3 3 19.5 2.645751 4

4 4 27.2 3.962323 5
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The mean sales per store with package design 1 are estimated
to be 14.6 cases for the population of stores under study

The fitted value for each of the observations for package
design 1 is Ŷ1j = Ȳ1. = 14.6

Residual of the first observation from design 1 is
Y11 − Ŷ11 = 11− 14.6 = −3.6
—-all the residuals are listed in the following table
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Store (j)

Design (i) 1 2 3 4 5 Total
1 -3.6 2.4 1.4 -0.6 0.4 0
2 -1.4 -3.4 1.6 5.6 -2.4 0
3 3.5 0.5 -1.5 -2.5 NA 0
4 -0.2 5.8 -5.2 -1.2 0.8 0

All design 0
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Decompsition of Total Sum of Squares

Given a set of measurements (Yij ’s) and no information about
the level associated with each Y , the Total Sum of Squares is

SSTO =
∑
i

∑
j

(Yij − Ȳ··)
2

If we have information about the factor levels and that the
levels have different means, we would use the deviations
Yij − Ȳi . to assess the variation within the levels

Yij − Ȳ·· = Ȳi . − Ȳ·· + Yij − Ȳi .

—-Ȳi . − Ȳ··: deviation of estimated factor level mean around
overall mean
—-Yij − Ȳi .: deviation around estimated factor level mean
square both sides and take summation∑

i

∑
j

(Yij − Ȳ··)
2 =

∑
i

ni (Ȳi · − Ȳ··)
2 +

∑
i

∑
j

(Yij − Ȳi ·)
2

24 / 47



Test mean

Sum of Squares (SS)

SSTR: standing for treatment sum of squares . A measure of the
extent of differences between the estimated factor level means,
based on the deviations of the estimated factor level means Ȳi.

around the overall mean Ȳ... The more the estimated factor level
means differ, the larger will be SSTR.

SSTR =
∑
i

ni (Ȳi· − Ȳ··)
2

SSE: standing for error sum of squares, a measure of the random
variation of the observations around the respective estimated factor
level means. The more the observations for each factor level differ
among themselves, the larger will be SSE.

SSE =
∑
i

∑
j

(Yij − Ȳi·)
2 =

∑
i

∑
j

e2
ij

SSTO = SSTR + SSE
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Degrees of Freedom (df)

The df (SSTR) is the number of groups minus one, r − 1.

The df (SSE) is the total number of observations minus the
number of groups: (n1− 1) + (n2− 1) + · · ·+ (nr − 1) = n− r .

These two df add to give df (SSTO)
= (r − 1) + (n − r) = n − 1.
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The Mean Square for each source of variation is the corresponding
SS divided by its df .

MSTO = SSTO/(n − 1)

MSTR = SSTR/(r − 1)

MSE = SSE/(n − r)
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ANOVA Table

Source of df SS MS E(MS)
variation

Between r − 1 SSTR =
∑

i ni (Ȳi· − Ȳ..)2 MSTR =
SSTR

r − 1
σ2 +

∑
ni (µi − µ.)2

r − 1
treatment

Within n − r SSE =
∑

i

∑
j (Yij − Ȳi.)

2 MSE =
SSE

n − r
σ2

treatment
(Error)
Total n − 1 SSTO =

∑
ij (Yij − Ȳ..)2

where µ. =

∑
i niµi
n
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The MSE is identical to the pooled variance estimator of σ2 in a
two-sample problem when r = 2.

2∑
i=1

nj∑
j=1

(Yij − Ȳi .)
2/(n − 2)

=

∑n1
j=1(Y1j − Ȳ1.)

2

n1 − 1
(n1 − 1) +

∑n2
j=1(Y2j − Ȳ2.)

2

n2 − 1
(n2 − 1)

n1 + n2 − 2

=
(n1 − 1)S2

1 + (n2 − 1)S2
2

n1 + n2 − 2

In general,

MSE =
(n1 − 1)S2

1 + (n2 − 1)S2
2 + · · ·+ (nr − 1)S2

r

n − r
= S2

pooled
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MSE =
(n1 − 1)S2

1 + (n2 − 1)S2
2 + · · ·+ (nr − 1)S2

r

n − r
= S2

pooled

is a weighted average of the sample variances.

The MSE is known as the pooled estimator of variance, and
estimates the assumed common population variance.

If all the sample sizes are equal, the MSE is the average
sample variance.

E (S2
i ) = σ2

So that

E (MSE ) =
1

n − r
(n − r)σ2 = σ2
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Review two models:
For i = 1, 2, · · · , r and j = n1, n2, · · · , nr
Cell mean model

Yij = µi + εij

Factor effect model

Yij = µ. + τi + εij
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Test of equivalence of the means

Hypothesis:

H0 : µ1 = µ2 = · · · = µr versus Hα : at least two of them are not equal

or
H0 : τ1 = τ2 = · · · = τr

Test statistic

F ∗ =
MSTR

MSE
Reject H0, if

F ∗ > F (1− α; r − 1, n − r)

Do not reject H0, if

F ∗ ≤ F (1− α; r − 1, n − r)

where F (1− α; r − 1, n − r) is the upper-α percentile from an
F (r − 1, n − r) distribution with numerator degrees of freedom
r − 1 and denominator degrees of freedom n − r
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0 1 2 3 4 5 6FCrit

α = .05 (fixed)

Reject H0 for FS here

F with 4 and 20 degrees of freedom
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0 1 2 3 4 5 6FS

p−value (random)

F with 4 and 20 degrees of freedom
FS not significant

FCrit
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Comments:

SSTO = SSTR + SSE

If H0 : µ1 = µ2 = · · · = µr is true, then
—–Ȳi . − Ȳ.. is small, i.e., SSTR is small.
—–SSE is close to SSTO
—–F ∗ is small
If H0 : µ1 = µ2 = · · · = µr is not true, then
—–SSTR is large
—–SSE is small
—- F ∗ is large, reject H0.

Large values of F ∗ indicate large variability among the sample
means Ȳ1·, Ȳ2·, . . . , Ȳr · relative to the spread of the data
within samples. That is, large values of F ∗ suggest that H0 is
false.
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E (MSE ) = σ2

E (MSTR) = σ2 +

∑
i ni (µi − µ.)2

r − 1

If H0 is true, µ1 = µ2 = · · · = µr = µ.

E (MSTR) = σ2 = E (MSE )

F ∗ ≈ 1

If H0 is not true,

E (MSTR) > σ2 = E (MSE )

F ∗ =
MSTR

MSE
> 1

A rough way to reject H0.

The p-value for the test is the area under the F -probability
curve to the right of F ∗.
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Randomization Test

Example: two treatments (t1, t2), 4 experimental units (a, b, c, d),
results are as follows

Treatment 1 Treatment 2
Y1j Y2j

3 8
7 10

want to test if there are treatment effect or not.

Ȳ1. = (3+7)/2 = 5, Ȳ2. = (8+10)/2 = 9, Ȳ.. = (3+7+8+10)/4 = 7

SSTR =
2∑

i=1

ni (Ȳi . − Ȳ..)
2

= 2(5− 7)2 + 2(9− 7)2 = 16

MSTR = 16/(2− 1) = 16
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SSE =
2∑

i=1

2∑
j=1

(Yij − Ȳi .)
2

= (3− 5)2 + (7− 5)2 + (8− 9)2 + (10− 9)2 = 10

MSE = SSE/(n − r) = 10/(4− 2) = 5

F ∗ = MSTR/MSE = 16/5 = 3.2

P(F (1, 2) ≥ 3.2) = 0.22

We fail to reject H0 that there is no treatment effect between t1
and t2 assuming ANOVA model is applicable.
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Now want to test if there are treatment effect or not without
assuming the distribution of error terms (sample size of 4 is not
convincing to assume a distribution).
Randomization can provide the basis for making inferences without
requiring assumptions about the distribution of the error terms ε.

Step 1: Ranodmly assign treatment t1 and t2 to the four experimental
units, which has a total of 4!/2!2! = 6 assignments.
—–If there is no treatment effect, the response Yij could with
equal likelihood have been observed for any of the treatments.
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Treatment 1 Treatment 2
Y1j Y2j

3 8
7 10

a b c d obsn F ∗ Probability

1 t1 t1 t2 t2 3 7 8 10 3.20 1/6
2 t1 t2 t1 t2 3 8 7 10 1.06 1/6
3 t1 t2 t2 t1 3 10 7 8 0.08 1/6
4 t2 t1 t2 t1 7 8 3 10 0.08 1/6
5 t2 t1 t1 t2 7 10 3 8 1.06 1/6
6 t2 t2 t1 t1 8 10 3 7 3.20 1/6

The last two columns give the randomization distribution of test
statistic F ∗ under H0.

40 / 47



Test mean

From the original data set, we have F ∗ = 3.20,

P(F ∗ ≥ 3.20) = 2/6 = 0.33

using the randomization distribution.
This P-value is somewhat different than the usual (normal theory)
P-value

P(F (1, 2) ≥ 3.2) = 0.22

We fail to reject H0 that there is no treatment effect between t1
and t2.
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Regression approach to signle-factor analysis of variance

Factor effects model with unweighted mean

Yij = µ. + τi + εij for i = 1, 2, · · · , r ; j = 1, 2, · · · ni

where n1 = n2 = · · · nr ,
r∑

i=1

τi =
∑
i

(µi − µ.) =
∑
i

µi − rµ. = 0 (2)

Recall that µ. =
∑r

i=1 niµi/n =
∑r

i=1 µi/r when
n1 = n2 = · · · = nr
Because of the restriction in (2),

τr = −τ1 − τ2 − · · · − τr−1,

we shall use only the parameters µ., τ1, · · · , τr−1 for the linear
model.
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An simple example for illustration:
Consider a single-factor study with r = 3 factor levels and with
n1 = n2 = n3 = 2. Let

X be the design matrix

β be the vector of parameters

ε be the error vector

Y be the response vector

X =



1 1 0
1 1 0
1 0 1
1 0 1
1 −1 −1
1 −1 −1

 ,β =

 µ.
τ1

τ2

 , ε =



ε11

ε12

ε21

ε22

ε31

ε32

 ,Y =



Y11

Y12

Y21

Y22

Y31

Y32


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We have
Y = Xβ + ε.

E (Y) =


E [Y11]
E [Y12]
E [Y21]
E [Y22]
E [Y31]
E [Y32]

 = Xβ =


1 1 0
1 1 0
1 0 1
1 0 1
1 −1 −1
1 −1 −1


 µ.

τ1

τ2

 =


µ. + τ1

µ. + τ1

µ. + τ2

µ. + τ2

µ. − τ1 − τ2

µ. − τ1 − τ2


τ3 = −τ1 − τ2,E (Yij) = µ. + τi

We need to define indicator variables that take on values 0, 1 or -1.
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Let Xij1 denote the value of indicator variable X1 for the jth case
from the ith factor level; Xij2 denote the value of indicator variable
X2 for the jth case from the ith factor level, and so on. The
multiple regression model then is as follows:

Yij = µ. + τ1Xij1 + τ2Xij2 + · · · τr−1Xij ,r−1 + εij

where

Xij1 =


1 if case is from factor level 1
−1 if case is from factor level r
0 otherwise

...

Xij ,r−1 =


1 if case is from factor level r-1
−1 if case is from factor level r
0 otherwise

The intercept term is µ., and the regression coefficients are
τ1, τ2, · · · , τr−1.
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The least square estimator of µ. is the average of the cell
smaple means:

µ̂. =

∑r
i=1 Ȳi .

r

—–this quantity is generally not the same as the overall mean
Ȳ.. unless the cell smaple sizes are equal.

The least square estimators of the ith factor effect is

τ̂i = Ȳi . − µ̂.
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To test the equality of the treatment means µi by means of
the regression approach,

H0 : τ1 = τ2 = · · · = τr−1 = 0 versus not all τi equal zero

Reduced model is therefore

Yij = µ. + εij

The general linear test for whether there is a regression
relation is

F ∗ =

SSE (R)− SSE (F )

dfE (R)− dfE (F )

SSE (F )

dfE (F )

=

SSTO − SSE

n − 1− (n − r)

MSE

=
SSTR/(r − 1)

MSE
=

MSTR

MSE

Reject H0, when F ∗ > F (1− α; r − 1, n − r)
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