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8 NON-EUCLIDEAN GEOMETRY

an overall picture of the whole subject, and in partic-

ular to prove the theorem on the angle of parallelism.

The proofs of this theorem are of two kinds:

(i) Stereometric and planimetric proofs based on the
properties of horocyeles, and

(ii) the so-called elementary proofs which make use
only of the simplest properties of the plane.

These proofs, of which that of Straszewicz appears
to be the perfect example, do not refer to any further
theorems but use ingenious limiting processes and require
the solution of funectional equations. These I do not
consider to be “accessible”.

We have chosen the proof based on the study of the
horosphere not only to mark the occasion of the cente-
nary of Lobatchevsky's death but also in view of its
advantages.

The present book contains three chapters. The knowl-
m@mm of elementary geometry gained in schools and colleges
will be sufficient for an understanding of the first two.
The third chapter demands a certain familiarity with
the principles of trigonometry; for §§ 28 and 29 elements
of analytical geometry are also needed.

Chapter I gives some information about the history
of geometry; chapters II and IIT contain a systematic
mmwoﬁﬁob“ without referring back to chapter I, of the
principles of non-Euclidean geometry.

The exposition has been presented in such a way that
the reader may limit himself to an examination of §§ 8-20
@.b@. obtain thereby a certain completeness of informa-
tion. The remaining sections deal with non-Euclidean
trigonometry.

STEFAN KULCZYCK1

Warsaw, 1956

CHAPTER I

FROM THE HISTORY OF GEOMETRY

§ 1. Earliest times

Geometry probably originated in Ancient Egypt. The
Greek historian Herodotus describes in the following
manner how the first systematic geometrical observa-
tions were made. The inundations of the Nile, bringing
with them its fertile silt, would obliterate the boundaries
between properties; each year these boundaries had to
be delineated anew. This task, which would be trouble-
some even to a modern surveyor, had to be carried ouf
rapidly and justly. It used to be performed by specialists,
whom later the Greeks referred to as ‘“harpenodapts”,
i. e. ropetyers—since, apparently, their main tool was
the geodetic rope (today we use the geodetic tape). More
detailed information about the proceedings of the har-
penodapts has not been preserved. There is no doubt,
however, that constant work on the same subject must
have led to a considerable familiarity with geometrical
figures and to the revelation of various laws. The harpe-
nodapts were held in high esteem by their contempora-
ries. Democritus, the fifth-century Greek philosopher,
boasted that nobody, not even the Egyptian harpeno-
dapts, could excel him in the art of drawing lines, testi-
fying thereby that in his time the Begyptians still ranked
high as the most skilful geometers.

In the other countries of the East, in Babylonia and
Assyria, geometry was also cultivated, though perhaps
to a lesser extent. During the past twenty-five years,
numerous mathematical texts in the cuneiform characters
have been deciphered. It appears from them that the
Babylonians had developed to & considerable extent the
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theory of equations; they were, for instance, able to
solve quadratic equafions. They also knew and were
applying Pythagoras’ theorem, the diseovery of which
should consequently be placed several centuries before
the birth of Pythagoras. It is impossible to decide whether
Pythagoras rediscovered it or whether he merely took
it from Babylonian tradition and transplanted it in Greece.
What most interests us here is the fact that geometry
had already started in the Mediterranean countries pbm
penetrated from them to Greece long before the Greeks
became active in that field. The credit for introducing this
mﬂ.muoo was attributed by Greek historians to Thales of
Miletus (sixth century B.C.), but, when we bear in mind
the lively trade-relations between Greece and Egypt
w.m certainly eannot have been its only propagator. In gm
sixth century B.C. began the development of Greek
geometry, shortly to flourish magnificently.

What was the standard of the Greek geometry in the
sixth century? We lack records from this period. We have
to depend on the accounts of authors who were writing
much later and on indirect deduction. The former, for
example, attribute to Thales the discovery of the theorem
relating to the isosceles triangle and the vertical angle
theorem, which suggests that Greek knowledge of that
period was confined to simple basic principles. On the
oa.wa. hand, certain works have survived which bear
witness to the skilful application of constructional
methods. There still exists today a tunnel dug in the
sixth century B.C. through a hill on the island of Samos
by an architect called Fupalinus. During the construe-
tion of this tunnel, which is two-thirds of a mile long
the adits were started on both sides of the hill and Emm
in the middle with an error that scarcely amounted to
a few yards. This is an impressive result when we remember
that theodolites and other instruments now used were
unknown in those days. We do not know FEupalinus’
procedure; he must at any rate have been acquainted
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with numerous geometrical properties and have heen
able to measure angles accurately, and to calculate aceu-
rately the difference in level between the ends of his tunnel.
At all events, he proved a master of the practical appli-
cation of geometry. We gather from all this that the Egyp-
tians and their successors, the Greeks of the sixth century,
had collected a considerable knowledge of geometry,
especially of those aspects of it which were of practical
importance in building and similar occupations.

Into all this crude and empirically collected material
the incomparable Greek genius introduced logieal order,
transforming a conglomeration of scattered facts into
a compact science which was capable of deducing one
theorem logically from another. This process, of course,
lasted over many generations.

Tt seems that the first steps in this direction were taken
by Pythagoras and his pupils, known as the Pythagoreans.
A Greek historian (Eudemus, as quoted by Proclus) tells
us: “Pythagoras has transformed geometry by formula-

" ting all-embracing principles and developing theorems

by means of pure abstract argument”. Tradition consid-
ers Pythagoras to have been the first to seek clarity in
the concepts used and refers to him as the originator
of the idea of definition. In the Pythagorean school
(fifth and sixth centuries B.C.) abstract views were conl-
ceived for the first time; namely that a geometrical line
has length but no breadth, that a circle is a line all
of whose points are equidistant from a fixed point, and
that a tangent to a circle is that straight line which hag
one point only in common with it. This standpoint, that
a tangent to a circle has only one point in common with
it, is already a far cry from any conclusions that could
be teached by direct experimental observation of real
straight lines and real circles. In the fifth century B.C.
it was subject to vehement criticism from Protagoras,
who pointed out that a real tangent to a real circle has in
common with it by no means one point, but in fact a def-
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inite segment (Fig. 1). Protagoras accused these geometrical
notions of fictitiousness; he indicated that the geometry
deals with objects which do not and cannot exist, i.e.
with arbitrary and preposterous inventions. A science,
he said, ought to examine reality —that which exists
in fact. Protagoras’ objections were by no means shallow
ones and it is worth while to examine this question in
detail.

Fic. 1

A straight line drawn on a piece of paper is in fact
a strip. A strip, admittedly, of minuscule width, but
a strip nevertheless. The same applies to a drawn circle.
Now these two lines are tangent when one strip overlaps
the other as in TFig. 2.

7N TS

Fia. 2 Fia. 3

These strips have, then, a common part which is ob-
viously not a point but which has a certain ‘“‘length”.
One might think at first glance that this fact is due simply
to the imperfection of the draughtmanship and ought
to vanish, or at least to be considerably diminished, with
the use of more subtle drawing instruments. However,
the matter is not so simple. Let us look at Figs. 2 and 3.
The strips in Fig. 3 are much thinner than those in Fig. 2.
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Nevertheless the common length of the strips has remained
almost the same. Now if we imagine that these strips are
drawn thinner and thinner we must assume at the same
time that our sense of sight becomes more acute if it is
to perceive these minute objects —so that the common
length of the two strips will appear greater. Similarly if
we examine a strand of spider’s-web through a magni-
fying-glass we will see it quite distinetly although it may
be invisible to the naked eye, but at the same time its
length will also apparently increase. In other words, if
we were to observe a circle and its tangent made of the
finest strands of cobweb, and if our eye were able to
distinguish these strands, their common length would
not appear to be so small. The size of this common part
should not be estimated by comparison with a fixed unit
of length, a centimetre for instance, but by comparison
with the width of the “strips” —that is, we should
consider the ratio of the common length of the lines to
their width. A piece of elementary calculus work gives
here an unexpected result. It appears, in fact, that the
ratio of the common length of a circle and its tangent to
the “width” of the lines by no means diminishes as we
draw them thinner and thinner, but distinetly increases.
We cannot therefore refute Protagoras’ objections by
blaming the drawing instruments; we cannot assert that
the tangent theorem will work with greater exactitude as
we nuse better materials, nor can we maintain that the
properties of the figures of our “practical” geometry will
tend more closely to those of our “abstract” geometry
as we use more and more perfect methods of draughts-
manship.

As with the circle and its tangent, we meet with the
same difficulties in other geometrical problems. We
state, for example, that two straight lines intersect in
one point, or in other words that two arbitrary intersect-
ing straight lines define a point. Every draughtsman will
without doubt contend that two perpendicular straight
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lines factually determine a point; but this breaks down
for straight lines that form an angle of less than ten degrees,
such straight lines do not “determine” a’ point (Fig. 4).

FiG. 4

No—such straight lines cannot be employed for the
precise definition of a point. It can be shown that if two
perpendicular straight - lines are taken as cutting at
a “point”, the straight lines in Fig. 4 cut at seven “points”,
and matters are not altered when the lines are drawn
thinner.

In conclusion: “theoretical” geometry cannot be con-
sidered as the limiting cage of the “real” one as the sizes
of points and the widths of lines decrease. It is a repre-
sentation of reality which is simplified in another way.
Protagoras was right: there is a difference between real
facts and the postulates of theoretical geometry.

§ 2. Plato

As may be inferred from the title of one of Democri-
tus’ works there developed during the fifth century
B.C. a discussion around the criticism of Protagoras.
We know, however, nothing about its course. But we
may guess from several passages in the works of Plato,
and especially of Aristotle, who was continually returning
to the subject of the circle and the tangent, that the matter
had aroused real interest and endless argument. Later
ages, under the spell of the triumphant development of
theoretical geometry and the extraordinary usefulness
of its applications, somewhat slided over the fundamental
speculations of Protagoras, but in the fifth and fourth
centuries they were certainly not treated lightly. We
possess no records by means of which we might trace
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the evolution of Greek opinion, but it seems likely that
the objections of Protagoras and the desire to refute them
exercised an essential influence on the views of Plato
(fourth century B.C.). ,

Generally speaking, it is diffienlt and in many ways
controversial to characterize Plato’s doctrine. Flato
makes his points in a poetic and picturesque manner,
using numerous suggestive comparisons; he wishes at
times to draw the reader into his frame of mind, into
his ardour for research, of which his dialogues are so full,
rather than to communicate to him accurately and metho-
dically the results of his enquiries. Moreover, there is noth-
ing stiff and academic in Plato’s doctrine; ideas conceived
in one dialogue are modified in others—mnot only mod-
ified, but sometimes also caricatured, mocked and cast
aside to make room for new ones. That flexibility of his
views which reflects the constant evolution of thought
steadily searching for the truth, but never satisfied with
the results, is the reason why commentators hold to this
day contradictory opinions as to Plato’s theses is most
principal matters. It is simply impossible to formulate
these theses precisely without violating them, distort-
ing and changing their colours.

Fortunately, for our purposes, there is no necessity
to discuss the whole of Plato’s philosophy, and it suffices
to present his views on the relationship between theoret-
ical and empirical geometry.

Of course, this question is only a small part of a more
extensive problem, but concerning this small part Plato’s
standpoint, as set forth in the dialogue Eepublic and in
the Letter V11, is quite clear and leaves no room for serious
doubt. Plato admits that “the circle drawn or manufac-
tured by man is far from our notion of a circle”, since
“guch a circle coincides in every portion with a straight
line”; he does not deduce from this, however, that geome-
trical theories deal with objects that have no real existence.
For the subject-matter of these theories does not consist
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of drawn or manufactured circles and straight lines, but
of ideal circles, ideal straight lines and ideal triangles,
or in his own words of the “ideas” of a straight line, of
a triangle or of a circle. These are by no means fictions,
vain toys of the human mind, but have an objective
existence independent of the human imagination, and
are everlasting and unchanging. “Beyond the limits of
the stars”, says Plato, “exist pure ideas, without shape
or colour, intangible and invisible not fixed in sensible
particulars but free and independent”. We would very
much like to include this beautiful sentence in a poem ex-
tolling a mahtematical paradise, in which dwell ideal
polygons, circles, spheres, regular icosahedrons and other
geometrical figures; among them all striding portentously
the logarithm, surrounded by a retinue of square, cube
and fourth roots... In scientific considerations such fab-
ulous pictures seem a little odd, but we must bear in
mind that in the dawn of science all theories about the
universe were based not exclusively on observation and
argument but were conglomerates in which the conclu-
siong of enquiry and cool logical speculation were overlaid
by poetic fancy. Centuries were to pass by before man
learnt to be cautious and eritical in secience.

With this in mind we may appreciate more fully Plato’s
granting of an independent existence to ideal Wmcﬁmﬁ._.,-
cal concepts. He imbued geometry with the character
of a true science dealing with existing reality; the realistic
Greek mind was apt to recoil from a science concerned
merely with infellectual inventions.

If we accept the real existence of the world of geometri-
cal forms, we must ask two questions. The first is “Why
in fact to bother to examine it?” and the second “How
to do it®”

The need for study and research was obvious to Plato.
Only ideal geometrical forms are governed by simple
laws and only they can claim to have everlasting and
invariable existence. The objects of this world reproduce
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these circles and straight lines only approximately and
are influenced by accidents, and at the same time the
relationships between them are only hazy reflections of
the relationships between perfect forms. The reality we
perceive thus stands as a representation of those relation-

- ships between perfect objects which play, as it were, the

role of - “pre-examples”. Plato does mnot explain how
it comes to pass, but makes his point clear by means
of an allegory about prisoners in a cave, with a wall be-
fore them. At the entrance to the cave a fire is burning,
and people are moving freely in front of flames. The
passers-by and the objects they carry throw shadows on
the wall. The prisoners may see the vague and vacillating
shadows and gather from them how the objects are look-
ing, but the shadows reproduce reality imperfectly and
so the prisoners are incompletely informed.

Quite so are things in geometry. Geometrical relation-
ships between the real objects under discussion are like
shadows of the relationships between perfect beings.
It is with these latter that man should try to be ac-
quainted, for only they are primary and essential. Only
they can give us true knowledge.

As for signposting the way which leads to this knowl-
edge, we turn to the problem arising in the second of
our questions. Here we discard our fabulous pictures
and enter the field of the methodology of scientific work
which, according to Plato, requires immense effort and in-
defatigable perseverance. In the scientific examination
of an object Plato distinguished a number of succeeding
steps. Let us take the example of a circle. The first step
is the name-giving, the second the definition—that all
points on a circle are equidistant from its centre. The
third step consists in the producing of an image of the
circle, accessible to the senses, e. g. in the drawing of it;
such a picture is something “totally different from the
idea of a circle”. The fourth step is the scientific recogni-
tion, the embracing of the object by reason, the acquisi-
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tion of an objectively true notion of it. This is achieved
in a mental process, not appealing to the sense-images
and without recourse to language. It is this activity of
the mind which brings us closest to the essence (the idea)
of the objeet. He who does not pass through the above
four stages will never reach this essence.

Protagoras’ sophistical criticism and Plato’s dreams
about the real world of ideas led to distinet progress, the
significance of which must not be underestimated.

First of all it has now been acknowledged once and
for all that geometrical concepts are not the same as their
real counterparts in the material world; thus an empirical
observation of a certain phenomenon is not and cannot
be sufficient foundation for its acknowledgment as def-
inite “pure geometrical” truth.

Almost without exception records of the older Greek
mathematics have not survived to the present day, but
we may guess that its arguments were a mélange of strictly
logical deductions with references to facts which may
have seemed obvious but which had not yet been precisely
examined. Such a guess would be supported by the only

A D

Sl

C
Fic. 5

longer fragment from the fifth century B.C. which has
come down to us, namely, a traet on half-moons by
Hippocrates. In it we find a series of precise arguments,
and among them a reference without comment to the
following problem: to construct a segment AB of given
length with ends on a given semicircle and straight line
CD respectively (Fig.5), which when continued passes
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through the given point E on the diameter of the semi-
circle.

It seems plausible that the possibility of construeting
such a chord was assumed intuitively by Hippocrates;
the given segment AB, when 4 moves round the semi-
circle and B slides on CD, will assume a position where
the continuation of AB passes through . 5

Tt is possible that not only Hippocrates concerned
himself with this problem, but it is unlikely that it was
solved otherwise than by trial and error. For two hundred
years later we find Apollonius of Perga also treating i,
which would not have been the case if the solution had
already been known for centuries.

In the Platonic sehool such a mixture of logical argu-
ment and appeal to intuition would not do; not so much,
perhaps, because of the greater logical demands as on
acecount of the eardinal principle: that the world of em-
pirical reality is something lower, something baser, and
cannot bear upon the higher, sublime world of perfect
geometrical forms.

Platonic conceptions have produced an effect upon
the development of deductive thought in yet another
respect: to be sure, the final aim of scientific knowledge
i, according to them, the comprehension of the idea of
an object, but the preliminary condition for this is the
formulation of its definition. Therefore the search for the
correct definition became the daily preoccupation of the
Platonic school, and Plato himself devoted much effort
%o this in his later dialogues. There has survived in histor-
jcal literature (in the Lives of the Philosophers by Dioge-
nes Laertius) the following characteristic story. Man,
as he used to be defined by the Platonic school, was a mor-
tal being, two-legged and featherless. This definition
became quite popular in fourth-century Athens. The
philosopher Diogenes, the enfant terrible of the Athenian
community, plucked a live coek and took it along to the
Platonic school, known as the Academy, saying “Here
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is your man’. Diogenes’ objection was not dismissed as
mere facetiousness but accepted in all seriousness. In
fact the plucked cock was, by definition, a man. As the
result of this the definition was extended by addition of
the words: “and having smooth nails”. ,

In this curious and unexpected way the metaphysica
phantasies of Plato contributed a great deal to the anal-
ysis of logical argument and led to an increasing inter-
est in mathematics and logic. The Platonic Academy
produced many eminent mathematicians. One of them,
Theudios, wrote a text-book of geometry. In the Academy,
also, logic was first formulated as a distinet branch of
science, later systematised by the Academy’s most distin-
guished pupil, Aristotle.

§ 3. Aristotle

Aristotle was of a cool, penetrating mind, extremely
erudite —the first “scholar” in the modern sense of
the word —critical and not given to flights of poetic
fancy. So it is no wonder that he rejected the theory of
the real exigstence of “ideas” and wrote bluntly: “To
say that ideas are patterns of things and that things
contain within themselves something of ideas is idle talk.”
He devoted many pages of his books to his fight against
the Platonic concepts which, one gathers, were widely
accepted.

Having rejected the real existence of ideal straight
lines and circles Aristotle was forced to face the question:
“What, then, are the objects with which mathematics
deals?”

Quite certainly, they are not simply the objects of this
world, for “none of them is of the sort that mathematics
is interested in”. Every kind of knowledge deals with
objects that are perceptible to the senses, which are studied
in physies. In this case, says Aristotle, “we must consider
wherein the mathematician differs from the physicist.
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Tor physical bodies contain planes, solids, lengths and
points —which are what the mathematician investi-
gates... The mathematician studies these figures, not
qua limits of a natural body... He separates them since
they can be separated in thought.” “He investigates
things after eliminating all sensible qualities such as
weight, lightness, hardness and softness, also heat and
cold... leaving only the quantitative and continuous...
He investigates them in relation to nothing else.”

Thus the objects of geometry, straight lines, circles,
ete., have in Aristotle’s philosophy, lost the real existence
given them by Plato and have become the products of
a complicated process of thought. Aristotle puts it con-
cisely: “Mathematical objects we consider as the results
of abstraction; physical objects have further properties”.

Aristotle describes somewhat briefly how general con-
cepts arise, by storing in the memory the features of
objects which are similar to one another, i. e. how the
process of this abstraction proceeds. Heis concerned chiefly
with itg results. The human mind ecarries out this pro-
cess of abstraction by collecting together the simple, gen-
eral characteristic features of the real observed objects.
The resulting concepts give the “essence” of things and
geometry gives a picture of reality, one-sided but correct.
Mathematical objects, to be sure, have no separate exist-
ence from the real ones, continues Aristotle, but “we
treat them as separate”. Thus, in spite of the utter differ-
ence in their views, the disciples of Aristotle were talking
the same langnage as the pupils of Plato. Even today
we have not swerved from their course; we say that Na-
pier has “discovered logarithms” in the same way that
we say an entomologist has “discovered” a new and. beau-
tiful species of butterfly.

Aristotle’s studies of the structure of “proving” (or as
we should say nowadays, “deductive”) knowledge were
of the greatest significance for geometry. Analysing the
process of argument—basing it, it seems, to a great
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extent on a contemporary text-book of geometry —he
became aware that not everything can be proved, since
each argument must rest on previous information, which
may in turn be based on yet earlier evidence. But since
this process cannot be carried on ad infinitum, it is nee-
essary to draw a line somewhere. Thus knowledge must
be founded upon some principles which are taken for
granted without proof. These are of two kinds.

One kind expresses certain general laws which find
application in many sciences, e.g. that the differences
of equals are equal (a favourite example of Aristotle),
which works as well in geometry as in arithmetie. Aris-
totle lays stress on the importance of axioms, especially
those relating to the concept of quantity (another example:
that two quantities equal to a third one are equal to each
other). We do not know if the credit for realising the need
for the precise formulation of such obvious laws must
go to Aristotle or to his predecessors. In any case, these
axioms have now passed into all text-books of geometry
and have been acknowledged as a foundation of mathe-
maties.

Other principles of thought, arve, to Aristotle, defini-
tions in which the human mind describes concepts which
are to reflect the reality. Such a definition need not be,
as Plato would have it, a stage of a mental process whose
culmination is the inward grasping of the idea of an object,
but it must formulate the “essence” of the object under
consideration. This essence must not be understood
metaphysically, but actually and descriptively. They are,
argues Aristotle in his Analytics, those attributes of an
object which are peculiar to it but whose whole cannot
be predicated of any other object; this whole of necessity
constitutes the essence of the object. This idea is illustrat-
ed by the example that man is a mortal being, two-legged
and featherless. These features are peculiar to all individ-
ually-existing men, but not to other creatures.

Definitions are the foundations of knowledge. If we
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omit nothing which is peculiar to a certain object, says
Aristotle, we can prove anything about it which is ca-
pable of being proved.

Nowadays we attach perhaps somewhat less importance
to definitions than did Aristotle, but must admire the
acuity of his further observations in which he points
out that it does not suffice to formulate the definition
of an object, but that one must also prove the existence
of the object which is being defined. What is the point
of saying what a tragelaphus (1) is, if the beast does not
exist? Let us explain his idea by the following example:

It is not sufficient to define parallel lines as non-inter-
secting straight lines lying in the same plane, but one
must also prove their existence. This we do, as it must

. a

£ b

B
Fic. 6

have been done by the Greeks in the fourth century
B.C., by constructing the lines e and b (Fig. 6) forming
equal alternate angles 7 and 2 with a third line AB,
and then proving that they cannot have any point in
common,

There are also, according to Aristotle, certain concepts
whose existence cannot be proved, since each stage of
reasoning refers to a knowledge of objects whose existence
has already been grasped, and continuing in this direction
one comes to a stage where there is nothing on which to
find support. The existence of such an object —Aristotle
gives unit and magnitude as examples —should be taken
for granted (postulated) and the post-Aristotelean geometry
lays down explicitly the “postulates” which are necessary,

(*) A mythical creature, half deer and half panther.
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e. g. that there “exist” circles with arbitrary centres and
arbitrary radii.

Amateur mathematicians would consider such postu-
lates to be pointless, and ask flippantly how a circle could
not exist, when we can draw it with a pair of compasses.
Our postulate, however, formulates abstractedly precisely
that it is possible to move one leg of the compasses round
the other.

The statement that every science rests on principles
which are “unprovable” and originate from empirical
observations has effectively opposed a-priori-ism. The
requirement that every definition be accompanied by
the proof of the existence of the object defined has been
accepted by science once and for all. The concept of the
postulate derived therefrom has played a fundamental
role in the further development of mathematics.

Nevertheless, not everything Arvistotle tells satisfies
us. He divides knowledge into definitions and proofs
(as we should say, definitions and theorems). Yet what
is known by the first and what by the other? Aristotle
attempted to draw a line between the spheres of action
of proofs and definitions, but without convincing results.
Ag he says, “definitions are principles of proofs”, and the
human mind forms these as a certain extract of reality.
Further details as to how in fact to make this extract
of reality are missing. In particular, the question whether
definitions and postulates of existence contain all that
geometer does extract from his observation of the world,
and whether these, together with general axioms, suffice
for the establishment of this science, is not answered.

It seems that Aristotle was of this opinion.

§ 4. Euclid and the axiom on parallels

Thirty or forty years after the work of Aristotle, i. e.
about 300 B.C., were written The Elements of ITtuclid,
an incomparable masterpiece of systematic, deductive
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Greek thought, giving in thirteen books the geometrical
and arithmetical knowledge of the times. We cannot
here evaluate the immense influence exerted by The
Flements on the development of science as a whole and
not only in the field of mathematics, nor can we analyse
their contents. It is sufficient to say here that the geomet-
rical books of The Elements coincide almost exactly with
the usual school course of geometry, and Bertrand Russel
tells that when he was young, Euclid was the sole acknowl-
edged text-book of geometry for boys in Britain. For
the time being we are interested only in Book I, and
especially in the paragraphs dealing with the foundations
of geometry.

The exceptional precision of Euelid’s thoroughly logical
mind enabled him to realize the fundamental fact which
escaped the notice of Aristotle. The action of defining
and reaching the “essence” of concepts, together with
general axioms—generally speaking those which refer
to the properties of quantities —does not suffice for a log-
ically correct development of geometry. One must, in
addition, accept without proof certain laws, certain spe-
cifically geometrical axioms. Aristotle’s postulates of
existence are such axioms, but it turned out that in ge-
ometry it is necessary to refer not only to the definitions
of concepts but to certain relationships between them.
To us, who are accustomed to the study of relationships
between objects, there is nothing surprising in this, but
to Aristotle knowledge consisted first and foremost of
the study of the characteristic attributes of these objects.

We shall not quote all the axioms listed by Euclid;
we are now aware that his list is not complete, that is,
that he did not formulate all the necessary axioms, al-
though he noted the most essential ones. Here, however,
are two:

1. A straight line may be drawn through two points.

2. If a straight line ¢ intersecis two other straight lines
a and b and makes with them two inierior angles on the same
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side (1 and 2 in Fig. 7) whose sum is less than two right
angles, then a and b meet on that side of ¢ on which the angles
lie.

In Fig. 7 the lines a and b intersect on the right hand
gide of the line c.

Why Eueclid needed this axiom, known as the aztom
of Buclid, we shall see below; its relation to experimental
data will be discussed later on.

e A4
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The first twenty-eight paragraphs of The Hlements
develop the theorems on congruent triangles, on the isos-
celes triangle, on the construction of perpendiculars.
We also find here the theorem that the exterior angle
of a triangle is greater than either of the interior and
opposite angles, and some other properties of triangles,
for instance that the sum of two sides of a triangle is
greater than the third side. These paragraphs also state
the theorem that if we do not alter the lengths of two
sides of a triangle but increase the angle between them.,
the third side will become longer: i. e., in Fig. 8

4,B > AB.

All these theorems are proved without referring to the
axiom of Euclid. They are, as we say, independent of it.

Euelid was quite conscious of this independence, as
is obvious from the arrangement of his exposition.

In the paragraph 27 Euclid demonstrates the method
of constructing straight lines with no points in common,
i. e. parallel lines.
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To do this it is necessary, as pointed out above, to
construct on AB (Fig. 9) equal ‘angles I and 2.

The straight lines @ and b forming equal interior alternate
angles I and 2 with AB are parallel. In fact, says Euclid,
if they interseet, for instance, at the point K on the right
of the figure, angle 2 would be an exterior angle of the
triangle ABK but would be equal to the interior angle
1, which is impossible according to the theorem men-
tioned above.

Fi1c. 9

As we see, this argument is not based on the axiom of
Euclid. This axiom is not necessary until the beginning
of paragraph 29, in which we find the proof of the follow-
ing theorem: If two straight lines are parallel, then their
transversal forms with them equal interior alternate angles,
i. e. in Fig. 10,

if alb, then 1= <L 2.

Fuelid argues as follows: <C 1+ <K 3 = 180°, since I
and 3 are adjacent. If < 1 were greater than < 2, the sum

Fic. 10

of < 2 and < 3 would be less than 180°, whence by the
axiom a and b would intersect. But since they are agsumed
to be parallel, we have the contradiction; 1 cannot be
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greater than 2. Similarly it cannot be less than 2, so the
two angles must be equal.

So we see that the axiom of Euclid was necessary to
prove that interior alternate angles formed by two parallel
lines with their transversal must be equal.

This theorem is basic for proving many other theorems
of geometry. Let us mention one or two of them.

1. The sum of the angles of a triangle is equal to two right
angles (180°).

We construct a line e parallel to the base of the triangle
through its apex 4 (Fig. 11).

Then <r 4 = < I, sinee they are equal alternate angles
formed by e and BC with AB. Similarly, X2 = < 4.
But

X 44 3+ X 5 = 180°%

& 143 3142 = 180°

4

A B
Fia. 11 Fig. 12

2. Through a point A not lying on the straight line b there
passes one and only one straight line parallel to b.

3. Parallel segments contained between two parallel stratght
ines are equal (Fig.12).

We get the equality 4D = BC by showing that the
triangles ADB and BDC are congruent; this follows pre-
cisely because the alternate angles I and 2 are equal
(the same applies to 3 and 4).

4. A corollary from the above theorem is that if parallel
lines infersect two straight lines a and b and cut off from
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one of them equal segments, then the segments cut off from
the other line will also be equal, i. e. in Fig. 13,

if segment I = sgm II, then sgm III = sgm IV.

This theorem is the basis for the so-called theorem of
Thales, which runs as follows: segments formed in a straight
line a by a number of parallel lines are proportional to those
formed in b, i e.

sgm L:sgm IT = sgm II1:sgm IV.

The entire theory of similar triangles is based on this

theorem, since its starting-point is the figure obtained by

a b
mjs

/
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intersecting the triangle with a parallel to one of its
gides. Consequently, all the relationships in a triangle
and all plane trigonometry follow from the theorem of
Thales.
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Which theorem is the most essential in ordinary trigo-
nometry? Obviously, that one which enables us to refer
to the ratio of the perpendicular AB to the hypotenuse
0A (Fig. 14) as the sine of the angle a, and to the ratio of
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the base OB to the hypotenuse OA as the cosine of the

angle a.
The reader, perhaps, will protest and say: “Why should
1 Lﬁw » .
we not call the ratio 04 sine if we want to? After

all, it depends only on us”. Yet this is not so. When we
introduce the term “the sine of the angle a” we are pre-
supposing thereby that the ratio depends only upon
the magnitude of o and does not depend on which point
of the line OA has been chosen as A; in other words we
have assumed that

AB  AB;
04 ~ 04,

This equality follows from the theorem on similar
triangles, and in turn from the theorem of Thales and fi-
nally from the axiom of Euclid.

5. The theory of the circle is also dependent upon the
axiom of Euclid on that part of it which deals with the
angles at the circumference and at the centre.

In fact, to show that the angle at the circumference is
half of the angle at the centre, when both have the same
arc as their base, we consider the isosceles triangle AOB
(Fig. 15). ,
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The angles I and 2 are equal, and their sum is 180°—
— < AOB by the theorem on the sum of the angles of
a triangle, that is, directly from the axiom of Eueclid.
But 180° — <X AOB =<3, s0 < I+ 2= <3 and I
is half of < 3.

Therefore the theorem on the geometrical locus of a point
from which a given segment is visible at a right angle also
follows from the axiom of Euclid.

6. Let us finally mention the theorem that parallel
lines are equidistant, i. e. in Fig. 16, that

If the straight lines a and b do not intersect, then the
distances of all points on a from the other line are equal.

A B

B A
¢ D b
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Such distances are the lines AC and BD perpendicular
to b. They form equal alternate angles with b, whence they
are parallel.

‘We now have parallel segments between parallel straight
lines and it follows by the theorem quoted at No. 3 above,
thus indirectly by the axiom of Euelid, that AC = BD.

Conversely, points equidistant from » and on one side
of it form a straight line parallel to b.

The above review demonstrates how great is the réle
played by the axiom of Eueclid in geometry —how little
would be left if we no longer accepted the truth of this
axiom in our school-books. Naturally, Euclid was not
the first to use it; the fact that a transversal intersecting
two parallel lines forms equal interior alternate angles
was, in all probability, known for a very long time before.
Tt is unlikely that Eupalinus, without it, would have
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succeeded in digging his tunnel on Samos. In any case,
the axiom of Buclid is by no means a deeply-hidden truth.
Direct observation shows that if two actual straight lines
o and b form the angles 7 and 2 with the line AB (2 in
Fig. 17 is a right angle) and the sum of <1 and < 2
differs from 180°, then a and b will intersect. It is easy
to discover by experiment that if this sum were 17 8°
the distance of the point of intersection of the lines from
B, in Fig. 17, would be about three yards. This exper-
iment would provide a little more difficulty, but would
still be practicable, if the sum of I and 2 were 179°50/,
gince the distance would then be 34 yards.

Fig. 17

The properties of parallel lines, of parallelograms etc.,
were known in the Pythagorean school and there is reason
to believe that the proofs of many theorems, such as that
on the sum of the angles of a triangle, were the same as
they are now. Nevertheless, the theory was not entirely
satisfactory. This we know from the writings of Aristotle,
namely from his Analytics. There he criticises the proce-
dure of those who would prove a certain property (A) on
the basis of (B), which in turn is derived from (C), and
finally conclude (C) from (A). Thus according to Aristotle,
they assert that something holds because it holds. He
reproaches the contemporary theory of parallels with
this logical fallacy, this vicious circle. To Aristotle’s pupils,
for whom the Analytics were written, the above comments
were clear, but we can only surmise how geometry used
to be exposed in the fourth century B.C. Greek literature
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of later times indicated on several occasions the insuffi-
ciency of the following argument, which, as one may
infer from the criticism, used to be applied:

Let the angle 2 in Fig. 17 be right and the angle I
acute. Then, as is obvious and not difficult to prove, the
line a will approach. line b, if we move along a on the right
hand side of A. Hence, ¢ must finally intersect b.

.Hﬁ may be further deduced that the axiom of Euclid
still holds in the case where 2 is not a right angle, but
the sum of the angles I and 2 is less than 130°

The above argument, stating that two lines approaching
each other will necessarily intersect, must have been
rejected the moment it was discovered that lines may
approach nearer and nearer and yet not intersect. Such
lines, for example, are the hyperbola with equation
y = 1/z, which was already known to the Greeks as a sec-
tion of a cone, and its asymptote, the horizonfal axis
(Fig. 18).

Fic. 18

The hyperbola comes infinitely close to the horizontal
axis, but does not intersect it.

Thus the unlimited approach of two lines to each other
by no means implies that they will intersect. In order to
prove that the straight lines ¢ and b will intersect (Fig. 17),
it is not sufficient to show that they approach each other,
but one must also appeal to other properties which are




34 ' NON-EUCLIDEAN GEOMETRY

peculiar to straight lines but not to others, for example
to hyperbolas.

Many readers will hasten to protest that the matter is
clear by itself, “immediately evident”, that straight
lines eannot approach and not interseet. Thus saying,
they arm themselves with their conviction of the truth
of this theorem from intuition, that is from their expe-
rience of geometry; they assume the theorem as a self-
evident truth, not deduced from other theorems. Which
means that they aceept the theorem as an axiom—just
ag Buclid did. .

Aristotle’s allusion probably did not apply to the
fallacy mentioned above, since there is no vicious circle
inherent in it. We may, however, find a vicious circle
in the following argument, which is a simplified version
of the reasoning of Geminus, a mathematician living
some centuries after Eueclid. It has been passed down to
us by an Arab commentator.

It is easily seen that the axiom of Eueclid (let us call it
(A) in the terminology of Aristotle’s criticism on page

K .k,» L i
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32) follows from the theorem (B), that if a straight line
is parallel to one of two parallels ¢ and b it will also be
parallel to the other. We shall deduce (B) from the theo-
rem (C), that the straight line a is everywhere equidis-

tant from the straight line b, or in other words that all -

segments with one end lying on ¢ and perpendicular to
b are equal.
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Let us take BM = BN and let KM, AB, LN be perpen-
dicular to b (Fig. 19). The quadrangles ABMK and ABNL
are congruent, since BN and BM are symmetrical about
AB, whence KM and LN as perpendicular to them and
equal (by (C)) are also symmetrical about AB. Hence,
the corresponding angles I and 2 of both gquadrangles
are equal. These are adjacent, therefore right.

So far, so good, but we must now justify (C). True,
we have done this on page 31 (the theorem at No. 6),
but we were then basing our argument on the equality
of interior alternate angles, and consequently on the
axiom of Euclid (theorem (A)). The vicious circle has now
been closed in conformity with the criticism of Aristotle:
the truth of (A) has been made dependent on the proof
of the truth of (A). For the sake of historical accuracy
we should mention that Geminus did not base his argu-
ment on the theorem (C), stating that the points lying
on a straight line ¢ parallel to a straight line b are equi-
distant from b, but on its converse, that points equidis-
tant from b and lying on the same side of it form a straight
line not cutting b. The essential factor is, of course, that
all such points form a straight line, and not some curve.
Geminus, and quite a number of his followers, tacitly
assumed this, that is, they considered it self-evident,
a necessary property of straight lines, and by no means
a new axiom.

We note in pagsing that points equidistant from a certain
line 7 do not always form a line of the same shape as L.
In Fig. 20 is drawn a parabola and a number of points
equidistant from it; these points quite obviously do not
lie on another parabola.

The fact that points equidistant from a straight line
form another straight line is a characteristic property and
we might repeat the remarks made above when discussing
lines which approach but do not meet.

This investigation has given a positive result: namely,
that the axiom of Euclid and the theorem aceording to
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which points equidistant from a straight line and on the
game side of it lie on another straight line are equivalent
statements in the sense that one of them can be deduced
if the other is accepted as an axiom. Geminus did not
realize this, and imagined that his exposition of geometry
dispensed with the axiom of Hueclid.

F1c. 20

Examining this fallacy of Geminus—our Arab commen-
tator mentioned above repeats the former’s arguments
with applause—we must admire all the more the criti-
cal acuity of Euclid, who was not led astray by what
appeared to be a proof and who considered it necessary
to assume an axiom —rightly bearing his name.

FRuclid was fully aware of the significance of his stand-
point: the theorems of Book I of The Elemenis were ar-
ranged, as we have mentioned, in order to delay as long as
possible the introduction and application of the axiom,
even though its earlier use would have gimplified some
proofs. His aim was methodical —to lay down all that
could be proved without appealing to the axiom on pa-
rallels, or in other words, to segregate that part of ge-
ometry which is independent of this axiom. This part of
geometry is nowadays sometimes referred to as agowﬁw
geometry —a rather odd term, originating from Bolyai.
Tuclid used no such term, but realized to some extent
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the importance of dividing absolute theorems from
the rest. One should not gather from this that he consid-
ered the latter to be less reliable than the former; he
was, rather, governed by a logician’s instinet and pigeon-
holed together those theories which rested on common
or analogical foundations. These tendencies appear fre-
quently in modern mathematics, especially in algebra,
and do give a certain tone to the science.

As we have said, it was logical requirements which de-
cided Euclid to assume the axiom on parallels, he thought
this axiom be necessary for the correct development of
geometry. This point of view had several consequences:
apart from anything else it was an opposition to Aristot-
le’s methodological directions, for Aristotle wished to
found geometry on general axioms such as “two quantities
equal to a third are equal to each other” or “the part is
smaller than the whole” and on definitions which fixed
the meaning of geometrical coneepts. The results of ob-
serving the outward world of geometrical forms are expres-
sed, according to Aristotle, in the choice of suitable ab-
stract notions, copies, so to say, of reality in thought.
The postulates of existence form the bridge to connect
these notions with reality. Geometrical theorems are
deduced systematically and consecutively from the essence
of these concepts formulated in definitions. Putting it
concigely and somewhat simplifying, Aristotle wished to
build up the science of space on the general laws of human
thought and on the definitions. His idea is not missing in
modern science; many mathematical theories are developed
in this way, this procedure is used, for instance, in four-
dimensional geometry.

Having introduced his axiom Euelid did, to a certain
extent, break away from the narrow Aristotelean pattern.
He found, and future ages fully agreed with him, that
there was nothing in the essence of the concept of a
straight line which would force one to assume that two
straight lines forming with a third unilateral interior angles
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with a sum less than 180° must necessarily intersect. Hence,
this property should be formulated separately. Therefore
it is from Euclid that we have the view that geometry is
to be founded on concepts and axioms relating to them
(that is, not general axioms, but gpecifically geometrical
axioms)—a view wider than that held by Aristotle. The
process of arriving at the knowledge of the real world
lies not only in a skilled formulation of concepts but also
in the fixing of the principal relationships between them.
The theorems of geometry are then deduced from the
axioms without a repeated appeal to intuition.

The above views do need any special comment, since
nowadays they are generally acknowledged and taught
in sechools. Nevertheless it would be worth while to men-
tion that over the course of centuries they met with lack
of comprehension and with opposition. In 1733 still the
Ttalian mathematician G. Saccheri tried to prove, in a dis-
sertation entitled Fuclides ab ommni naevo vindicatus ),
that two straight lines cannot intersect in two points
and also that there is a straight line which passes through
two given points. These were not, of course, proofs in the
present meaning of the word but somewhat primitive
appeals to intuition in which Saccheri considered an arbi-
trary curve between points 4 and B (Fig. 21), rotating
it from the left-hand side of the points A and B to the
right-hand side, and finally bringing both curves closer
to each, other until they coincided. Saccheri did not grasp
the depth of Euclid’s conceptions but was a shrewd man
widely gifted. e used to play simultaneously three
games of chess by memory, that is without looking at
the board—and successfully too. In the dissertation
quoted he has a proof of the axiom of Euclid (two proots,
in fact, but both wrong) which was, to im, the chief flaw
in the Elements, and in doing so he noted and correctly
proved an interesting theorem from absolute geometry.

(1) “Euclid cleared of all stain”.
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We mentioned Saccheri’s attempts not because they
have played any great réle in the history of mathematics
but in order once more to pay homage to the sharpness

A

B
F1c. 21
of Euelid’s intellect. Not only fortune, but also opinion is

variant. What Saccheri considered a fault in Euclid’s
exposition we now take to be one of his chief merits.

§ 5. Attempts to prove the axiom of Euclid

Saccheri’s standpoint, as presented in the preceding
section, was extreme. The necessity for taking not only
general axioms as a base for geometry but also some
specifically geometrical ones was by and large acknowl-
edged, and axioms like “there exists a straight line which
passes through two given points” caused no objections.
They were not, after all, a far ery from the Aristotelean
postulates of existence. Matters were different with the
axiom on parallels. Almost from the very moment when
The Elements appeared until the nineteenth century (over
two thousand years!) this axiom continually aroused
opposition and many attempts were made to rid geometry
of it. There is something deeply moving in the epic of
these heroic strivings towards ideal scientific perfection—
disinterested effort directed solely by the love of knowl-
edge.

In these endeavours it is possible to distinguish two
main trends, which crossed, however, quite frequently.
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First, it was attempted to replace the axiom of Euclid
by another one equivalent to it. Such an axiom is, as we
have seen, the one ‘that all points equidistant from
a straight line and lying on the same side of it also lie
on o straight line”.

In the seventeenth century the Englishman Wallis
showed that the axiom of Euclid is equivalent to the
existence of triangles of different sizes but with equal
corresponding angles—i. e. to the possibility of magni-
tying the triangle without changing its angles. In other
words, if the axiom of Euclid were not true similar trian-
gles eould not exist, or, more generally, similar figures
altogether, and we would be unable to scale plane objects,
i. e. make maps. Wallis considered that an axiom which
states the existence of similar figures lays down a more
characteristic geometrical property than does the axiom
of Euelid, whence it should be given precedence. Finally,
it was discovered in the eighteenth century (Saccheri
and others) that the amiom of Euclid is equivalent to the
theorem on the sum of the angles of a triangle. As we have
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seen, this theorem follows from the axiom of Euclid (the
theorem at No.1, page 28). Conversely, if we suppose
that the sum of the angles in an arbitrary triangle is 180°,
we can eagily demonstrate the truth of the axiom of Euelid.

According to the comment made on page 34 it is suffi-
cient to show that if the straight lines a and b are parallel
(Fig. 22) and AB is perpendicular to b, then AB will be
perpendicular to a.
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Let us take BC = AB. A ABC is a right-angled triangle,
the sum of its acute angles is 90° = D (we infer it from
the theorem that the sum of the angles of a triangle is
180°). Since these acute angles are equal, we have

X I =4iD.

Let us now take 0D = AC. The angle ACD = 2D—< 2
= 2D — 1D, whence the sum of < 3 and < 4 equals
1D, and these angles are equal, giving

I 3 =1D.
Let DE = AD. As before we obtain
& &= 1D,

Continuing the process we have at the vertex A the
following angles:
~ 3D,3D,3D, 5D, ...
The angle KAB is greater than < I, than < I+ < 3,
than <r I14-< 3+ < 5, ete., i.e. it is greater than each
term of the sequence

1 3 7 15
3D,7D,5D, 5D, ...

which tends to D. So the angle KAB is equal to D or is

greater than D:
X KAB =D.

The same argument gives
<X LAB = D.

The sum of the angles KAB and LAB is 2D, whence
owing to the above inequalities they are both right angles.
Thus the equivalence of the theorem on the sum:
the angles of a triangle to the theorem of Euclid has been

proved. .
Secondly, it was attempted to deduce the axiom of

Euclid from the remaining axioms. Several arguments

which elaimed to do this made use of facts which were
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obvious to their authors but were, when thoroughly
examined, equivalent to the axiom of Euclid—that is,
facts which could not have been proved themselves with-
out the aid of that axiom. These arguments, then, eon-
tained the same logical fallacy as that of Geminus. Some
of these “proofs” were quite ingenious and interesting.
As an example we shall give here the proofs of the French
mathematician Legendre, who inserted them into a school
text-book which was in general use in the first decades
of the nineteenth century. The poor schoolchildren were
hammering away at false arguments until someone no-
ticed the mistakes and when Legendre removed them from
his book. But he still did not give up and found some
more false proofs which were published as a special paper
in 1833!

In the proof which we shall quote here Legendre tried
to show that if we suppose the sum of the angles of a trian-
gle to be greater than 180°, or to be less than 180°, we are
faced with a contradietion.

1. Let us suppose that the sum of the angles of the
triangle ABC (Fig. 23) equals 180°+ a.

Hi n M
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We now construet on the same straight line AB a series
of triangles congruent to A BC, as in the figure. Let us now
join their apices. We then have

1= <3
but

| LI+ 2+ <xC =180°+a (by assumption),
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whence
S+ X 24+ ¢ = 180°+a.

On the other hand
X 34+ 24 < 4 = 180°.
Comparing this formula with the preceding one we get

x4< 0.

The ticked sides of the triangles ABC and CBD are
equal, and side BC is common. The angle C in the first
triangle is greater than the corresponding angle 4 in the
gecond. Whence, from the absolute theorem mentioned
on page 26 (Fig. 8), we obtain

AB > (D,

that is to say,
AB—CD = 0.

Let us now take a sufficiently large integer n so that
n(AB—CD) will be greater than 2.40, i. e.

nAB—n.CD > AC-+ AC.

Let us consider (Fig.23) n consecutive triangles like
ABC and n more like BCD. MN is the side of the last
one.

Since n.AB = AM and n.0D is the length of the pol-
ygonal line between ¢ and N, namely the line CDE...N,
we may write the last inequality as follows:

AM—CDE...N > AC+ MN  (since AC = MN)

or
AM > AC+CDE...N+ MN.

On the left-hand side we have the segment A M, on the
right the length of the polygonal line between A and M.
Thus the straight distance from A to M would be longer
than the roundabout distance, which is impossible.
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We come to a contradietion, so the sum of the angles
of a triangle can never be greater than 180°.

2. Now let us suppose that the sum of the angles of
a given triangle ABC is 180°—a.

Let the angle A Dbe acute.

Let us construct on BC a triangle BCD congruent
to ABC so that the sides similarly ticked in Fig. 24 will
be equal. Let us draw a straight line passing through
the point D and intersecting the sides of the angle BAC
at the points K and L.

Four triangles have been formed, marked in the figure
by the numerals I, I1, 111, IV.

Fia. 24

The sum of the angles of each of the triangles I and IT
is 180°—a, and the sum of the angles of III and IV
cannot exceed 180°, according to the result of the pre-
vious argument.

Let us add all the angles of I, If, III, and IV. We
obtain a sum not exceeding

(180° — a) -+ (180° — o) -180°+180° = 720°— 2a.

This sum consists of angles 4, K, L and the three angles
at B, ¢, D which are all equal to two right angles:

LA+ < K+ < L+43.180°.
cwe get
XL A+ <X K+ < L+3.180° < 720°— 2qa,
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and consequently the sum of the angles of the triangle
AKL does not exceed 180°—2a.

Applying the same process to triangle AKL we get
(Fig. 25) a triangle AK,L, whose angles have a sum
not greater than 180° — 4. Similarly we arrive at a triangle
AK,L,, the sum of whose angles is not greater than 180° —
— 8a, etc. This process leads to a triangle the sum of whose
angles is negative, since 2a, 4a, 8¢, 16a, ... must even-
tually exceed 180°.

We have come to contradiction, says Legendre, so the
sum of the angles of a triangle can never be less than 180°.
Since this sum ean be neither greater nor less than 180°
it must be 180°. From this, as we know, follows the truth

of the axiom of Euelid.

K

A L Ly
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The first half of the proof is correct. The theorem thai
the sum of the angles of a triangle cannot exceed 180°
has been proved without appealing to the axiom of Euclid
and therefore belongs to absolute geometry. The second
half, however, is false. The reader is recorumended not to
read further but to try and detect the slip on his own.
If he succeeds it will testify to his critical abilities and
powers of observation and promise much for his further
mathematical studies.

We will give away the secret. The weak point of the
argument is the phrase: “Let us draw a straight line passing
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through the point D and intersecting the sides of the
angle BAC at the points K and L...”. It is not diffieult
to find a straight line passing through a point inside the
angle and intersecting one of its sides—it suffices to join
D with any point on this side. But how can we be so sure
that a straight line exists which passes through D and
intersects both sides? This should be checked. A detailed
analysis based on the axiom of Euclid shows that such
a line is, for instance, the perpendicular dropped from D
onto the bisectrix of the angle 4. Therefore it follows from
the axiom of Euclid that there exists a straight line with
the indicated property. The second half of Legendre’s proof
shows that if we can find a straight line like this through
any interior point of an angle the axiom of Euclid will
be true. The mist has lifted a little. It now seems, much,
no doubt, to the surprise of the reader, that the axiom
of Buclid is equivalent to the theorem: Through every
point within an angle there passes a straight line which
intersects both sides of the amgle.

A D c

Fic. 26

The axiom of Euclid really seems like a magician with
many guises, who takes us aback and deceives us.

We shall now deduce from theorem 1 a corollary ena-
bling us to formulate still another statement equivalent
to the axiom of Euclid.

Suppose that the sum of the angles in one triangle ABC
is 180° (Fig. 26). Let us divide this triangle into the two
triangles ABD and DBC the sums of whose angles are
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denoted by a and p respectively. Hence a-f is the sum
of all the angles marked with arcs in the figure and is
equal to the sum of the angles of triangle ABC, i. e. 180°,
plus the sum of the two angles at D. Congequently

a+f = 360°.

As we know, neither a nor § can exceed 180°, hence
a = f = 180°.

Further subdivision of either triangle will again produce
triangles the sum of whose angles will be 180°, and there-
fore: If the sum £a the angles of a certain %Sﬁ&a is 180°,

D ¢

Fia. 27

then each triangle cut off from it will also have the sum of
its angles equal to 180°.

We now affirm that the axiom of Euclid is equivalent
to the following statement:

There exists at leasi one reclangle, thai is o quadrangle
with four right angles.

Proor. If there exists one such rectangle, we may
(Fig. 27) arrange identical ones next to each other s0 as
to get a rectangle ABCD with arbitrarily large sides. Let
us consider half of ABCD —the triangle ABC. The sum
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of the angles of ABC is one half of the sum of the angles
of ABCD, i.e. 180°.

In this case the sum of the angles of any right-angled
triangle KL M is 180°, since K.LM may be placed on ABC
(provided that the latter has sufficiently long sides).
Then, by the lemma given above, the sum of the angles
of the triangle BPN is 180° since BPN is cut off from
ARBC. ;

Now, since the sum of the angles of an arbitrary right-
angled triangle is 180° it follows from Fig. 28 that the
sum of the angles of any triangle is also 180°, whence the
axiom of Euclid holds.

It is clear that the converse also holds, and so the an-
nounced equivalence has been proved.

A slight modification of our argument would give the
following, striking result: If there exists at least one triangle
the sum of whose angles is 180°, then the axiom of Euclid
will be true.

A 3 o

Fic. 28

In fact, if the sum of the angles of triangle 4 BC (Fig. 28)
is 180°, then the same holds for the right-angled triangle
ABD cut off from it. With two such triangles we can
construct a rectangle and obtain thereby the conditions
of the preceding theorem. Hence, the situation is extremely
characteristic: If the sum of the angles of at least one triangle
is 180°, then the axiom of BEuclid will hold and the sum of
the angles of any other triangle will also be 180°.

If the sum of the angles of at least one triangle is less
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than 180°, then the sum of the angles of any other triangle
will also be less than 180°. :

These theorems have been proved without appealing
to the axiom of Euclid and so belong to the realm of abso-
lute geometry.

§ 6. The axiom of Euclid and the empirical knowledge

All our considerations up till now have referred to
the logical structure of geometry. Their object Wwas to
discover whether the axiom .of Euclid was indispensible
to the structure of geometry or whether it could be de-
duced from other axioms; they are, so to say, logical
amusements. No single mathematician entertained any
doubts as to the truth of the axiom of Huelid. This
“revolutionary” idea was first conceived by the great
German mathematician Gauss in the first two decades of
the last century. To him the question of whether the
axiom of FEuclid were true was of actual, physical
significance; namely, it was a matter of whether real
points and straight lines, as for example, those employed
in land-surveying, would obey this axiom.

The last theorem of the preceding sections yielded
a method of solving the question: one should meas-
ure the sum of the angles in any one triangle. If this
sum appeared to be 180°, the axiom of Euclid would
hold.

Gauss traced a triangle in the neighbourhood of Gottin-
gen whose sides were thirty or so miles long and whose
vertices were at the summits of mountains.

Then with the utmost precision he measured its angles.
It appeared that the deviation of their sum from 180°
lay within the limits of inevitable errors of measurement,
and so it remained unsettled whether this sum was exactly
180° or differed from 180° by an amount less than those

€ITOoTS.
We shall now show that the failure of the attempt
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could have been forecast in advance. To this end we shall
consider some factors related to those dealt with in the
last section.

Let us call the difference between the sum of the angles
of the triangle and 180° the defect of the triangle.

Fia. 29

Let us now divide the triangle A BC (Fig. 29) into trian-
gles ABD and BCD. We have

Defect A ABD = 180°— < A — < 1— < 2.
Defect ABCD = 180° — < ¢ — ¢ 3— < 4.
Let us add these formulae.
Defect ~ A BD +Defect /A BCD

=360°— X A—LC— (XL I+ X ) (X 2+X3)
But

X2+ 3 =180° and <X I+ <4= < B.
We obtain
Defect & ABD-4-Defect A BCD
= 180°— < A— < B— < € = Defect A ABC.

The defect of the triangle ABC is equal to the sum of the
defects of the triangles of which triangle ABC consists.

This theorem- may be generalised for every partition of
a triangle into triangular components; furthermore, for
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every partition of a polygon into polygonal components,
provided, of course, that the defect of a polygon has been
defined.

Let us now imagine that the triangle whose vertices
are at the Sun, BEarth and Mars has a defect of 1°, 1. e. its
angles add up to 179°. Let us divide it into smaller ones
more or less of the size of that drawn by Gauss. The dis-
tances from each other of the Sun, the Earth and Mars
amount to hundreds of millions of miles and it is easy to
compute that the number of the component triangles
will exceed a trillion. Thus the defect of a component
triangle with a thirty-mile side would be something like
a trillionth of a degree. Obviously, no instrument could
detect such a tiny angle. This calculation, which is based
on the theorem of defects, inclines one to believe that
it would not be possible to meet with noticeable defects
when measuring triangles on earth. As far as the earth
is concerned the defect of a triangle is virtually zero
and the sum of the angles of a triangle is 180°: in other
words, the axiom of Eueclid with all its consequen-
ces holds. Less microscopic defects would occur only in
the triangles which oceur in astronomical research.
The biggest triangles accurately known are those serv-
ing for the determination of the parallaxes of fixed
stars.

Let G be a fixed star, A and B two opposite positions
of the Harth in its orbit round the Sun (Fig.30). The
segment AB is the diameter of the Earth’s orbit. Its
length is about 186 million miles. The angles GAB and
GBA can be measured since their vertices lie on the Earth.
Of course, we may choose A and B so that the angles
are equal, which will happen if AB is perpendicular to
GM. The quantity }(180°—<XGAB— X GB4), i.e.
90°— < GAB is called the parallaz of the fixed star G.
If the sum of the angles of the right-angled triangle GAM
is 180°, then the parallax of the star will be < AGM,
i. e. the angle which the radius AM of the Earth’s orbit
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would subtend at . If the sum of the angles of the triangle
AGM were less than 180°, the parallax of the star would
not be equal but greater than the angle AGM.

It is evident that the defect of AGM, which is 180°—
—90°— <X GAM — < AGM, is less than the parallax,
which is 90°— < GAB. Hence, we can estimate

Defect A AGM < parallax of the star G.

The parallax of the sfar Sirius has been measured as
0-38", and that of Vega as 0-08”. The corresponding

defects are smaller than the parallaxes and are therefore -

B
F1c. 30

very tiny angles. Only much greater triangles than those
used when measuring parallax, which are very “narrow”
indeed, could have larger defects; in the case of Sirius
the side AG is about half a million times as long as A M.

No triangles bigger than parallax triangles can possibly
be investigated and so the question of whether the defects
of enormous triangles are zero, in which case the axiom
of Euclid would hold throughout space, or nof, has not
been settled by the direct measurement of angles. Con-
temporary physical theories, viz. the theory of relativity,
state that when we are dealing with very great distances
the axiom of Euelid fails. We cannot here discuss these
difficult matters nor consider the extent to which empir-
ical data bear out the above view. In any case we must
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bear in mind the possibility that the sum of the angles
of a triangle, although equal to 180° with overwhelming
precision when dealing with terrestrial or even solar
dimensions, may be less than this figure in triangles of
“eosmic” sizes. Thus mathematics finds itself faced with
the task of discovering the properties of triangles on the
assumption that the sum of their angles is not 180°. What
would, for instance, the theorem of Pythagoras look like
then? How can the area of a triangle be computed?
What is the relationship between the side of a right-
angled triangle and the hypotenuse and one of its acute
angles?

That system of geometry which is built up on all the
axioms of ordinary geometry except that of Eueclid and
on the negation of the latter is known as non-Euclidean
geometry (sometimes, for reasons which we shall not give
here, hyperbolic non-Euclidean geometry). This science
contains, clearly, all the absolute theorems, which remain
the same as in ordinary, Euclidean geometry, but many
theorems in addition which are different from the Ku-
clidean ones: an example, which we know, is the theo-
rem that there is no quadrangle with four right angles.

§ 7. The creators of non-Euclidean geometry

The first scholar who realised that non-Euclidean ge-
ometry might exist and who admitted it the right to exist
was Gauss. He discovered many of the theorems of the
new science, but printed none of his findings. Those which
we know arve gleaned from his note-book, which was
published in later times. Tt is not known whether it con-
tains all his research and his findings. With this reserva-
tion we may conclude, on the basis of the exigting mate-
rials, that Gauss, absorbed in other work, did not come
to very final results in the field of non-Euclidean geometry.
This is true at any rate of the methods he used, if not of
the actual contents of the theorems he discovered; indeed,
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in the most important of the preserved fragments he uses
methods of differential geometry, a science based on
differential calculus, whereas synthetic methods like
those used in elementary geometry would muech better
fit the case. This would seem, to the present author, to
be one of the reasons for Gauss’s not communicating his
findings to the world of science.

Meanwhile two young mathematicians, the Russian,
Nikolai Lobatchevsky, and the Hungarian, Jinos Bolyai,
by a bold stroke of genius, developed the principles of
non-Euclidean geometry, and settled Bmmﬁ.q all of its
essential problems.

Lobatchevsky (1793-1856), a professor at Kazan Uni-
versity, published his first paper On the principles of
geometry in the 1829-30 numbers of a journal which
appeared in Kazan but did not reach other eountries.

Bolyai (1802-60), an officer of the Austro-Hungarian
army, presented his discoveries, carried out independently
of those Lobatchevsky’s, in a paper entitled Appendiz
scientiam spatii absolute veram exvhibens (') that appeared
in 1832, few years later than the publication of Loba-
tchevsky’s work. Thus the priority of discovery must
go to the latter, and non-Euclidean (hyperbolic) geometry
is accordingly called also Lobatchevskian geometry. Inciden-
tally, it is truly amazing to what extent the trains of
thought of the two scholars were related; they were in es-
sence both based on the properties of the horosphere
(vide § 17, p. 116).

Both dissertations were ignored by the scientific world
and brought their authors none of the acknowledgement
which their independence of ideas, ingenuity of argument
and perfection of results deserved. They were both aware

(*) “Appendix giving an absolutely true science about space”.
The term “appendix” derives from the fact that the dissertation
appeared as a gupplement to a text-book of mathematies written
by Bolyai’s father.
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of the value and importance of their work. Bolyai wrote
with pride to his father: “I have created a new world
out of nothing”. Both expected, and were entitled to expect
a rightful appreciation. Both met with complete indiffer-
ence or even, in the case of Lobatchevsky, with jeers
from people who were somewhat narrow-minded and
failed to comprehend what it was about. Lobatchevsky
and Bolyai were both bitterly disappointed but reacted,
however, in different ways. Bolyai, exasperated, closed
his mouth and withdrew from scientific activity. Loba-
tehevsky took up the struggle for the triumph of his ideas;
in publication after publication he doggedly justified
his non-Euclidean geometry from every point of view
and indicated its applications in the integral calculus
in the hope that he would finally win comprehension
and acknowledgement. He dictated his last work, Pangeo-
metria, seriously ill, almost blind, but not giving up the
struggle even in the last days of his life. The extraordi-
nary steadfastness of spirit shown by Lobatchevsky dur-
ing his twenty-five-year struggle in utter isolation
has very few equals in the history of science. We must,
however, admit that a university professor is able to
preserve his independence more easily than a minor
functionary like Bolyai.

In the sixties and seventies of the last century the
concepts of non-Euclidean geometry spread and its crea-
tors, ignored during their lifetimes, were included in the
Pantheon of the greatest scholars. This change of minds
was certainly influenced by the publication of Gauss’s
correspondence, which was not sparing in its praise of
Lobatchevsky and Bolyai. A more essential reason, how-
ever, was the natural evolution of scientific interest
which took to questions of geometry, regarding them from
new vantage-points. The celebrated works of Staudt
appeared, analysing the principles of projective geometry,
and Riemann’s lecture On hypotheses basic o geometry
made an immensge impression.
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With the air thus cleared, many scholars (') turned to
the problems of non-Euclidean geometry, filling in the
still-existing gaps and refining its methods.

Of greatest significance was the lecture of Riemann.
It created a very general science, known as Riemannian
geometry, whose special, in fact very special, cases are the
Euclidean and non-Euclidean geometries. This science
exceeds both the scope of the present book and any possi-
bilities of an elementary presentation, so we shall not
digcuss it further. Our aim is to give the prineiples of
non-Euclidean geometry as ?m% were formulated by
Lobatchevsky and Bolyai, but with some simplifications,
the most important of which are due to the recent Danish
mathematician Hjelmslev (*). We shall also give in detail —
in honour of the centenary of Lobatchevsky’s death in
1856 —what is perhaps the most beautiful idea in his
dissertation, the use of the properties of the horosphere
to prove the fundamental theorem of non-Euclidean
geometry. Nowadays other proofs of this theorem exist, but
to our mind it is the original method of Lobatchevsky
which is the most interesting.

(1) Beltrami, Klein, Lie et al.
(*) Theorem and transformation j of § 4.

CHAPTER II

THE PRINCIPLES OF NON-EUCLIDEAN
GEOMETRY

§ 8. Fundamental assumptions

Lobatchevskian geometry, as we said in the previous
chapter, differs from ordinary geometry only in so far
as it rejects the axiom of Euclid, so that all the theorems
of Huclidean, ordinary geometry which do not rest on
this axiom, i. e. the absolute theorems, are equally valid
in Lobatchevskian geometry. These are the theorems
which are discussed in school text-books before the chap-
ter about parallel lines —namely, those about congruency,
symmetry rotations together with their various conse-
quences, as mentioned in part on p.26. Also, that part of
the knowledge of the properties of the circle which deals
with chords and their corresponding ares, with tangents
and intersections of circles is also “absolute” (for instance,
the greater the chord the mnearer it is to the centre of
the circle). Then there are numerous stereometric theorems
which do not depend on the axiom of Euclid. They include
all those which refer to the perpendicularity of straight
lines and planes, for example:

1. AWl straight lines perpendicular af one given point
to a given line lie in one plane.

2. A plane which passes through a straight line perpen-
dicular to another plane a will also be perpendicular to a.

3. The so-called theorem on three perpendiculars:
If a line a is perpendicular to another line b lying in plane
a then the projection of a onto a will also be perpendic-
wlar to b.

All the theorems of elementary school geometry whose
proofs appeal neither directly nor indirectly to the




