The Join Construction & Extremal Sasakian Geometry

AMS Special Session on Manifolds with Special Holonomy and Generalized Geometries

Charles Boyer

University of New Mexico

January 2013, San Diego, CA

• A contact 1-form η such that

 $\eta \wedge (d\eta)^n \neq 0.$

Contact manifold

• Compact Contact Manifold M.

• A contact 1-form η such that

 $\eta \wedge (d\eta)^n \neq 0.$

• defines a contact structure

$$\eta' \sim \eta \iff \eta' = f\eta$$

for some $f \neq 0$, take f > 0. or equivalently a codimension 1 subbundle $\mathcal{D} = \text{Ker } \eta$ of *TM* with a conformal symplectic structure.

• A contact 1-form η such that

 $\eta \wedge (d\eta)^n \neq 0.$

• defines a contact structure

$$\eta' \sim \eta \iff \eta' = f\eta$$

for some $f \neq 0$, take f > 0. or equivalently a codimension 1 subbundle $\mathcal{D} = \text{Ker } \eta$ of *TM* with a conformal symplectic structure.

• A contact invariant: the first Chern class $c_1(\mathcal{D})$

• A contact 1-form η such that

 $\eta \wedge (d\eta)^n \neq 0.$

• defines a contact structure

$$\eta' \sim \eta \iff \eta' = f\eta$$

for some $f \neq 0$, take f > 0. or equivalently a codimension 1 subbundle $\mathcal{D} = \text{Ker } \eta$ of *TM* with a conformal symplectic structure.

- A contact invariant: the first Chern class $c_1(\mathcal{D})$
- Unique vector field ξ, called the Reeb vector field, satisfying

$$\xi \rfloor \eta = 1, \qquad \xi \rfloor d\eta = 0.$$

• A contact 1-form η such that

 $\eta \wedge (d\eta)^n \neq 0.$

• defines a contact structure

$$\eta' \sim \eta \iff \eta' = f\eta$$

for some $f \neq 0$, take f > 0. or equivalently a codimension 1 subbundle $\mathcal{D} = \text{Ker } \eta$ of *TM* with a conformal symplectic structure.

- A contact invariant: the first Chern class $c_1(\mathcal{D})$
- Unique vector field ξ, called the Reeb vector field, satisfying

$$\xi \rfloor \eta = 1, \qquad \xi \rfloor d\eta = 0.$$

• The characteristic foliation \mathcal{F}_{ξ} : It is called **quasi-regular** if each leaf of \mathcal{F}_{ξ} passes through any nbd *U* at most *k* times. It is **regular** if k = 1; otherwise, it is **irregular**.

• A contact 1-form η such that

 $\eta \wedge (d\eta)^n \neq 0.$

• defines a contact structure

$$\eta' \sim \eta \iff \eta' = f\eta$$

for some $f \neq 0$, take f > 0. or equivalently a codimension 1 subbundle $\mathcal{D} = \text{Ker } \eta$ of *TM* with a conformal symplectic structure.

- A contact invariant: the first Chern class $c_1(\mathcal{D})$
- Unique vector field ξ, called the Reeb vector field, satisfying

$$\xi \rfloor \eta = 1, \qquad \xi \rfloor d\eta = 0.$$

- The characteristic foliation \mathcal{F}_{ξ} : It is called **quasi-regular** if each leaf of \mathcal{F}_{ξ} passes through any nbd *U* at most *k* times. It is **regular** if k = 1; otherwise, it is **irregular**.
- Quasi-regularity is strong, most contact 1-forms are irregular.

• A contact 1-form η such that

 $\eta \wedge (d\eta)^n \neq 0.$

• defines a contact structure

$$\eta' \sim \eta \iff \eta' = f\eta$$

for some $f \neq 0$, take f > 0. or equivalently a codimension 1 subbundle $\mathcal{D} = \text{Ker } \eta$ of *TM* with a conformal symplectic structure.

- A contact invariant: the first Chern class $c_1(\mathcal{D})$
- Unique vector field ξ, called the Reeb vector field, satisfying

$$\xi \rfloor \eta = 1, \qquad \xi \rfloor d\eta = 0.$$

- The characteristic foliation \mathcal{F}_{ξ} : It is called **quasi-regular** if each leaf of \mathcal{F}_{ξ} passes through any nbd *U* at most *k* times. It is **regular** if k = 1; otherwise, it is **irregular**.
- Quasi-regularity is strong, most contact 1-forms are irregular.
- Contact bundle D → choose almost complex structure J extend to an endomorphism Φ with Φξ = 0 with a compatible metric

$$g = d\eta \circ (\Phi \otimes \mathbb{1}) + \eta \otimes \eta$$

Quadruple $S = (\xi, \eta, \Phi, g)$ called **contact metric structure**

• A contact 1-form η such that

 $\eta \wedge (d\eta)^n \neq 0.$

• defines a contact structure

$$\eta' \sim \eta \iff \eta' = f\eta$$

for some $f \neq 0$, take f > 0. or equivalently a codimension 1 subbundle $\mathcal{D} = \text{Ker } \eta$ of *TM* with a conformal symplectic structure.

- A contact invariant: the first Chern class $c_1(\mathcal{D})$
- Unique vector field ξ, called the Reeb vector field, satisfying

$$\xi \rfloor \eta = 1, \qquad \xi \rfloor d\eta = 0.$$

- The characteristic foliation \mathcal{F}_{ξ} : It is called **quasi-regular** if each leaf of \mathcal{F}_{ξ} passes through any nbd *U* at most *k* times. It is **regular** if k = 1; otherwise, it is **irregular**.
- Quasi-regularity is strong, most contact 1-forms are irregular.
- Contact bundle D → choose almost complex structure J extend to an endomorphism Φ with Φξ = 0 with a compatible metric

$$g = d\eta \circ (\Phi \otimes 1) + \eta \otimes \eta$$

Quadruple $S = (\xi, \eta, \Phi, g)$ called **contact metric structure**

• The pair (\mathcal{D}, J) is a strictly pseudo-convex almost CR structure (s ψ CR structure).

The contact metric structure $S = (\xi, \eta, \Phi, g)$ is **K-contact** if $\mathcal{L}_{\xi}g = 0$ (or $\mathcal{L}_{\xi}\Phi = 0$). It is **Sasakian** if in addition (\mathcal{D}, J) is integrable and the **Transverse Metric** $g_{\mathcal{D}}$ is Kähler (**Transverse holonomy** U(n)). In the latter case we say that the contact structure \mathcal{D} is of **Sasaki type**.

• Cone (Symplectization): $C(M) = M \times \mathbb{R}^+$ with symplectic form $d(r^2\eta), r \in \mathbb{R}^+$.

- Cone (Symplectization): $C(M) = M \times \mathbb{R}^+$ with symplectic form $d(r^2\eta), r \in \mathbb{R}^+$.
- Cone Metric $g_C = dr^2 + r^2 g$

- Cone (Symplectization): $C(M) = M \times \mathbb{R}^+$ with symplectic form $d(r^2\eta), r \in \mathbb{R}^+$.
- Cone Metric $g_C = dr^2 + r^2 g$
- g_C is Kähler $\iff g$ is Sasaki $\iff g_D$ is Kähler.

- Cone (Symplectization): $C(M) = M \times \mathbb{R}^+$ with symplectic form $d(r^2\eta), r \in \mathbb{R}^+$.
- Cone Metric $g_C = dr^2 + r^2 g$
- g_C is Kähler $\iff g$ is Sasaki $\iff g_D$ is Kähler.
- Nested structures: Sasakian ⊂ sψCR ⊂ Contact

- Cone (Symplectization): $C(M) = M \times \mathbb{R}^+$ with symplectic form $d(r^2\eta), r \in \mathbb{R}^+$.
- Cone Metric $g_C = dr^2 + r^2 g$
- g_C is Kähler $\iff g$ is Sasaki $\iff g_{\mathcal{D}}$ is Kähler.
- Nested structures: Sasakian ⊂ sψCR ⊂ Contact
- Sasakian structure gives pseudo convex CR structure (\mathfrak{D}, J) and a transverse holomorphic structure (ξ, \overline{J}) . The former fixes the contact structure while the latter fixes the characteristic foliation.

- Cone (Symplectization): $C(M) = M \times \mathbb{R}^+$ with symplectic form $d(r^2\eta), r \in \mathbb{R}^+$.
- Cone Metric $g_C = dr^2 + r^2 g$
- g_C is Kähler $\iff g$ is Sasaki $\iff g_D$ is Kähler.
- Nested structures: Sasakian ⊂ sψCR ⊂ Contact
- Sasakian structure gives pseudo convex CR structure (\mathfrak{D}, J) and a transverse holomorphic structure (ξ, \overline{J}) . The former fixes the contact structure while the latter fixes the characteristic foliation.
- Transverse homothety: If S = (ξ, η, Φ, g) is a Sasakian structure, so is S_a = (a⁻¹ξ, aη, Φ, g_a) for every a ∈ ℝ⁺ with g_a = ag + (a² a)η ⊗ η. So Sasakian structures come in rays.

Given a contact manifold (M, \mathcal{D}) of Sasaki type:

• Determine the compatible Sasakian **CR structures** (\mathcal{D}, J) .

Given a contact manifold (M, \mathcal{D}) of Sasaki type:

- Determine the compatible Sasakian **CR structures** (\mathcal{D}, J) .
- Determine the space of Sasakian structures compatible with D.

Given a contact manifold (M, \mathcal{D}) of Sasaki type:

- Determine the compatible Sasakian **CR structures** (\mathcal{D}, J) .
- Determine the space of Sasakian structures compatible with D.
- Determine the (pre)-moduli space of extremal Sasakian structures

Given a contact manifold (M, \mathcal{D}) of Sasaki type:

- Determine the compatible Sasakian **CR structures** (\mathcal{D}, J) .
- Determine the space of Sasakian structures compatible with D.
- Determine the (pre)-moduli space of extremal Sasakian structures
- Determine those of constant scalar curvature (CSC).

Contactomorphism Group

 $\mathfrak{Con}(M, \mathfrak{D}) = \{ \phi \in \mathfrak{Diff}(M) \mid \phi_* \mathfrak{D} \subset \mathfrak{D} \}.$

Contactomorphism Group

$$\mathfrak{Con}(M, \mathfrak{D}) = \{ \phi \in \mathfrak{Diff}(M) \mid \phi_* \mathfrak{D} \subset \mathfrak{D} \}.$$

• Strict Contactomorphism Group

 $\mathfrak{Con}(M,\eta) = \{\phi \in \mathfrak{Diff}(M) \mid \phi^*\eta = \eta\} \subset \mathfrak{Con}(M, \mathcal{D}).$

Contactomorphism Group

$$\mathfrak{Con}(M, \mathfrak{D}) = \{ \phi \in \mathfrak{Diff}(M) \mid \phi_* \mathfrak{D} \subset \mathfrak{D} \}.$$

• Strict Contactomorphism Group

 $\mathfrak{Con}(M,\eta) = \{\phi \in \mathfrak{Diff}(M) \mid \phi^*\eta = \eta\} \subset \mathfrak{Con}(M, \mathcal{D}).$

• CR transformation group

 $\mathfrak{CR}(\mathcal{D},J) = \{\phi \in \mathfrak{Con}(M,\mathcal{D}) \mid \phi_*J = J\phi_*\}$

Contactomorphism Group

$$\mathfrak{Con}(M, \mathfrak{D}) = \{ \phi \in \mathfrak{Diff}(M) \mid \phi_* \mathfrak{D} \subset \mathfrak{D} \}.$$

• Strict Contactomorphism Group

 $\mathfrak{Con}(M,\eta) = \{\phi \in \mathfrak{Diff}(M) \mid \phi^*\eta = \eta\} \subset \mathfrak{Con}(M, \mathcal{D}).$

• CR transformation group

 $\mathfrak{CR}(\mathcal{D}, J) = \{\phi \in \mathfrak{Con}(M, \mathcal{D}) \mid \phi_*J = J\phi_*\}$

Sasakian automorphism group

 $\mathfrak{Aut}(\mathcal{S}) = \{ \phi \in \mathfrak{CR}(\mathcal{D}, J) \mid \phi_* \xi = \xi, \ \phi^* g = g \}.$

Contactomorphism Group

$$\mathfrak{Con}(M, \mathfrak{D}) = \{ \phi \in \mathfrak{Diff}(M) \mid \phi_* \mathfrak{D} \subset \mathfrak{D} \}.$$

• Strict Contactomorphism Group

 $\mathfrak{Con}(M,\eta) = \{\phi \in \mathfrak{Diff}(M) \mid \phi^*\eta = \eta\} \subset \mathfrak{Con}(M,\mathfrak{D}).$

• CR transformation group

 $\mathfrak{CR}(\mathcal{D},J) = \{\phi \in \mathfrak{Con}(M,\mathcal{D}) \mid \phi_*J = J\phi_*\}$

Sasakian automorphism group

$$\mathfrak{Aut}(\mathcal{S})=\{\phi\in\mathfrak{CR}(\mathcal{D},J)\mid\phi_*\xi=\xi,\;\phi^*g=g\}.$$

• maximal torus with $0 \le k \le n+1$

$$\mathcal{CR}(\mathcal{D},J)$$

$$\mathcal{T}^{k} \subset \mathfrak{Aut}(\mathcal{S})$$

$$\mathcal{Con}(M,\eta)$$

$$\mathcal{Con}(M,\eta)$$

• Given a contact structure D of Sasaki type

- Given a contact structure D of Sasaki type
- space of compatible CR structures $\mathcal{J}(\mathcal{D})$

- Given a contact structure \mathcal{D} of Sasaki type
- space of compatible CR structures *J(D)*
- a map $\mathfrak{Q} : \mathfrak{J}(\mathcal{D}) \to \{ \text{conjugacy classes of maximal tori in } \mathfrak{Con}(M, \mathcal{D}) \}$

- Given a contact structure D of Sasaki type
- space of compatible CR structures *J(D)*
- a map $\mathfrak{Q} : \mathfrak{J}(\mathfrak{D}) \to \{\text{conjugacy classes of maximal tori in } \mathfrak{Con}(M, \mathfrak{D})\}$
- unreduced Sasaki cone: $\mathfrak{t}_{k}^{+}(\mathcal{D}, J) = \{\xi' \in \mathfrak{t}_{k} \mid \eta(\xi') > 0, \}$ s.t. $\mathcal{S} = (\xi, \eta, \Phi, g) \in (\mathcal{D}, J)$ is Sasakian.

- Given a contact structure D of Sasaki type
- space of compatible CR structures *J(D)*
- a map $\mathfrak{Q} : \mathfrak{J}(\mathfrak{D}) \to \{ \text{conjugacy classes of maximal tori in } \mathfrak{Con}(M, \mathfrak{D}) \}$
- unreduced Sasaki cone: $\mathfrak{t}_{k}^{+}(\mathcal{D}, J) = \{\xi' \in \mathfrak{t}_{k} \mid \eta(\xi') > 0, \}$ s.t. $\mathcal{S} = (\xi, \eta, \Phi, g) \in (\mathcal{D}, J)$ is Sasakian.
- Note that when (D, J) is fixed, a choice of ξ' ∈ t⁺_k determines the Sasakian structure S uniquely.

- Given a contact structure D of Sasaki type
- space of compatible CR structures *J(D)*
- a map $\mathfrak{Q} : \mathfrak{J}(\mathfrak{D}) \to \{ \text{conjugacy classes of maximal tori in } \mathfrak{Con}(M, \mathfrak{D}) \}$
- unreduced Sasaki cone: $\mathfrak{t}_{k}^{+}(\mathcal{D}, J) = \{\xi' \in \mathfrak{t}_{k} \mid \eta(\xi') > 0, \}$ s.t. $\mathcal{S} = (\xi, \eta, \Phi, g) \in (\mathcal{D}, J)$ is Sasakian.
- Note that when (D, J) is fixed, a choice of ξ' ∈ t⁺_k determines the Sasakian structure S uniquely.
- finite dim'l moduli of Sasakian structures within CR structure, the Sasaki cone $\kappa(\mathfrak{D}, J) = \mathfrak{t}_k^+(\mathfrak{D}, J)/\mathcal{W}(\mathfrak{D}, J)$ where \mathcal{W} is the Weyl group of $\mathfrak{CR}(\mathfrak{D}, J)$.

- Given a contact structure D of Sasaki type
- space of compatible CR structures *J(D)*
- a map $\mathfrak{Q} : \mathfrak{J}(\mathfrak{D}) \to \{ \text{conjugacy classes of maximal tori in } \mathfrak{Con}(M, \mathfrak{D}) \}$
- unreduced Sasaki cone: $\mathfrak{t}_{k}^{+}(\mathcal{D}, J) = \{\xi' \in \mathfrak{t}_{k} \mid \eta(\xi') > 0, \}$ s.t. $\mathcal{S} = (\xi, \eta, \Phi, g) \in (\mathcal{D}, J)$ is Sasakian.
- Note that when (D, J) is fixed, a choice of ξ' ∈ t⁺_k determines the Sasakian structure S uniquely.
- finite dim'l moduli of Sasakian structures within CR structure, the Sasaki cone $\kappa(\mathfrak{D}, J) = \mathfrak{t}_k^+(\mathfrak{D}, J)/\mathcal{W}(\mathfrak{D}, J)$ where \mathcal{W} is the Weyl group of $\mathfrak{CR}(\mathfrak{D}, J)$.
- If *M* is Sasakian manifold with dim M = 2n + 1 then $1 \leq \dim \kappa(\mathcal{D}, J) \leq n + 1$.

- Given a contact structure D of Sasaki type
- space of compatible CR structures *J(D)*
- a map $\mathfrak{Q} : \mathfrak{J}(\mathfrak{D}) \to \{\text{conjugacy classes of maximal tori in } \mathfrak{Con}(M, \mathfrak{D})\}$
- unreduced Sasaki cone: $\mathfrak{t}_{k}^{+}(\mathcal{D}, J) = \{\xi' \in \mathfrak{t}_{k} \mid \eta(\xi') > 0, \}$ s.t. $\mathcal{S} = (\xi, \eta, \Phi, g) \in (\mathcal{D}, J)$ is Sasakian.
- Note that when (D, J) is fixed, a choice of ξ' ∈ t⁺_k determines the Sasakian structure S uniquely.
- finite dim'l moduli of Sasakian structures within CR structure, the Sasaki cone $\kappa(\mathfrak{D}, J) = \mathfrak{t}_k^+(\mathfrak{D}, J)/\mathcal{W}(\mathfrak{D}, J)$ where \mathcal{W} is the Weyl group of $\mathfrak{CR}(\mathfrak{D}, J)$.
- If *M* is Sasakian manifold with dim M = 2n + 1 then $1 \le \dim \kappa(\mathcal{D}, J) \le n + 1$.
- When dim $\kappa(\mathcal{D}, J) = n + 1$ we say that *M* is toric Sasakian.

- Given a contact structure D of Sasaki type
- space of compatible CR structures *J(D)*
- a map $\mathfrak{Q} : \mathfrak{J}(\mathfrak{D}) \to \{ \text{conjugacy classes of maximal tori in } \mathfrak{Con}(M, \mathfrak{D}) \}$
- unreduced Sasaki cone: $\mathfrak{t}_{k}^{+}(\mathcal{D}, J) = \{\xi' \in \mathfrak{t}_{k} \mid \eta(\xi') > 0, \}$ s.t. $\mathcal{S} = (\xi, \eta, \Phi, g) \in (\mathcal{D}, J)$ is Sasakian.
- Note that when (D, J) is fixed, a choice of ξ' ∈ t⁺_k determines the Sasakian structure S uniquely.
- finite dim'l moduli of Sasakian structures within CR structure, the Sasaki cone $\kappa(\mathfrak{D}, J) = \mathfrak{t}_k^+(\mathfrak{D}, J)/\mathcal{W}(\mathfrak{D}, J)$ where \mathcal{W} is the Weyl group of $\mathfrak{CR}(\mathfrak{D}, J)$.
- If *M* is Sasakian manifold with dim M = 2n + 1 then $1 \le \dim \kappa(\mathcal{D}, J) \le n + 1$.
- When dim $\kappa(\mathcal{D}, J) = n + 1$ we say that *M* is toric Sasakian.
- A given \mathcal{D} can have many Sasaki cones $\kappa(\mathcal{D}, J_{\alpha})$ labelled by distinct complex structures. Get **bouquet** $\bigcup_{\alpha} \kappa(\mathcal{D}, J_{\alpha})$ of Sasaki cones.

- Given a contact structure D of Sasaki type
- space of compatible CR structures *J(D)*
- a map $\mathfrak{Q} : \mathfrak{J}(\mathfrak{D}) \to \{ \text{conjugacy classes of maximal tori in } \mathfrak{Con}(M, \mathfrak{D}) \}$
- unreduced Sasaki cone: $\mathfrak{t}_{k}^{+}(\mathcal{D}, J) = \{\xi' \in \mathfrak{t}_{k} \mid \eta(\xi') > 0, \}$ s.t. $\mathcal{S} = (\xi, \eta, \Phi, g) \in (\mathcal{D}, J)$ is Sasakian.
- Note that when (D, J) is fixed, a choice of ξ' ∈ t⁺_k determines the Sasakian structure S uniquely.
- finite dim'l moduli of Sasakian structures within CR structure, the Sasaki cone $\kappa(\mathfrak{D}, J) = \mathfrak{t}_k^+(\mathfrak{D}, J)/\mathcal{W}(\mathfrak{D}, J)$ where \mathcal{W} is the Weyl group of $\mathfrak{CR}(\mathfrak{D}, J)$.
- If *M* is Sasakian manifold with dim M = 2n + 1 then $1 \le \dim \kappa(\mathcal{D}, J) \le n + 1$.
- When dim $\kappa(\mathcal{D}, J) = n + 1$ we say that *M* is toric Sasakian.
- A given D can have many Sasaki cones κ(D, J_α) labelled by distinct complex structures. Get bouquet _α κ(D, J_α) of Sasaki cones.
- A bouquet consisting of *N* Sasaki cones is called an **N-bouquet**, denoted by \mathfrak{B}_N . The Sasaki cones in an N-bouquet can have different dimension.
Sasaki cones and bouquets

- Given a contact structure D of Sasaki type
- space of compatible CR structures *J(D)*
- a map $\mathfrak{Q} : \mathfrak{J}(\mathfrak{D}) \to \{ \text{conjugacy classes of maximal tori in } \mathfrak{Con}(M, \mathfrak{D}) \}$
- unreduced Sasaki cone: $\mathfrak{t}_{k}^{+}(\mathcal{D}, J) = \{\xi' \in \mathfrak{t}_{k} \mid \eta(\xi') > 0, \}$ s.t. $\mathcal{S} = (\xi, \eta, \Phi, g) \in (\mathcal{D}, J)$ is Sasakian.
- Note that when (D, J) is fixed, a choice of ξ' ∈ t⁺_k determines the Sasakian structure S uniquely.
- finite dim'l moduli of Sasakian structures within CR structure, the Sasaki cone $\kappa(\mathfrak{D}, J) = \mathfrak{t}_k^+(\mathfrak{D}, J)/\mathcal{W}(\mathfrak{D}, J)$ where \mathcal{W} is the Weyl group of $\mathfrak{CR}(\mathfrak{D}, J)$.
- If *M* is Sasakian manifold with dim M = 2n + 1 then $1 \leq \dim \kappa(\mathcal{D}, J) \leq n + 1$.
- When dim $\kappa(\mathcal{D}, J) = n + 1$ we say that *M* is toric Sasakian.
- A given D can have many Sasaki cones κ(D, J_α) labelled by distinct complex structures. Get bouquet _α κ(D, J_α) of Sasaki cones.
- A bouquet consisting of N Sasaki cones is called an N-bouquet, denoted by B_N. The Sasaki cones in an N-bouquet can have different dimension.
- The distinct Sasaki cones $\kappa(\mathcal{D}, J_{\alpha})$'s correspond to distinct conjugacy classes of tori in $\mathfrak{Con}(M, \mathcal{D})$. They are distinguished by equivariant Gromov-Witten invariants.

• Join Construction: Given quasi-regular Sasakian manifolds $\pi_i : M_i \longrightarrow Z_i$ for i = 1, 2.

- Join Construction: Given quasi-regular Sasakian manifolds $\pi_i: M_i \longrightarrow Z_i$ for i = 1, 2.
- Form (l_1, l_2) -join $\pi : M_1 \star_{l_1, l_2} M_2 \longrightarrow \mathcal{Z}_1 \times \mathcal{Z}_2$ as an S^1 -orbibundle (B-,Galicki,Ornea).

- Join Construction: Given quasi-regular Sasakian manifolds $\pi_i : M_i \longrightarrow Z_i$ for i = 1, 2.
- Form (l_1, l_2) -join $\pi : M_1 \star_{l_1, l_2} M_2 \longrightarrow \mathbb{Z}_1 \times \mathbb{Z}_2$ as an S^1 -orbibundle (B-,Galicki,Ornea).
- $M_1 *_{l_1, l_2} M_2$ has a natural quasi-regular Sasakian structure S_{l_1, l_2} for all relatively prime positive integers l_1, l_2 . Fixing l_1, l_2 fixes the contact orbifold. It is a smooth manifold iff $gcd(v_1 l_2, v_2 l_1) = 1$ where v_i is the order of orbifold Z_i .

- Join Construction: Given quasi-regular Sasakian manifolds $\pi_i : M_i \longrightarrow Z_i$ for i = 1, 2.
- Form (l_1, l_2) -join $\pi : M_1 \star_{l_1, l_2} M_2 \longrightarrow \mathbb{Z}_1 \times \mathbb{Z}_2$ as an S^1 -orbibundle (B-,Galicki,Ornea).
- $M_1 \star_{l_1, l_2} M_2$ has a natural quasi-regular Sasakian structure S_{l_1, l_2} for all relatively prime positive integers l_1, l_2 . Fixing l_1, l_2 fixes the contact orbifold. It is a smooth manifold iff $gcd(v_1 l_2, v_2 l_1) = 1$ where v_i is the order of orbifold Z_i .
- The dimension of $M_1 \star_{I_1,I_2} M_2$ is $\text{Dim } M_1 + \text{Dim } M_2 1$.

- Join Construction: Given quasi-regular Sasakian manifolds $\pi_i : M_i \longrightarrow Z_i$ for i = 1, 2.
- Form (l_1, l_2) -join $\pi : M_1 \star_{l_1, l_2} M_2 \longrightarrow \mathbb{Z}_1 \times \mathbb{Z}_2$ as an S^1 -orbibundle (B-,Galicki,Ornea).
- $M_1 \star_{l_1, l_2} M_2$ has a natural quasi-regular Sasakian structure S_{l_1, l_2} for all relatively prime positive integers l_1, l_2 . Fixing l_1, l_2 fixes the contact orbifold. It is a smooth manifold iff $gcd(v_1 l_2, v_2 l_1) = 1$ where v_i is the order of orbifold Z_i .
- The dimension of $M_1 \star_{I_1,I_2} M_2$ is $\text{Dim } M_1 + \text{Dim } M_2 1$.
- The join $M_1 \star_{l_1, l_2} M_2$ has reducible transverse holonomy.

- Join Construction: Given quasi-regular Sasakian manifolds $\pi_i : M_i \longrightarrow Z_i$ for i = 1, 2.
- Form (l_1, l_2) -join $\pi : M_1 \star_{l_1, l_2} M_2 \longrightarrow \mathbb{Z}_1 \times \mathbb{Z}_2$ as an S^1 -orbibundle (B-,Galicki,Ornea).
- $M_1 \star_{l_1, l_2} M_2$ has a natural quasi-regular Sasakian structure S_{l_1, l_2} for all relatively prime positive integers l_1, l_2 . Fixing l_1, l_2 fixes the contact orbifold. It is a smooth manifold iff $gcd(v_1 l_2, v_2 l_1) = 1$ where v_i is the order of orbifold Z_i .
- The dimension of $M_1 \star_{I_1,I_2} M_2$ is $\text{Dim } M_1 + \text{Dim } M_2 1$.
- The join $M_1 \star_{l_1, l_2} M_2$ has reducible transverse holonomy.
- If $\text{Dim } \kappa(\mathcal{D}_i, J_i) = k_i$, then $\text{Dim } \kappa(\mathcal{D}_1 + \mathcal{D}_2, J_1 + J_2) = k_1 + k_2 1$.

- Join Construction: Given quasi-regular Sasakian manifolds $\pi_i : M_i \longrightarrow Z_i$ for i = 1, 2.
- Form (l_1, l_2) -join $\pi : M_1 \star_{l_1, l_2} M_2 \longrightarrow \mathbb{Z}_1 \times \mathbb{Z}_2$ as an S^1 -orbibundle (B-,Galicki,Ornea).
- $M_1 \star_{l_1, l_2} M_2$ has a natural quasi-regular Sasakian structure S_{l_1, l_2} for all relatively prime positive integers l_1, l_2 . Fixing l_1, l_2 fixes the contact orbifold. It is a smooth manifold iff $gcd(v_1 l_2, v_2 l_1) = 1$ where v_i is the order of orbifold Z_i .
- The dimension of $M_1 \star_{I_1,I_2} M_2$ is $\text{Dim } M_1 + \text{Dim } M_2 1$.
- The join $M_1 \star_{l_1, l_2} M_2$ has reducible transverse holonomy.
- If $\text{Dim } \kappa(\mathcal{D}_i, J_i) = k_i$, then $\text{Dim } \kappa(\mathcal{D}_1 + \mathcal{D}_2, J_1 + J_2) = k_1 + k_2 1$.
- In particular, if M_i are toric Sasakian manifolds, then so is $M_1 \star_{l_1, l_2} M_2$.

• Sasakian structure $S = (\xi, \eta, \Phi, g)$ with scalar curvature s_g .

- Sasakian structure $S = (\xi, \eta, \Phi, g)$ with scalar curvature s_g .
- Calabi-Sasaki Energy functional $E(g) = \int_{M} s_{g}^{2} d\mu_{g}$,

- Sasakian structure $S = (\xi, \eta, \Phi, g)$ with scalar curvature s_g .
- Calabi-Sasaki Energy functional $E(g) = \int_{M} s_{g}^{2} d\mu_{g}$,
- Deform contact structure $\eta \mapsto \eta + td^c \varphi$ within its isotopy class where φ is basic.

- Sasakian structure $S = (\xi, \eta, \Phi, g)$ with scalar curvature s_g .
- Calabi-Sasaki Energy functional $E(g) = \int_{M} s_g^2 d\mu_g$,
- Deform contact structure $\eta \mapsto \eta + td^c \varphi$ within its isotopy class where φ is basic.
- Variation gives critical point of $E(g) \iff \partial_q^{\#} s_g$ is transversely holomorphic.

- Sasakian structure $S = (\xi, \eta, \Phi, g)$ with scalar curvature s_g .
- Calabi-Sasaki Energy functional $E(g) = \int_{M} s_{g}^{2} d\mu_{g}$,
- Deform contact structure $\eta \mapsto \eta + td^c \varphi$ within its isotopy class where φ is basic.
- Variation gives critical point of $E(g) \iff \partial_q^{\#} s_g$ is transversely holomorphic.
- We say that g is **extremal** if it is critical point of *E*.

- Sasakian structure $S = (\xi, \eta, \Phi, g)$ with scalar curvature s_g .
- Calabi-Sasaki Energy functional $E(g) = \int_{M} s_g^2 d\mu_g$,
- Deform contact structure $\eta \mapsto \eta + td^c \varphi$ within its isotopy class where φ is basic.
- Variation gives critical point of $E(g) \iff \partial_a^{\#} s_g$ is transversely holomorphic.
- We say that g is **extremal** if it is critical point of *E*.
- g is extremal Sasaki metric \iff the transverse metric g_{D} is extremal Kähler metric.

- Sasakian structure $S = (\xi, \eta, \Phi, g)$ with scalar curvature s_g .
- Calabi-Sasaki Energy functional $E(g) = \int_{M} s_g^2 d\mu_g$,
- Deform contact structure $\eta \mapsto \eta + td^c \varphi$ within its isotopy class where φ is basic.
- Variation gives critical point of $E(g) \iff \partial_q^{\#} s_g$ is transversely holomorphic.
- We say that g is **extremal** if it is critical point of *E*.
- g is extremal Sasaki metric \iff the transverse metric g_{D} is extremal Kähler metric.
- Important special case: constant scalar curvature Sasaki (CSC) metrics.

- Sasakian structure $S = (\xi, \eta, \Phi, g)$ with scalar curvature s_g .
- Calabi-Sasaki Energy functional $E(g) = \int_{M} s_g^2 d\mu_g$,
- Deform contact structure $\eta \mapsto \eta + td^c \varphi$ within its isotopy class where φ is basic.
- Variation gives critical point of $E(g) \iff \partial_q^{\#} s_g$ is transversely holomorphic.
- We say that g is **extremal** if it is critical point of *E*.
- g is extremal Sasaki metric \iff the transverse metric g_{D} is extremal Kähler metric.
- Important special case: constant scalar curvature Sasaki (CSC) metrics.
- If $S = (\xi, \eta, \Phi, g)$ is extremal (or CSC) then so is $S_a = (a^{-1}\xi, a\eta, \Phi, g_a)$ for any a > 0. So (extremal (or CSC) Sasaki metrics occur in rays)

- Sasakian structure $S = (\xi, \eta, \Phi, g)$ with scalar curvature s_g .
- Calabi-Sasaki Energy functional $E(g) = \int_{M} s_g^2 d\mu_g$,
- Deform contact structure $\eta \mapsto \eta + td^c \varphi$ within its isotopy class where φ is basic.
- Variation gives critical point of $E(g) \iff \partial_q^{\#} s_g$ is transversely holomorphic.
- We say that g is **extremal** if it is critical point of *E*.
- g is extremal Sasaki metric \iff the transverse metric g_{D} is extremal Kähler metric.
- Important special case: constant scalar curvature Sasaki (CSC) metrics.
- If $S = (\xi, \eta, \Phi, g)$ is extremal (or CSC) then so is $S_a = (a^{-1}\xi, a\eta, \Phi, g_a)$ for any a > 0. So (extremal (or CSC) Sasaki metrics occur in rays)
- If $S_i = (\xi_i, \eta_i, \Phi_i, g_i)$ is extremal (or CSC) for each i = 1, 2, so is the **join** S_{l_1, l_2} .

- Sasakian structure $S = (\xi, \eta, \Phi, g)$ with scalar curvature s_g .
- Calabi-Sasaki Energy functional $E(g) = \int_{M} s_g^2 d\mu_g$,
- Deform contact structure $\eta \mapsto \eta + td^c \varphi$ within its isotopy class where φ is basic.
- Variation gives critical point of $E(g) \iff \partial_q^{\#} s_g$ is transversely holomorphic.
- We say that g is **extremal** if it is critical point of E.
- g is extremal Sasaki metric \iff the transverse metric g_{D} is extremal Kähler metric.
- Important special case: constant scalar curvature Sasaki (CSC) metrics.
- If $S = (\xi, \eta, \Phi, g)$ is extremal (or CSC) then so is $S_a = (a^{-1}\xi, a\eta, \Phi, g_a)$ for any a > 0. So (extremal (or CSC) Sasaki metrics occur in rays)
- If $S_i = (\xi_i, \eta_i, \Phi_i, g_i)$ is extremal (or CSC) for each i = 1, 2, so is the **join** S_{l_1, l_2} .
- Calabi: Extremal metrics have maximal symmetry.

- Sasakian structure $S = (\xi, \eta, \Phi, g)$ with scalar curvature s_g .
- Calabi-Sasaki Energy functional $E(g) = \int_{M} s_g^2 d\mu_g$,
- Deform contact structure $\eta \mapsto \eta + td^c \varphi$ within its isotopy class where φ is basic.
- Variation gives critical point of $E(g) \iff \partial_q^{\#} s_g$ is transversely holomorphic.
- We say that g is **extremal** if it is critical point of E.
- g is extremal Sasaki metric \iff the transverse metric g_{D} is extremal Kähler metric.
- Important special case: constant scalar curvature Sasaki (CSC) metrics.
- If $S = (\xi, \eta, \Phi, g)$ is extremal (or CSC) then so is $S_a = (a^{-1}\xi, a\eta, \Phi, g_a)$ for any a > 0. So (extremal (or CSC) Sasaki metrics occur in rays)
- If $S_i = (\xi_i, \eta_i, \Phi_i, g_i)$ is extremal (or CSC) for each i = 1, 2, so is the **join** S_{l_1, l_2} .
- Calabi: Extremal metrics have maximal symmetry.
- Every 3-dimensional Sasakian structure admits an extremal representative.

- Sasakian structure $S = (\xi, \eta, \Phi, g)$ with scalar curvature s_g .
- Calabi-Sasaki Energy functional $E(g) = \int_{M} s_g^2 d\mu_g$,
- Deform contact structure $\eta \mapsto \eta + td^c \varphi$ within its isotopy class where φ is basic.
- Variation gives critical point of $E(g) \iff \partial_q^{\#} s_g$ is transversely holomorphic.
- We say that g is **extremal** if it is critical point of E.
- g is extremal Sasaki metric \iff the transverse metric g_{D} is extremal Kähler metric.
- Important special case: constant scalar curvature Sasaki (CSC) metrics.
- If $S = (\xi, \eta, \Phi, g)$ is extremal (or CSC) then so is $S_a = (a^{-1}\xi, a\eta, \Phi, g_a)$ for any a > 0. So (extremal (or CSC) Sasaki metrics occur in rays)
- If $S_i = (\xi_i, \eta_i, \Phi_i, g_i)$ is extremal (or CSC) for each i = 1, 2, so is the **join** S_{l_1, l_2} .
- Calabi: Extremal metrics have maximal symmetry.
- Every 3-dimensional Sasakian structure admits an extremal representative.
- The Sasaki-Futaki invariant $\mathfrak{F}(X) = \int_M X(\psi_g) d\mu_g$ where X is transversely holomorphic and ψ_g is the Ricci potential satisfying $\rho^T = \rho_h^T + i\partial\bar{\partial}\psi_g$ where ρ^T is the transverse Ricci form and ρ_h^T is its harmonic part. An extremal Sasaki metric g has constant scalar curvature if and only if $\mathfrak{F} = 0$.

Definition

For a fixed Sasaki cone $\kappa(\mathcal{D}, J)$ define the **extremal** subset $\mathfrak{e}(\mathcal{D}, J)$ such that there is a deformation with an extremal representative.

Definition

For a fixed Sasaki cone $\kappa(\mathcal{D}, J)$ define the **extremal** subset $\mathfrak{e}(\mathcal{D}, J)$ such that there is a deformation with an extremal representative.

• Openness Theorem: $\mathfrak{e}(\mathcal{D}, J)$ is open in $\kappa(\mathcal{D}, J)$ (B-,Galicki,Simanca).

Definition

For a fixed Sasaki cone $\kappa(\mathcal{D}, J)$ define the **extremal** subset $\mathfrak{e}(\mathcal{D}, J)$ such that there is a deformation with an extremal representative.

- Openness Theorem: $\mathfrak{e}(\mathfrak{D}, J)$ is open in $\kappa(\mathfrak{D}, J)$ (B-,Galicki,Simanca).
- $\mathfrak{e}(\mathcal{D}, J)$ is conical in the sense that if $S \in \mathfrak{e}(\mathcal{D}, J)$ so is S_a for all a > 0.

Definition

For a fixed Sasaki cone $\kappa(\mathcal{D}, J)$ define the **extremal** subset $\mathfrak{e}(\mathcal{D}, J)$ such that there is a deformation with an extremal representative.

- Openness Theorem: $\mathfrak{e}(\mathfrak{D}, J)$ is open in $\kappa(\mathfrak{D}, J)$ (B-,Galicki,Simanca).
- $\mathfrak{e}(\mathcal{D}, J)$ is conical in the sense that if $S \in \mathfrak{e}(\mathcal{D}, J)$ so is S_a for all a > 0.

Open Question

Is $e(\mathcal{D}, J)$ always connected?

Definition

For a fixed Sasaki cone $\kappa(\mathcal{D}, J)$ define the **extremal** subset $\mathfrak{e}(\mathcal{D}, J)$ such that there is a deformation with an extremal representative.

- Openness Theorem: $\mathfrak{e}(\mathfrak{D}, J)$ is open in $\kappa(\mathfrak{D}, J)$ (B-,Galicki,Simanca).
- $\mathfrak{e}(\mathcal{D}, J)$ is conical in the sense that if $S \in \mathfrak{e}(\mathcal{D}, J)$ so is S_a for all a > 0.

Open Question

Is $e(\mathcal{D}, J)$ always connected?

Question

Definition

For a fixed Sasaki cone $\kappa(\mathcal{D}, J)$ define the **extremal** subset $\mathfrak{e}(\mathcal{D}, J)$ such that there is a deformation with an extremal representative.

- Openness Theorem: $\mathfrak{e}(\mathfrak{D}, J)$ is open in $\kappa(\mathfrak{D}, J)$ (B-,Galicki,Simanca).
- $\mathfrak{e}(\mathcal{D}, J)$ is conical in the sense that if $S \in \mathfrak{e}(\mathcal{D}, J)$ so is S_a for all a > 0.

Open Question

Is $e(\mathcal{D}, J)$ always connected?

Question

When is $e(\mathcal{D}, J) = \kappa(\mathcal{D}, J)$?

• There are many if dim $\kappa(\mathcal{D}, J) = 1$. Enormous number of SE metrics on certain manifolds.

Definition

For a fixed Sasaki cone $\kappa(\mathcal{D}, J)$ define the **extremal** subset $\mathfrak{e}(\mathcal{D}, J)$ such that there is a deformation with an extremal representative.

- Openness Theorem: $\mathfrak{e}(\mathfrak{D}, J)$ is open in $\kappa(\mathfrak{D}, J)$ (B-,Galicki,Simanca).
- $\mathfrak{e}(\mathcal{D}, J)$ is conical in the sense that if $S \in \mathfrak{e}(\mathcal{D}, J)$ so is S_a for all a > 0.

Open Question

Is $e(\mathcal{D}, J)$ always connected?

Question

- There are many if dim $\kappa(\mathcal{D}, J) = 1$. Enormous number of SE metrics on certain manifolds.
- Standard CR structure on S^{2n+1} which is toric (dim $\kappa(\mathfrak{D}, J) = n + 1$.) Here $\mathfrak{c}(\mathfrak{D}, J) = \kappa(\mathfrak{D}, J)$, but only one ray has (CSC) (which also has constant Φ -sectional curvature c > -3), and only the round sphere (c = 1) is Sasaki-Einstein.

Definition

For a fixed Sasaki cone $\kappa(\mathcal{D}, J)$ define the **extremal** subset $\mathfrak{e}(\mathcal{D}, J)$ such that there is a deformation with an extremal representative.

- Openness Theorem: $\mathfrak{e}(\mathfrak{D}, J)$ is open in $\kappa(\mathfrak{D}, J)$ (B-,Galicki,Simanca).
- $\mathfrak{e}(\mathcal{D}, J)$ is conical in the sense that if $S \in \mathfrak{e}(\mathcal{D}, J)$ so is S_a for all a > 0.

Open Question

Is $e(\mathcal{D}, J)$ always connected?

Question

- There are many if dim $\kappa(\mathcal{D}, J) = 1$. Enormous number of SE metrics on certain manifolds.
- Standard CR structure on S^{2n+1} which is toric (dim $\kappa(\mathfrak{D}, J) = n + 1$.) Here $\mathfrak{e}(\mathfrak{D}, J) = \kappa(\mathfrak{D}, J)$, but only one ray has (CSC) (which also has constant Φ -sectional curvature c > -3), and only the round sphere (c = 1) is Sasaki-Einstein.
- A noncompact example with $e(\mathcal{D}, J) = \kappa(\mathcal{D}, J)$ is the Heisenberg group.

Definition

For a fixed Sasaki cone $\kappa(\mathcal{D}, J)$ define the **extremal** subset $\mathfrak{e}(\mathcal{D}, J)$ such that there is a deformation with an extremal representative.

- Openness Theorem: $\mathfrak{e}(\mathfrak{D}, J)$ is open in $\kappa(\mathfrak{D}, J)$ (B-,Galicki,Simanca).
- $\mathfrak{e}(\mathcal{D}, J)$ is conical in the sense that if $S \in \mathfrak{e}(\mathcal{D}, J)$ so is S_a for all a > 0.

Open Question

Is $e(\mathcal{D}, J)$ always connected?

Question

- There are many if dim $\kappa(\mathcal{D}, J) = 1$. Enormous number of SE metrics on certain manifolds.
- Standard CR structure on S^{2n+1} which is toric (dim $\kappa(\mathfrak{D}, J) = n + 1$.) Here $\mathfrak{e}(\mathfrak{D}, J) = \kappa(\mathfrak{D}, J)$, but only one ray has (CSC) (which also has constant Φ -sectional curvature c > -3), and only the round sphere (c = 1) is Sasaki-Einstein.
- A noncompact example with $e(\mathcal{D}, J) = \kappa(\mathcal{D}, J)$ is the Heisenberg group.
- All 2-dimensional Sasaki cones on S^3 -bundles over T^2 obtained by our construction have $\mathfrak{c}(\mathcal{D}, J) = \kappa(\mathcal{D}, J)$ (B-,Tønnesen-Friedman).

• Sasakian structures on S^3 -bundles over a **Riemann surface** Σ_g of genus g.

- Sasakian structures on S^3 -bundles over a **Riemann surface** Σ_g of genus g.
- We assume g > 0 here. The g = 0 gives toric Sasakian structures on S³-bundles over S² considered in B-,Pati. (Also E. Legendre).

- Sasakian structures on S^3 -bundles over a **Riemann surface** Σ_g of genus g.
- We assume g > 0 here. The g = 0 gives toric Sasakian structures on S³-bundles over S² considered in B-,Pati. (Also E. Legendre).
- Apply join: M_1 is a circle bundle M_g^3 over the Riemann surface $\mathcal{Z}_1 = \Sigma_g$, and M_2 is S^3 with a weighted contact form $\eta_{\mathbf{W}}$ with $\mathbf{W} = (w_1, w_2)$, and $S_{\mathbf{W}}^3 = S^3$ is an orbibundle over the weighted projective space $\mathcal{Z}_2 = \mathbb{CP}(w_1, w_2)$. This gives $M^5 = M_g^3 \star_{l,1} S_{\mathbf{W}}^3$ which is an S^3 -bundle over the Riemann surface Σ_g .

- Sasakian structures on S^3 -bundles over a **Riemann surface** Σ_g of genus g.
- We assume g > 0 here. The g = 0 gives toric Sasakian structures on S³-bundles over S² considered in B-,Pati. (Also E. Legendre).
- Apply join: M_1 is a circle bundle M_g^3 over the Riemann surface $\mathcal{Z}_1 = \Sigma_g$, and M_2 is S^3 with a weighted contact form $\eta_{\mathbf{W}}$ with $\mathbf{W} = (w_1, w_2)$, and $S_{\mathbf{W}}^3 = S^3$ is an orbibundle over the weighted projective space $\mathcal{Z}_2 = \mathbb{CP}(w_1, w_2)$. This gives $M^5 = M_g^3 \star_{l,1} S_{\mathbf{W}}^3$ which is an S^3 -bundle over the Riemann surface Σ_g .
- This Sasakian structure has an extremal representative ray which we call the w-ray in its 2-dimensional Sasaki cone labeled by positive integers (lw_1, lw_2) and inherited from the Sasaki cone of S^3 .

- Sasakian structures on S^3 -bundles over a **Riemann surface** Σ_g of genus g.
- We assume g > 0 here. The g = 0 gives toric Sasakian structures on S³-bundles over S² considered in B-,Pati. (Also E. Legendre).
- Apply join: M_1 is a circle bundle M_g^3 over the Riemann surface $\mathcal{Z}_1 = \Sigma_g$, and M_2 is S^3 with a weighted contact form $\eta_{\mathbf{W}}$ with $\mathbf{W} = (w_1, w_2)$, and $S_{\mathbf{W}}^3 = S^3$ is an orbibundle over the weighted projective space $\mathcal{Z}_2 = \mathbb{CP}(w_1, w_2)$. This gives $M^5 = M_g^3 \star_{l,1} S_{\mathbf{W}}^3$ which is an S^3 -bundle over the Riemann surface Σ_g .
- This Sasakian structure has an extremal representative ray which we call the w-ray in its 2-dimensional Sasaki cone labeled by positive integers (lw_1, lw_2) and inherited from the Sasaki cone of S^3 .
- Exactly two S^3 -bundles over Σ_g determined by the second Stiefel-Whitney class $w_2(M^5) \equiv c_1(\mathcal{D}) \mod 2$: the trivial bundle $M^5 = \Sigma_g \times S^3$ if $c_1(\mathcal{D})$ is even, and the nontrivial $\Sigma_g \tilde{\times} S^3$ if $c_1(\mathcal{D})$ is odd.

- Sasakian structures on S^3 -bundles over a **Riemann surface** Σ_g of genus g.
- We assume g > 0 here. The g = 0 gives toric Sasakian structures on S³-bundles over S² considered in B-,Pati. (Also E. Legendre).
- Apply join: M_1 is a circle bundle M_g^3 over the Riemann surface $\mathcal{Z}_1 = \Sigma_g$, and M_2 is S^3 with a weighted contact form $\eta_{\mathbf{W}}$ with $\mathbf{W} = (w_1, w_2)$, and $S_{\mathbf{W}}^3 = S^3$ is an orbibundle over the weighted projective space $\mathcal{Z}_2 = \mathbb{CP}(w_1, w_2)$. This gives $M^5 = M_g^3 \star_{l,1} S_{\mathbf{W}}^3$ which is an S^3 -bundle over the Riemann surface Σ_g .
- This Sasakian structure has an extremal representative ray which we call the w-ray in its 2-dimensional Sasaki cone labeled by positive integers (lw_1, lw_2) and inherited from the Sasaki cone of S^3 .
- Exactly two S^3 -bundles over Σ_g determined by the second Stiefel-Whitney class $w_2(M^5) \equiv c_1(\mathcal{D}) \mod 2$: the trivial bundle $M^5 = \Sigma_g \times S^3$ if $c_1(\mathcal{D})$ is even, and the nontrivial $\Sigma_g \tilde{\times} S^3$ if $c_1(\mathcal{D})$ is odd.
- $w_2(M^5) \equiv l(w_1 + w_2) \mod 2$.

- Sasakian structures on S^3 -bundles over a **Riemann surface** Σ_g of genus g.
- We assume g > 0 here. The g = 0 gives toric Sasakian structures on S³-bundles over S² considered in B-,Pati. (Also E. Legendre).
- Apply join: M_1 is a circle bundle M_g^3 over the Riemann surface $\mathcal{Z}_1 = \Sigma_g$, and M_2 is S^3 with a weighted contact form $\eta_{\mathbf{W}}$ with $\mathbf{W} = (w_1, w_2)$, and $S_{\mathbf{W}}^3 = S^3$ is an orbibundle over the weighted projective space $\mathcal{Z}_2 = \mathbb{CP}(w_1, w_2)$. This gives $M^5 = M_g^3 \star_{l,1} S_{\mathbf{W}}^3$ which is an S^3 -bundle over the Riemann surface Σ_g .
- This Sasakian structure has an extremal representative ray which we call the w-ray in its 2-dimensional Sasaki cone labeled by positive integers (lw_1, lw_2) and inherited from the Sasaki cone of S^3 .
- Exactly two S^3 -bundles over Σ_g determined by the second Stiefel-Whitney class $w_2(M^5) \equiv c_1(\mathcal{D}) \mod 2$: the trivial bundle $M^5 = \Sigma_g \times S^3$ if $c_1(\mathcal{D})$ is even, and the nontrivial $\Sigma_g \tilde{\times} S^3$ if $c_1(\mathcal{D})$ is odd.
- $w_2(M^5) \equiv l(w_1 + w_2) \mod 2$.
- We can label the contact structures \mathcal{D}_k by a positive integer k and the CR structure by (\mathcal{D}_k, J_m) with $m = 0, \ldots, k 1$.
Sasakian Geometry on S³-bundles over Riemann Surfaces Σ_q

- Sasakian structures on S^3 -bundles over a **Riemann surface** Σ_g of genus g.
- We assume g > 0 here. The g = 0 gives toric Sasakian structures on S³-bundles over S² considered in B-,Pati. (Also E. Legendre).
- Apply join: M_1 is a circle bundle M_g^3 over the Riemann surface $\mathcal{Z}_1 = \Sigma_g$, and M_2 is S^3 with a weighted contact form $\eta_{\mathbf{W}}$ with $\mathbf{W} = (w_1, w_2)$, and $S_{\mathbf{W}}^3 = S^3$ is an orbibundle over the weighted projective space $\mathcal{Z}_2 = \mathbb{CP}(w_1, w_2)$. This gives $M^5 = M_g^3 \star_{l,1} S_{\mathbf{W}}^3$ which is an S^3 -bundle over the Riemann surface Σ_g .
- This Sasakian structure has an extremal representative ray which we call the w-ray in its 2-dimensional Sasaki cone labeled by positive integers (lw_1, lw_2) and inherited from the Sasaki cone of S^3 .
- Exactly two S^3 -bundles over Σ_g determined by the second Stiefel-Whitney class $w_2(M^5) \equiv c_1(\mathcal{D}) \mod 2$: the trivial bundle $M^5 = \Sigma_g \times S^3$ if $c_1(\mathcal{D})$ is even, and the nontrivial $\Sigma_g \tilde{\times} S^3$ if $c_1(\mathcal{D})$ is odd.
- $w_2(M^5) \equiv l(w_1 + w_2) \mod 2$.
- We can label the contact structures \mathcal{D}_k by a positive integer k and the CR structure by (\mathcal{D}_k, J_m) with $m = 0, \dots, k 1$.

•
$$k = \begin{cases} \frac{1}{2}I(w_1 + w_2), & \text{if } I(w_1 + w_2) \text{ is even}; \\ \frac{1}{2}(I(w_1 + w_2) - 1) & \text{if } I(w_1 + w_2) \text{ is odd.} \end{cases}$$

 $m = \begin{cases} \frac{1}{2}I(w_1 - w_2), & \text{if } I(w_1 + w_2) \text{ is even}; \\ \frac{1}{2}(I(w_1 - w_2) - 1) & \text{if } I(w_1 + w_2) \text{ is odd.} \end{cases}$

• Each Sasaki cone $\kappa(\mathfrak{D}_k, J_m)$ admits a regular Sasakian structure whose base space is a pseudo-Hirzebruch surface S_n , that is, a ruled surface of genus $g \ge 1$ with n = 2m or 2m + 1.

- Each Sasaki cone $\kappa(\mathcal{D}_k, J_m)$ admits a regular Sasakian structure whose base space is a pseudo-Hirzebruch surface S_n , that is, a ruled surface of genus $g \ge 1$ with n = 2m or 2m + 1.
- S_n can be represented by the projectivization $\mathbb{P}(1 + L_n)$ where L_n is a line bundle of degree $n = l(w_1 w_2)$. We can always take $w_1 \ge w_2$.

- Each Sasaki cone $\kappa(\mathcal{D}_k, J_m)$ admits a regular Sasakian structure whose base space is a pseudo-Hirzebruch surface S_n , that is, a ruled surface of genus $g \ge 1$ with n = 2m or 2m + 1.
- S_n can be represented by the projectivization $\mathbb{P}(1 + L_n)$ where L_n is a line bundle of degree $n = l(w_1 w_2)$. We can always take $w_1 \ge w_2$.
- We consider the case n = 2m in which case our 5-manifold is $\Sigma_g \times S^3$.

- Each Sasaki cone $\kappa(\mathcal{D}_k, J_m)$ admits a regular Sasakian structure whose base space is a pseudo-Hirzebruch surface S_n , that is, a ruled surface of genus $g \ge 1$ with n = 2m or 2m + 1.
- S_n can be represented by the projectivization $\mathbb{P}(1 + L_n)$ where L_n is a line bundle of degree $n = l(w_1 w_2)$. We can always take $w_1 \ge w_2$.
- We consider the case n = 2m in which case our 5-manifold is $\Sigma_g \times S^3$.

- Each Sasaki cone $\kappa(\mathcal{D}_k, J_m)$ admits a regular Sasakian structure whose base space is a pseudo-Hirzebruch surface S_n , that is, a ruled surface of genus $g \ge 1$ with n = 2m or 2m + 1.
- S_n can be represented by the projectivization $\mathbb{P}(1 + L_n)$ where L_n is a line bundle of degree $n = l(w_1 w_2)$. We can always take $w_1 \ge w_2$.
- We consider the case n = 2m in which case our 5-manifold is $\Sigma_g \times S^3$.

Theorem (B-, Tønnesen-Friedman)

For any genus g ≥ 1 and for each positive integer k, the contact manifold (Σ_g × S³, D_k) has a k-bouquet B_k of 2-dimensional Sasaki cones κ(D_k, J_{2m}) for m = 0,..., k − 1 with a unique ray of CSC Sasakian structures in each cone.

- Each Sasaki cone $\kappa(\mathcal{D}_k, J_m)$ admits a regular Sasakian structure whose base space is a pseudo-Hirzebruch surface S_n , that is, a ruled surface of genus $g \ge 1$ with n = 2m or 2m + 1.
- S_n can be represented by the projectivization $\mathbb{P}(1 + L_n)$ where L_n is a line bundle of degree $n = l(w_1 w_2)$. We can always take $w_1 \ge w_2$.
- We consider the case n = 2m in which case our 5-manifold is $\Sigma_g \times S^3$.

- For any genus g ≥ 1 and for each positive integer k, the contact manifold (Σ_g × S³, D_k) has a k-bouquet B_k of 2-dimensional Sasaki cones κ(D_k, J_{2m}) for m = 0,..., k − 1 with a unique ray of CSC Sasakian structures in each cone.
- In each Sasaki cone $\kappa(\mathfrak{D}_k, J_{2m})$ the CSC ray and the w ray belong to the same connected component of $\mathfrak{e}(\mathfrak{D}_k, J_{2m})$.

- Each Sasaki cone $\kappa(\mathcal{D}_k, J_m)$ admits a regular Sasakian structure whose base space is a pseudo-Hirzebruch surface S_n , that is, a ruled surface of genus $g \ge 1$ with n = 2m or 2m + 1.
- S_n can be represented by the projectivization $\mathbb{P}(1 + L_n)$ where L_n is a line bundle of degree $n = l(w_1 w_2)$. We can always take $w_1 \ge w_2$.
- We consider the case n = 2m in which case our 5-manifold is $\Sigma_g \times S^3$.

- For any genus g ≥ 1 and for each positive integer k, the contact manifold (Σ_g × S³, D_k) has a k-bouquet B_k of 2-dimensional Sasaki cones κ(D_k, J_{2m}) for m = 0,..., k − 1 with a unique ray of CSC Sasakian structures in each cone.
- In each Sasaki cone $\kappa(\mathfrak{D}_k, J_{2m})$ the CSC ray and the w ray belong to the same connected component of $\mathfrak{e}(\mathfrak{D}_k, J_{2m})$.
- If $g \leq 1 + 3(k m)$, then $e(\mathcal{D}_k, J_{2m}) = \kappa(\mathcal{D}_k, J_{2m})$.

- Each Sasaki cone $\kappa(\mathcal{D}_k, J_m)$ admits a regular Sasakian structure whose base space is a pseudo-Hirzebruch surface S_n , that is, a ruled surface of genus $g \ge 1$ with n = 2m or 2m + 1.
- S_n can be represented by the projectivization $\mathbb{P}(1 + L_n)$ where L_n is a line bundle of degree $n = l(w_1 w_2)$. We can always take $w_1 \ge w_2$.
- We consider the case n = 2m in which case our 5-manifold is $\Sigma_g \times S^3$.

- For any genus g ≥ 1 and for each positive integer k, the contact manifold (Σ_g × S³, D_k) has a k-bouquet B_k of 2-dimensional Sasaki cones κ(D_k, J_{2m}) for m = 0,..., k − 1 with a unique ray of CSC Sasakian structures in each cone.
- In each Sasaki cone $\kappa(\mathfrak{D}_k, J_{2m})$ the CSC ray and the w ray belong to the same connected component of $\mathfrak{e}(\mathfrak{D}_k, J_{2m})$.
- If $g \leq 1 + 3(k m)$, then $e(\mathcal{D}_k, J_{2m}) = \kappa(\mathcal{D}_k, J_{2m})$.
- For any genus 1 ≤ g ≤ 19 and any k ≥ 2, the contact manifold (Σ_g × S³, D_k) has 2-dimensional Sasaki cones κ(D_k, J_{2m}) with m = 1, · · · k − 1 with regular rays of extremal non-CSC Sasakian structures.

- Each Sasaki cone $\kappa(\mathcal{D}_k, J_m)$ admits a regular Sasakian structure whose base space is a pseudo-Hirzebruch surface S_n , that is, a ruled surface of genus $g \ge 1$ with n = 2m or 2m + 1.
- S_n can be represented by the projectivization $\mathbb{P}(1 + L_n)$ where L_n is a line bundle of degree $n = l(w_1 w_2)$. We can always take $w_1 \ge w_2$.
- We consider the case n = 2m in which case our 5-manifold is $\Sigma_g \times S^3$.

- For any genus g ≥ 1 and for each positive integer k, the contact manifold (Σ_g × S³, D_k) has a k-bouquet B_k of 2-dimensional Sasaki cones κ(D_k, J_{2m}) for m = 0,..., k − 1 with a unique ray of CSC Sasakian structures in each cone.
- In each Sasaki cone $\kappa(\mathfrak{D}_k, J_{2m})$ the CSC ray and the w ray belong to the same connected component of $\mathfrak{e}(\mathfrak{D}_k, J_{2m})$.
- If $g \leq 1 + 3(k m)$, then $e(\mathcal{D}_k, J_{2m}) = \kappa(\mathcal{D}_k, J_{2m})$.
- For any genus 1 ≤ g ≤ 19 and any k ≥ 2, the contact manifold (Σ_g × S³, D_k) has 2-dimensional Sasaki cones κ(D_k, J_{2m}) with m = 1, · · · k − 1 with regular rays of extremal non-CSC Sasakian structures.
- For any choice of genus g = 20, 21, ... there exists a k_g ∈ {2, 3, 4...} such that for any choice of k = k_g, k_g + 1, ..., and any choice of transverse complex structures J_{2m} with m = 1, ..., k − 1 on (Σ_g × S³, D_k), the regular ray in the Sasaki cone κ(D_k, J_{2m}) admits an extremal representative with non-constant scalar curvature.

- Each Sasaki cone $\kappa(\mathcal{D}_k, J_m)$ admits a regular Sasakian structure whose base space is a pseudo-Hirzebruch surface S_n , that is, a ruled surface of genus $g \ge 1$ with n = 2m or 2m + 1.
- S_n can be represented by the projectivization $\mathbb{P}(1 + L_n)$ where L_n is a line bundle of degree $n = l(w_1 w_2)$. We can always take $w_1 \ge w_2$.
- We consider the case n = 2m in which case our 5-manifold is $\Sigma_g \times S^3$.

- For any genus g ≥ 1 and for each positive integer k, the contact manifold (Σ_g × S³, D_k) has a k-bouquet B_k of 2-dimensional Sasaki cones κ(D_k, J_{2m}) for m = 0,..., k − 1 with a unique ray of CSC Sasakian structures in each cone.
- In each Sasaki cone $\kappa(\mathfrak{D}_k, J_{2m})$ the CSC ray and the w ray belong to the same connected component of $\mathfrak{e}(\mathfrak{D}_k, J_{2m})$.
- If $g \leq 1 + 3(k m)$, then $e(\mathcal{D}_k, J_{2m}) = \kappa(\mathcal{D}_k, J_{2m})$.
- For any genus 1 ≤ g ≤ 19 and any k ≥ 2, the contact manifold (Σ_g × S³, D_k) has 2-dimensional Sasaki cones κ(D_k, J_{2m}) with m = 1, · · · k − 1 with regular rays of extremal non-CSC Sasakian structures.
- For any choice of genus g = 20, 21, ... there exists a k_g ∈ {2, 3, 4...} such that for any choice of k = k_g, k_g + 1, ..., and any choice of transverse complex structures J_{2m} with m = 1, ..., k − 1 on (Σ_g × S³, D_k), the regular ray in the Sasaki cone κ(D_k, J_{2m}) admits an extremal representative with non-constant scalar curvature.
- For any choice of genus g = 20, 21, ... there exist at least one pair (k, m) with $1 \le m \le k 1$ such that the regular ray in the Sasaki cone $\kappa(\mathcal{D}_k, J_{2m})$ admits no extremal representative.

• The positive integer k determines the isotopy class of the contact structures \mathcal{D}_k .

- The positive integer k determines the isotopy class of the contact structures \mathcal{D}_k .
- The existence of an extra Hamiltonian Killing vector field gives 2-dimensional Sasaki cone $\kappa(\mathcal{D}_k, J_n)$.

- The positive integer k determines the isotopy class of the contact structures \mathcal{D}_k .
- The existence of an extra Hamiltonian Killing vector field gives 2-dimensional Sasaki cone $\kappa(\mathcal{D}_k, J_n)$.
- The quotient space of the S^1 -action generated by any quasi-regular Reeb vector field $\xi_n \in \kappa(\mathcal{D}_k, J_n)$ is an orbifold pseudo-Hirzebruch surface $(S_n, \Delta_{p,q})$ with a branch divisor $\Delta_{p,q}$ consisting of the zero and infinity sections of the projective bundle with ramification indices p, q, respectively.

- The positive integer k determines the isotopy class of the contact structures \mathcal{D}_k .
- The existence of an extra Hamiltonian Killing vector field gives 2-dimensional Sasaki cone $\kappa(\mathcal{D}_k, J_n)$.
- The quotient space of the S^1 -action generated by any quasi-regular Reeb vector field $\xi_n \in \kappa(\mathcal{D}_k, J_n)$ is an orbifold pseudo-Hirzebruch surface $(S_n, \Delta_{p,q})$ with a branch divisor $\Delta_{p,q}$ consisting of the zero and infinity sections of the projective bundle with ramification indices p, q, respectively.
- Extremal (CSC) Sasakian structures on Σ_g × S³ correspond to extremal (CSC) Kähler structures on (S_n, Δ_{p,q}).

- The positive integer k determines the isotopy class of the contact structures \mathcal{D}_k .
- The existence of an extra Hamiltonian Killing vector field gives 2-dimensional Sasaki cone $\kappa(\mathcal{D}_k, J_n)$.
- The quotient space of the S^1 -action generated by any quasi-regular Reeb vector field $\xi_n \in \kappa(\mathcal{D}_k, J_n)$ is an orbifold pseudo-Hirzebruch surface $(S_n, \Delta_{p,q})$ with a branch divisor $\Delta_{p,q}$ consisting of the zero and infinity sections of the projective bundle with ramification indices p, q, respectively.
- Extremal (CSC) Sasakian structures on Σ_g × S³ correspond to extremal (CSC) Kähler structures on (S_n, Δ_{p,q}).
- Irregular rays are handled by the Openness Theorem.

- The positive integer k determines the isotopy class of the contact structures \mathcal{D}_k .
- The existence of an extra Hamiltonian Killing vector field gives 2-dimensional Sasaki cone $\kappa(\mathcal{D}_k, J_n)$.
- The quotient space of the S^1 -action generated by any quasi-regular Reeb vector field $\xi_n \in \kappa(\mathcal{D}_k, J_n)$ is an orbifold pseudo-Hirzebruch surface $(S_n, \Delta_{p,q})$ with a branch divisor $\Delta_{p,q}$ consisting of the zero and infinity sections of the projective bundle with ramification indices p, q, respectively.
- Extremal (CSC) Sasakian structures on Σ_g × S³ correspond to extremal (CSC) Kähler structures on (S_n, Δ_{p,q}).
- Irregular rays are handled by the Openness Theorem.
- Easy for the local product structures n = 0 case.

- The positive integer k determines the isotopy class of the contact structures \mathcal{D}_k .
- The existence of an extra Hamiltonian Killing vector field gives 2-dimensional Sasaki cone $\kappa(\mathcal{D}_k, J_n)$.
- The quotient space of the S^1 -action generated by any quasi-regular Reeb vector field $\xi_n \in \kappa(\mathcal{D}_k, J_n)$ is an orbifold pseudo-Hirzebruch surface $(S_n, \Delta_{p,q})$ with a branch divisor $\Delta_{p,q}$ consisting of the zero and infinity sections of the projective bundle with ramification indices p, q, respectively.
- Extremal (CSC) Sasakian structures on Σ_g × S³ correspond to extremal (CSC) Kähler structures on (S_n, Δ_{p,q}).
- Irregular rays are handled by the Openness Theorem.
- Easy for the local product structures n = 0 case.
- For *n* > 0, the work of Apostolov, Calderbank, Gauduchon, Tønnesen-Friedman on Hamiltonian 2-forms shows that extremality boils down to: the transverse Kähler structure is

 $g_{\mathcal{D}} = \frac{1+r_{\mathfrak{z}}}{r}g_{\Sigma_g} + \frac{d_{\mathfrak{z}}^2}{\Theta(\mathfrak{z})} + \Theta(\mathfrak{z})\theta^2$ where θ is a connection 1-form, $d\theta = \omega_{\Sigma_g}$ the standard area form, 0 < r < 1, $\Theta(\mathfrak{z}) > 0$ and $-1 < \mathfrak{z} < 1$, $\Theta(\pm 1) = 0$, $\Theta'(-1) = \frac{2}{q}$, $\Theta'(1) = -\frac{2}{p}$. When $\Theta(\mathfrak{z})(1+r_{\mathfrak{z}})$ is a 4th order polynomial we get extremal Kähler transverse metrics; hence, extremal Sasaki metrics.

- The positive integer k determines the isotopy class of the contact structures \mathcal{D}_k .
- The existence of an extra Hamiltonian Killing vector field gives 2-dimensional Sasaki cone $\kappa(\mathcal{D}_k, J_n)$.
- The quotient space of the S^1 -action generated by any quasi-regular Reeb vector field $\xi_n \in \kappa(\mathcal{D}_k, J_n)$ is an orbifold pseudo-Hirzebruch surface $(S_n, \Delta_{p,q})$ with a branch divisor $\Delta_{p,q}$ consisting of the zero and infinity sections of the projective bundle with ramification indices p, q, respectively.
- Extremal (CSC) Sasakian structures on Σ_g × S³ correspond to extremal (CSC) Kähler structures on (S_n, Δ_{p,q}).
- Irregular rays are handled by the Openness Theorem.
- Easy for the local product structures n = 0 case.
- For *n* > 0, the work of Apostolov, Calderbank, Gauduchon, Tønnesen-Friedman on Hamiltonian 2-forms shows that extremality boils down to: the transverse Kähler structure is

 $g_{\mathcal{D}} = \frac{1+r_3}{r}g_{\Sigma g} + \frac{d_3^2}{\Theta(3)} + \Theta(\mathfrak{z})\theta^2$ where θ is a connection 1-form, $d\theta = \omega_{\Sigma g}$ the standard area form, 0 < r < 1, $\Theta(\mathfrak{z}) > 0$ and $-1 < \mathfrak{z} < 1$, $\Theta(\pm 1) = 0$, $\Theta'(-1) = \frac{2}{q}$, $\Theta'(1) = -\frac{2}{p}$. When $\Theta(\mathfrak{z})(1 + r\mathfrak{z})$ is a 4th order polynomial we get extremal Kähler transverse metrics; hence, extremal Sasaki metrics.

 Demanding a 3rd order polynomial one shows that each Sasaki cone has a unique CSC structure.

- The positive integer k determines the isotopy class of the contact structures \mathcal{D}_k .
- The existence of an extra Hamiltonian Killing vector field gives 2-dimensional Sasaki cone $\kappa(\mathcal{D}_k, J_n)$.
- The quotient space of the S^1 -action generated by any quasi-regular Reeb vector field $\xi_n \in \kappa(\mathcal{D}_k, J_n)$ is an orbifold pseudo-Hirzebruch surface $(S_n, \Delta_{p,q})$ with a branch divisor $\Delta_{p,q}$ consisting of the zero and infinity sections of the projective bundle with ramification indices p, q, respectively.
- Extremal (CSC) Sasakian structures on Σ_g × S³ correspond to extremal (CSC) Kähler structures on (S_n, Δ_{p,q}).
- Irregular rays are handled by the Openness Theorem.
- Easy for the local product structures n = 0 case.
- For *n* > 0, the work of Apostolov, Calderbank, Gauduchon, Tønnesen-Friedman on Hamiltonian 2-forms shows that extremality boils down to: the transverse Kähler structure is

 $g_{\mathcal{D}} = \frac{1+r_{\mathfrak{z}}}{r}g_{\Sigma_{g}} + \frac{d_{\mathfrak{z}}^{2}}{\Theta(\mathfrak{z})} + \Theta(\mathfrak{z})\theta^{2} \text{ where } \theta \text{ is a connection 1-form, } d\theta = \omega_{\Sigma_{g}} \text{ the standard area form, } 0 < r < 1, \Theta(\mathfrak{z}) > 0 \text{ and } -1 < \mathfrak{z} < 1, \Theta(\pm 1) = 0, \Theta'(-1) = \frac{2}{a}, \Theta'(1) = -\frac{2}{a}. \text{ When } \theta = 0$

 $\Theta(\mathfrak{z})(1+r_{\mathfrak{z}})$ is a 4th order polynomial we get extremal Kähler transverse metrics; hence, extremal Sasaki metrics.

- Demanding a 3rd order polynomial one shows that each Sasaki cone has a unique CSC structure.
- The distinct Sasaki cones in the bouquet \mathfrak{B}_k correspond to distinct conjugacy classes of maximal tori in $\mathfrak{Con}(\mathcal{D}_k)$. The classes corresponding to $m = 0, \dots, k-1$ are shown to be distinct using the work of Buse on equivariant Gromov-Witten invariants.

- The positive integer k determines the isotopy class of the contact structures \mathcal{D}_k .
- The existence of an extra Hamiltonian Killing vector field gives 2-dimensional Sasaki cone $\kappa(\mathcal{D}_k, J_n)$.
- The quotient space of the S¹-action generated by any quasi-regular Reeb vector field ξ_n ∈ κ(D_k, J_n) is an orbifold pseudo-Hirzebruch surface (S_n, Δ_{p,q}) with a branch divisor Δ_{p,q} consisting of the zero and infinity sections of the projective bundle with ramification indices p, q, respectively.
- Extremal (CSC) Sasakian structures on Σ_g × S³ correspond to extremal (CSC) Kähler structures on (S_n, Δ_{p,q}).
- Irregular rays are handled by the Openness Theorem.
- Easy for the local product structures n = 0 case.
- For *n* > 0, the work of Apostolov, Calderbank, Gauduchon, Tønnesen-Friedman on Hamiltonian 2-forms shows that extremality boils down to: the transverse Kähler structure is

 $g_{\mathcal{D}} = \frac{1+r_{\mathfrak{z}}}{r}g_{\Sigma_g} + \frac{d_{\mathfrak{z}}^2}{\Theta(\mathfrak{z})} + \Theta(\mathfrak{z})\theta^2$ where θ is a connection 1-form, $d\theta = \omega_{\Sigma_g}$ the standard area

form, 0 < r < 1, $\Theta(\mathfrak{z}) > 0$ and $-1 < \mathfrak{z} < 1$, $\Theta(\pm 1) = 0$, $\Theta'(-1) = \frac{2}{q}$, $\Theta'(1) = -\frac{2}{p}$. When

 $\Theta(\mathfrak{z})(1 + r_{\mathfrak{z}})$ is a 4th order polynomial we get extremal Kähler transverse metrics; hence, extremal Sasaki metrics.

- Demanding a 3rd order polynomial one shows that each Sasaki cone has a unique CSC structure.
- The distinct Sasaki cones in the bouquet \mathfrak{B}_k correspond to distinct conjugacy classes of maximal tori in $\mathfrak{Con}(\mathcal{D}_k)$. The classes corresponding to $m = 0, \dots, k-1$ are shown to be distinct using the work of Buşe on equivariant Gromov-Witten invariants.
- Further analysis of the 4th order polynomial proves the remaining statements of the theorem.

- The positive integer k determines the isotopy class of the contact structures \mathcal{D}_k .
- The existence of an extra Hamiltonian Killing vector field gives 2-dimensional Sasaki cone $\kappa(\mathcal{D}_k, J_n)$.
- The quotient space of the S^1 -action generated by any quasi-regular Reeb vector field $\xi_n \in \kappa(\mathcal{D}_k, J_n)$ is an orbifold pseudo-Hirzebruch surface $(S_n, \Delta_{p,q})$ with a branch divisor $\Delta_{p,q}$ consisting of the zero and infinity sections of the projective bundle with ramification indices p, q, respectively.
- Extremal (CSC) Sasakian structures on Σ_g × S³ correspond to extremal (CSC) Kähler structures on (S_n, Δ_{p,q}).
- Irregular rays are handled by the Openness Theorem.
- Easy for the local product structures n = 0 case.
- For *n* > 0, the work of Apostolov, Calderbank, Gauduchon, Tønnesen-Friedman on Hamiltonian 2-forms shows that extremality boils down to: the transverse Kähler structure is

 $g_{\mathcal{D}} = \frac{1+r_{\mathfrak{z}}}{r}g_{\Sigma_g} + \frac{d_{\mathfrak{z}}^2}{\Theta(\mathfrak{z})} + \Theta(\mathfrak{z})\theta^2$ where θ is a connection 1-form, $d\theta = \omega_{\Sigma_g}$ the standard area

form, 0 < r < 1, $\Theta(\mathfrak{z}) > 0$ and $-1 < \mathfrak{z} < 1$, $\Theta(\pm 1) = 0$, $\Theta'(-1) = \frac{2}{q}$, $\Theta'(1) = -\frac{2}{p}$. When

 $\Theta(\mathfrak{z})(1 + r_{\mathfrak{z}})$ is a 4th order polynomial we get extremal Kähler transverse metrics; hence, extremal Sasaki metrics.

- Demanding a 3rd order polynomial one shows that each Sasaki cone has a unique CSC structure.
- The distinct Sasaki cones in the bouquet \mathfrak{B}_k correspond to distinct conjugacy classes of maximal tori in $\mathfrak{Con}(\mathcal{D}_k)$. The classes corresponding to $m = 0, \dots, k-1$ are shown to be distinct using the work of Buşe on equivariant Gromov-Witten invariants.
- Further analysis of the 4th order polynomial proves the remaining statements of the theorem.

• In the first item the CSC structure is regular when m = 0. It is irregular in most cases. It is quasi-regular when the real solution of a certain 3rd order polyomial is rational.

- In the first item the CSC structure is regular when m = 0. It is irregular in most cases. It is quasi-regular when the real solution of a certain 3rd order polyomial is rational.
- Similar results hold for the non-trivial bundle $\sum_{g} \tilde{\times} S^3$.

- In the first item the CSC structure is regular when m = 0. It is irregular in most cases. It is quasi-regular when the real solution of a certain 3rd order polyomial is rational.
- Similar results hold for the non-trivial bundle $\sum_{g} \tilde{\times} S^3$.
- The construction can be 'twisted' by reducible representations of the fundamental group $\pi_1(\Sigma_g)$.

- In the first item the CSC structure is regular when m = 0. It is irregular in most cases. It is quasi-regular when the real solution of a certain 3rd order polyomial is rational.
- Similar results hold for the non-trivial bundle $\sum_{g} \tilde{\times} S^3$.
- The construction can be 'twisted' by reducible representations of the fundamental group $\pi_1(\Sigma_g)$.
- The irreducible representations of π₁(Σ_g) give 1-dimensional Sasaki cones. They arise from stable rank two vector bundles and have CSC Sasaki metrics.

- In the first item the CSC structure is regular when m = 0. It is irregular in most cases. It is quasi-regular when the real solution of a certain 3rd order polyomial is rational.
- Similar results hold for the non-trivial bundle $\sum_{g} \tilde{\times} S^3$.
- The construction can be 'twisted' by reducible representations of the fundamental group $\pi_1(\Sigma_g)$.
- The irreducible representations of π₁(Σ_g) give 1-dimensional Sasaki cones. They arise from stable rank two vector bundles and have CSC Sasaki metrics.
- Some of the same type of results can be obtained on 5-manifolds whose fundamental group is a non-Abelian extension of $\pi_1(\Sigma_g)$.

Also joint work with C. Tønnesen-Friedman

- Also joint work with C. Tønnesen-Friedman
- Represent a homology 3-sphere M_a^3 as the link of a complete intersection $L(a_0, \dots, a_n)$ with $a_i > 1$ and pairwise relatively prime.

- Also joint work with C. Tønnesen-Friedman
- Represent a homology 3-sphere M_a^3 as the link of a complete intersection $L(a_0, \dots, a_n)$ with $a_i > 1$ and pairwise relatively prime.
- Let N be a simply connected regular Sasakian manifold.

- Also joint work with C. Tønnesen-Friedman
- Represent a homology 3-sphere M_a^3 as the link of a complete intersection $L(a_0, \dots, a_n)$ with $a_i > 1$ and pairwise relatively prime.
- Let N be a simply connected regular Sasakian manifold.
- Then the join $M_a^3 \star_{1,I} N$ is a Sasakian manifold with perfect fundamental group.

- Also joint work with C. Tønnesen-Friedman
- Represent a homology 3-sphere M_a^3 as the link of a complete intersection $L(a_0, \dots, a_n)$ with $a_i > 1$ and pairwise relatively prime.
- Let N be a simply connected regular Sasakian manifold.
- Then the join $M_a^3 \star_{1,J} N$ is a Sasakian manifold with perfect fundamental group.
- If N has an extremal Sasaki metric so does $M_a^3 \star_{1,l} N$.

- Also joint work with C. Tønnesen-Friedman
- Represent a homology 3-sphere M_a^3 as the link of a complete intersection $L(a_0, \dots, a_n)$ with $a_i > 1$ and pairwise relatively prime.
- Let N be a simply connected regular Sasakian manifold.
- Then the join $M_a^3 \star_{1,I} N$ is a Sasakian manifold with perfect fundamental group.
- If N has an extremal Sasaki metric so does $M_a^3 \star_{1,l} N$.
- If N has an CSC Sasaki metric so does $M_a^3 \star_{1,1} N$.

- Also joint work with C. Tønnesen-Friedman
- Represent a homology 3-sphere M_a^3 as the link of a complete intersection $L(a_0, \dots, a_n)$ with $a_i > 1$ and pairwise relatively prime.
- Let *N* be a simply connected regular Sasakian manifold.
- Then the join $M_a^3 \star_{1,l} N$ is a Sasakian manifold with perfect fundamental group.
- If N has an extremal Sasaki metric so does $M_a^3 \star_{1,1} N$.
- If N has an CSC Sasaki metric so does $M_a^3 \star_{1,1} N$.
- If $L(a_0, \dots, a_n) \neq L(2, 3, 5)$ then $M_a^3 \star_{1, I} N$ has an infinite perfect fundamental group.

- Also joint work with C. Tønnesen-Friedman
- Represent a homology 3-sphere M_a^3 as the link of a complete intersection $L(a_0, \dots, a_n)$ with $a_i > 1$ and pairwise relatively prime.
- Let N be a simply connected regular Sasakian manifold.
- Then the join $M_a^3 \star_{1,l} N$ is a Sasakian manifold with perfect fundamental group.
- If N has an extremal Sasaki metric so does M³_a *_{1,1} N.
- If N has an CSC Sasaki metric so does $M_a^3 \star_{1,1} N$.
- If $L(a_0, \dots, a_n) \neq L(2, 3, 5)$ then $M_a^3 \star_{1, I} N$ has an infinite perfect fundamental group.
- $M_a^3 = L(2, 3, 5)$ is the Poincaré sphere S^3/\mathbb{I}^* and $S^3/\mathbb{I}^* \star_{1,l} N$ gives a Sasaki-Einstein manifold with perfect fundamental group for suitable choices of *l* and *N*.

- Also joint work with C. Tønnesen-Friedman
- Represent a homology 3-sphere M_a^3 as the link of a complete intersection $L(a_0, \dots, a_n)$ with $a_i > 1$ and pairwise relatively prime.
- Let N be a simply connected regular Sasakian manifold.
- Then the join $M_a^3 \star_{1,l} N$ is a Sasakian manifold with perfect fundamental group.
- If N has an extremal Sasaki metric so does $M_a^3 \star_{1,1} N$.
- If N has an CSC Sasaki metric so does $M_a^3 \star_{1,1} N$.
- If $L(a_0, \dots, a_n) \neq L(2, 3, 5)$ then $M_a^3 \star_{1,I} N$ has an infinite perfect fundamental group.
- M³_a = L(2, 3, 5) is the Poincaré sphere S³/I[∗] and S³/I[∗] ★_{1,l} N gives a Sasaki-Einstein manifold with perfect fundamental group for suitable choices of l and N.
- For each odd dimension \geq 3 there exists a countable infinity of Sasakian manifolds with a perfect fundamentfinial group which admit CSC Sasaki metrics. Furthermore, there is an infinite number of such Sasakian manifolds that have the integral cohomology ring of $S^2 \times S^{2r+1}$.
Sasakian Manifolds with Perfect fundamental group

- Also joint work with C. Tønnesen-Friedman
- Represent a homology 3-sphere M_a^3 as the link of a complete intersection $L(a_0, \dots, a_n)$ with $a_i > 1$ and pairwise relatively prime.
- Let N be a simply connected regular Sasakian manifold.
- Then the join $M_a^3 \star_{1,I} N$ is a Sasakian manifold with perfect fundamental group.
- If N has an extremal Sasaki metric so does $M_a^3 \star_{1,l} N$.
- If N has an CSC Sasaki metric so does $M_a^3 \star_{1,1} N$.
- If $L(a_0, \dots, a_n) \neq L(2, 3, 5)$ then $M_a^3 \star_{1,I} N$ has an infinite perfect fundamental group.
- $M_a^3 = L(2, 3, 5)$ is the Poincaré sphere S^3/\mathbb{I}^* and $S^3/\mathbb{I}^* \star_{1,l} N$ gives a Sasaki-Einstein manifold with perfect fundamental group for suitable choices of *l* and *N*.
- For each odd dimension \geq 3 there exists a countable infinity of Sasakian manifolds with a perfect fundamentfinial group which admit CSC Sasaki metrics. Furthermore, there is an infinite number of such Sasakian manifolds that have the integral cohomology ring of $S^2 \times S^{2r+1}$.
- There exist a countably infinite number of aspherical contact 5-manifolds with perfect fundamental group and the integral cohomology ring of S² × S³ that admit CSC Sasaki metrics. Moreover, there are such manifolds that admit a ray of Sasaki-η-Einstein metrics (hence, Lorentzian Sasaki-Einstein metrics).

References

- 1. Extremal Sasakian Metrics on S³-bundles over S², Math. Res. Lett. 18 (2011), no. 01, 181-189.
- 2. Maximal Tori in Contactomorphism Groups (to appear in Diff. Geom and Appl.) Math arXiv:1003.1903.
- 3. Completely Integrable Contact Hamiltonian Systems and Toric Contact Structures on $S^2 \times S^3$, SIGMA Symmetry Integrability Geom. Methods Appl 7 (2011),058, 22.
- 4. (with J. Pati) On the Equivalence Problem for Toric Contact Structures on S^3 -bundles over S^2 (submitted for publication) Math arXiv:1204.2209.
- 5. (with C. Tønnesen-Friedman) Extremal Sasakian Geometry on $T^2 \times S^3$ and Related Manifolds (to appear in Composito Mathematica) Math arXiv:1108.2005.
- 6 (with C. Tønnesen-Friedman) Sasakian Manifolds with Perfect Fundamental Groups, African Diaspora Journal of Mathematics 14 (2) (2012), 98-117.
- 7. (with C. Tønnesen-Friedman) Extremal Sasakian Geometry on *S*³-bundles over Riemann Surfaces (In preparation)

General Reference: C.P. B- and K. Galicki, Sasakian Geometry, Oxford University Press, 2008.