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Contact manifold

• Compact Contact Manifold M.

A contact 1-form η such that
η ∧ (dη)n 6= 0.

defines a contact structure
η′ ∼ η ⇐⇒ η′ = fη

for some f 6= 0, take f > 0. or equivalently a codimension 1 subbundle D = Ker η of TM with
a conformal symplectic structure.
A contact invariant: the first Chern class c1(D)

Unique vector field ξ, called the Reeb vector field, satisfying

ξcη = 1, ξcdη = 0.

The characteristic foliation Fξ: It is called quasi-regular if each leaf of Fξ passes through
any nbd U at most k times. It is regular if k = 1; otherwise, it is irregular.
Quasi-regularity is strong, most contact 1-forms are irregular.
Contact bundle D→ choose almost complex structure J extend to an endomorphism Φ
with Φξ = 0 with a compatible metric

g = dη ◦ (Φ⊗ 1l) + η ⊗ η

Quadruple S = (ξ, η,Φ, g) called contact metric structure
The pair (D, J) is a strictly pseudo-convex almost CR structure (sψCR structure).
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Sasakian manifold

Definition
The contact metric structure S = (ξ, η,Φ, g) is K-contact if Lξg = 0 (or LξΦ = 0). It is Sasakian
if in addition (D, J) is integrable and the Transverse Metric gD is Kähler (Transverse holonomy
U(n)). In the latter case we say that the contact structure D is of Sasaki type.

Cone (Symplectization): C(M) = M × R+ with symplectic form d(r2η), r ∈ R+.

Cone Metric gC = dr2 + r2g

gC is Kähler ⇐⇒ g is Sasaki ⇐⇒ gD is Kähler.

Nested structures: Sasakian ⊂ sψCR ⊂ Contact
Sasakian structure gives pseudo convex CR structure (D, J) and a transverse holomorphic
structure (ξ, J̄). The former fixes the contact structure while the latter fixes the characteristic
foliation.

Transverse homothety: If S = (ξ, η,Φ, g) is a Sasakian structure, so is
Sa = (a−1ξ, aη,Φ, ga) for every a ∈ R+ with ga = ag + (a2 − a)η ⊗ η. So Sasakian
structures come in rays.
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Problems

Problems:

Given a contact manifold (M,D) of Sasaki type:

Determine the compatible Sasakian CR structures (D, J).

Determine the space of Sasakian structures compatible with D.

Determine the (pre)-moduli space of extremal Sasakian structures

Determine those of constant scalar curvature (CSC).
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Symmetries

Symmetries
Contactomorphism Group

Con(M,D) = {φ ∈ Diff(M) | φ∗D ⊂ D}.

Strict Contactomorphism Group

Con(M, η) = {φ ∈ Diff(M) | φ∗η = η} ⊂ Con(M,D).

CR transformation group

CR(D, J) = {φ ∈ Con(M,D) | φ∗J = Jφ∗}

Sasakian automorphism group

Aut(S) = {φ ∈ CR(D, J) | φ∗ξ = ξ, φ∗g = g}.

maximal torus with 0 ≤ k ≤ n + 1

CR(D, J)
↗ ↘

T k ⊂ Aut(S) Con(M,D)
↘ ↗

Con(M, η)

.
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Sasaki cones and bouquets

Sasaki cones and bouquets

Given a contact structure D of Sasaki type

space of compatible CR structures J(D)

a map Q : J(D)→ {conjugacy classes of maximal tori in Con(M,D)}
unreduced Sasaki cone: t+

k (D, J) = {ξ′ ∈ tk | η(ξ′) > 0, } s.t. S = (ξ, η,Φ, g) ∈ (D, J) is
Sasakian.

Note that when (D, J) is fixed, a choice of ξ′ ∈ t+
k determines the Sasakian structure S

uniquely.

finite dim’l moduli of Sasakian structures within CR structure, the Sasaki cone
κ(D, J) = t+

k (D, J)/W(D, J) where W is the Weyl group of CR(D, J).

If M is Sasakian manifold with dim M = 2n + 1 then 1 ≤ dimκ(D, J) ≤ n + 1.

When dimκ(D, J) = n + 1 we say that M is toric Sasakian.

A given D can have many Sasaki cones κ(D, Jα) labelled by distinct complex structures. Get
bouquet

[
α

κ(D, Jα) of Sasaki cones.

A bouquet consisting of N Sasaki cones is called an N-bouquet, denoted by BN . The Sasaki
cones in an N-bouquet can have different dimension.

The distinct Sasaki cones κ(D, Jα)’s correspond to distinct conjugacy classes of tori in
Con(M,D). They are distinguished by equivariant Gromov-Witten invariants.
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The Join Construction

Join Construction: Given quasi-regular Sasakian manifolds πi : Mi−−−→ Zi for i = 1, 2.

Form (l1, l2)-join π : M1 ?l1,l2 M2−−→ Z1 ×Z2 as an S1-orbibundle (B-,Galicki,Ornea).

M1 ?l1,l2 M2 has a natural quasi-regular Sasakian structure Sl1,l2 for all relatively prime
positive integers l1, l2. Fixing l1, l2 fixes the contact orbifold. It is a smooth manifold iff
gcd(υ1l2, υ2l1) = 1 where υi is the order of orbifold Zi .

The dimension of M1 ?l1,l2 M2 is Dim M1 + Dim M2 − 1.

The join M1 ?l1,l2 M2 has reducible transverse holonomy.

If Dim κ(Di , Ji ) = ki , then Dim κ(D1 + D2, J1 + J2) = k1 + k2 − 1.

In particular, if Mi are toric Sasakian manifolds, then so is M1 ?l1,l2 M2.
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Extremal Sasakian metrics

Extremal Sasakian metrics (B-Galicki-Simanca)

Sasakian structure S = (ξ, η,Φ, g) with scalar curvature sg .

Calabi-Sasaki Energy functional E(g) =

Z
M

s2
gdµg ,

Deform contact structure η 7→ η + tdcϕ within its isotopy class where ϕ is basic.

Variation gives critical point of E(g) ⇐⇒ ∂#
g sg is transversely holomorphic.

We say that g is extremal if it is critical point of E .

g is extremal Sasaki metric ⇐⇒ the transverse metric gD is extremal Kähler metric.

Important special case: constant scalar curvature Sasaki (CSC) metrics.

If S = (ξ, η,Φ, g) is extremal (or CSC) then so is Sa = (a−1ξ, aη,Φ, ga) for any a > 0. So
(extremal (or CSC) Sasaki metrics occur in rays)

If Si = (ξi , ηi ,Φi , gi ) is extremal (or CSC) for each i = 1, 2, so is the join Sl1,l2 .

Calabi: Extremal metrics have maximal symmetry.

Every 3-dimensional Sasakian structure admits an extremal representative.

The Sasaki-Futaki invariant F(X) =

Z
M

X(ψg)dµg where X is transversely holomorphic and

ψg is the Ricci potential satisfying ρT = ρT
h + i∂∂̄ψg where ρT is the transverse Ricci form

and ρT
h is its harmonic part. An extremal Sasaki metric g has constant scalar curvature if and

only if F = 0.
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The Extremal Set

Definition
For a fixed Sasaki cone κ(D, J) define the extremal subset e(D, J) such that there is a
deformation with an extremal representative.

Openness Theorem: e(D, J) is open in κ(D, J) (B-,Galicki,Simanca).
e(D, J) is conical in the sense that if S ∈ e(D, J) so is Sa for all a > 0.

Open Question
Is e(D, J) always connected?

Question
When is e(D, J) = κ(D, J)?

There are many if dimκ(D, J) = 1. Enormous number of SE metrics on certain manifolds.
Standard CR structure on S2n+1 which is toric (dim κ(D, J) = n + 1.) Here
e(D, J) = κ(D, J), but only one ray has (CSC) (which also has constant Φ-sectional
curvature c > −3), and only the round sphere (c = 1) is Sasaki-Einstein.
A noncompact example with e(D, J) = κ(D, J) is the Heisenberg group.
All 2-dimensional Sasaki cones on S3-bundles over T 2 obtained by our construction have
e(D, J) = κ(D, J) (B-,Tønnesen-Friedman).
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Sasakian Geometry on S3-bundles over Riemann Surfaces Σg

Sasakian structures on S3-bundles over a Riemann surface Σg of genus g.

We assume g > 0 here. The g = 0 gives toric Sasakian structures on S3-bundles over S2

considered in B-,Pati. (Also E. Legendre).

Apply join: M1 is a circle bundle M3
g over the Riemann surface Z1 = Σg , and M2 is S3 with a

weighted contact form ηw with w = (w1,w2), and S3
w = S3 is an orbibundle over the weighted

projective space Z2 = CP(w1,w2). This gives M5 = M3
g ?l,1 S3

w which is an S3-bundle over
the Riemann surface Σg .

This Sasakian structure has an extremal representative ray which we call the w-ray in its
2-dimensional Sasaki cone labeled by positive integers (lw1, lw2) and inherited from the
Sasaki cone of S3.

Exactly two S3-bundles over Σg determined by the second Stiefel-Whitney class
w2(M5) ≡ c1(D) mod 2: the trivial bundle M5 = Σg × S3 if c1(D) is even, and the nontrivial
Σg×̃S3 if c1(D) is odd.

w2(M5) ≡ l(w1 + w2) mod 2.

We can label the contact structures Dk by a positive integer k and the CR structure by
(Dk , Jm) with m = 0, . . . , k − 1.

k =

(
1
2 l(w1 + w2), if l(w1 + w2) is even;
1
2 (l(w1 + w2)− 1) if l(w1 + w2) is odd.

m =

(
1
2 l(w1 − w2), if l(w1 + w2) is even;
1
2 (l(w1 − w2)− 1) if l(w1 + w2) is odd.
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Sasaki Cones on S3-bundles over Riemann Surfaces

Each Sasaki cone κ(Dk , Jm) admits a regular Sasakian structure whose base space is a
pseudo-Hirzebruch surface Sn, that is, a ruled surface of genus g ≥ 1 with n = 2m or 2m + 1.

Sn can be represented by the projectivization P(1 + Ln) where Ln is a line bundle of degree
n = l(w1 − w2). We can always take w1 ≥ w2.

We consider the case n = 2m in which case our 5-manifold is Σg × S3.

Theorem (B-,Tønnesen-Friedman)

For any genus g ≥ 1 and for each positive integer k, the contact manifold (Σg × S3,Dk ) has a k-bouquet
Bk of 2-dimensional Sasaki cones κ(Dk , J2m) for m = 0, . . . , k − 1 with a unique ray of CSC Sasakian
structures in each cone.

In each Sasaki cone κ(Dk , J2m) the CSC ray and the w ray belong to the same connected component of
e(Dk , J2m).

If g ≤ 1 + 3(k − m), then e(Dk , J2m) = κ(Dk , J2m).

For any genus 1 ≤ g ≤ 19 and any k ≥ 2, the contact manifold (Σg × S3,Dk ) has 2-dimensional Sasaki
cones κ(Dk , J2m) with m = 1, · · · k − 1 with regular rays of extremal non-CSC Sasakian structures.

For any choice of genus g = 20, 21, ... there exists a kg ∈ {2, 3, 4...} such that for any choice of
k = kg , kg + 1, ..., and any choice of transverse complex structures J2m with m = 1, ..., k − 1 on
(Σg × S3,Dk ), the regular ray in the Sasaki cone κ(Dk , J2m) admits an extremal representative with
non-constant scalar curvature.

For any choice of genus g = 20, 21, ... there exist at least one pair (k,m) with 1 ≤ m ≤ k − 1 such that
the regular ray in the Sasaki cone κ(Dk , J2m) admits no extremal representative.
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Outline of proof:

The positive integer k determines the isotopy class of the contact structures Dk .

The existence of an extra Hamiltonian Killing vector field gives 2-dimensional Sasaki cone
κ(Dk , Jn).
The quotient space of the S1-action generated by any quasi-regular Reeb vector field
ξn ∈ κ(Dk , Jn) is an orbifold pseudo-Hirzebruch surface (Sn,∆p,q) with a branch divisor ∆p,q
consisting of the zero and infinity sections of the projective bundle with ramification indices
p, q, respectively.
Extremal (CSC) Sasakian structures on Σg × S3 correspond to extremal (CSC) Kähler
structures on (Sn,∆p,q).
Irregular rays are handled by the Openness Theorem.
Easy for the local product structures n = 0 case.
For n > 0, the work of Apostolov, Calderbank, Gauduchon, Tønnesen-Friedman on
Hamiltonian 2-forms shows that extremality boils down to: the transverse Kähler structure is

gD = 1+rz
r gΣg + dz2

Θ(z)
+ Θ(z)θ2 where θ is a connection 1-form, dθ = ωΣg the standard area

form, 0 < r < 1, Θ(z) > 0 and −1 < z < 1,Θ(±1) = 0,Θ′(−1) = 2
q ,Θ

′(1) = − 2
p . When

Θ(z)(1 + rz) is a 4th order polynomial we get extremal Kähler transverse metrics; hence,
extremal Sasaki metrics.
Demanding a 3rd order polynomial one shows that each Sasaki cone has a unique CSC
structure.
The distinct Sasaki cones in the bouquet Bk correspond to distinct conjugacy classes of
maximal tori in Con(Dk ). The classes corresponding to m = 0, · · · , k − 1 are shown to be
distinct using the work of Buşe on equivariant Gromov-Witten invariants.
Further analysis of the 4th order polynomial proves the remaining statements of the theorem.
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distinct using the work of Buşe on equivariant Gromov-Witten invariants.
Further analysis of the 4th order polynomial proves the remaining statements of the theorem.

Charles Boyer (University of New Mexico) The Join Construction & Extremal Sasakian Geometry 13 / 16



Outline of proof:

The positive integer k determines the isotopy class of the contact structures Dk .
The existence of an extra Hamiltonian Killing vector field gives 2-dimensional Sasaki cone
κ(Dk , Jn).
The quotient space of the S1-action generated by any quasi-regular Reeb vector field
ξn ∈ κ(Dk , Jn) is an orbifold pseudo-Hirzebruch surface (Sn,∆p,q) with a branch divisor ∆p,q
consisting of the zero and infinity sections of the projective bundle with ramification indices
p, q, respectively.
Extremal (CSC) Sasakian structures on Σg × S3 correspond to extremal (CSC) Kähler
structures on (Sn,∆p,q).
Irregular rays are handled by the Openness Theorem.

Easy for the local product structures n = 0 case.
For n > 0, the work of Apostolov, Calderbank, Gauduchon, Tønnesen-Friedman on
Hamiltonian 2-forms shows that extremality boils down to: the transverse Kähler structure is

gD = 1+rz
r gΣg + dz2

Θ(z)
+ Θ(z)θ2 where θ is a connection 1-form, dθ = ωΣg the standard area

form, 0 < r < 1, Θ(z) > 0 and −1 < z < 1,Θ(±1) = 0,Θ′(−1) = 2
q ,Θ

′(1) = − 2
p . When

Θ(z)(1 + rz) is a 4th order polynomial we get extremal Kähler transverse metrics; hence,
extremal Sasaki metrics.
Demanding a 3rd order polynomial one shows that each Sasaki cone has a unique CSC
structure.
The distinct Sasaki cones in the bouquet Bk correspond to distinct conjugacy classes of
maximal tori in Con(Dk ). The classes corresponding to m = 0, · · · , k − 1 are shown to be
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Remarks about Theorem

In the first item the CSC structure is regular when m = 0. It is irregular in most cases. It is
quasi-regular when the real solution of a certain 3rd order polyomial is rational.

Similar results hold for the non-trivial bundle Σg×̃S3.

The construction can be ‘twisted’ by reducible representations of the fundamental group
π1(Σg).

The irreducible representations of π1(Σg) give 1-dimensional Sasaki cones. They arise from
stable rank two vector bundles and have CSC Sasaki metrics.

Some of the same type of results can be obtained on 5-manifolds whose fundamental group
is a non-Abelian extension of π1(Σg).
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Sasakian Manifolds with Perfect fundamental group

Also joint work with C. Tønnesen-Friedman

Represent a homology 3-sphere M3
a as the link of a complete intersection L(a0, · · · , an) with

ai > 1 and pairwise relatively prime.

Let N be a simply connected regular Sasakian manifold.

Then the join M3
a ?1,l N is a Sasakian manifold with perfect fundamental group.

If N has an extremal Sasaki metric so does M3
a ?1,l N.

If N has an CSC Sasaki metric so does M3
a ?1,l N.

If L(a0, · · · , an) 6= L(2, 3, 5) then M3
a ?1,l N has an infinite perfect fundamental group.

M3
a = L(2, 3, 5) is the Poincaré sphere S3/I∗ and S3/I∗ ?1,l N gives a Sasaki-Einstein

manifold with perfect fundamental group for suitable choices of l and N.

For each odd dimension ≥ 3 there exists a countable infinity of Sasakian manifolds with a
perfect fundamentfinial group which admit CSC Sasaki metrics. Furthermore, there is an
infinite number of such Sasakian manifolds that have the integral cohomology ring of
S2 × S2r+1.

There exist a countably infinite number of aspherical contact 5-manifolds with perfect
fundamental group and the integral cohomology ring of S2 × S3 that admit CSC Sasaki
metrics. Moreover, there are such manifolds that admit a ray of Sasaki-η-Einstein metrics
(hence, Lorentzian Sasaki-Einstein metrics).
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