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Background

1 My talk is based on joint work with David Calderbank and Christina Tønnesen-Friedman.

2 Bott Manifolds which are related to Bott-Samelson manifolds were anticipated by Raoul
Bott and first studied in detail in Grossberg’s thesis and later used in representation theory by
Grossberg and Karshon.

3 The topology of Bott manifolds was then studied by Choi, Masuda, Panov, Suh and others.
4 Bott Manifolds are smooth projective toric varieties; hence, they are integrable systems
5 They are best approached through the notion of a Bott Tower which we now describe.
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Bott Towers

1 Consider Closed Complex Manifolds Mk for k = 0, 1, . . . , n with M0 = {pt} and Mk the total
space of the CP1-bundle πk : P(1l⊕ Lk )→ Mk−1 giving the sequence

Mn
πn
→Mn−1

πn−1
→ · · ·M2

π2
→M1 = CP1

π1
→ {pt}

where Lk is a holomorphic line bundle on Mk−1.

2 Mk is called the stage k Bott manifold of the Bott tower of height n.
3 Stage 2 Bott manifolds are nothing but Hirzebruch surfaces.
4 A Bott tower is a collection (Mk , πk , σ

0
k , σ
∞
k )n

k=1 where σ0
k and σ∞k are the zero and infinity

sections of Lk , respectively.
5 The Quotient Construction: Any Bott tower is obtained from the complex torus action

(ti )n
i=1 ∈ (C∗)n on (zj ,wj )

n
j=1 ∈ (C2 \ {0})n by

(ti )n
i=1 : (zj ,wj )

n
j=1 7→

(
tj zj ,

( n∏
i=1

t
Ai

j
i

)
wj

)
n
j=1

where Ai
j are the entries of a lower triangular unipotent integer-valued matrix A.

6 The Cohomology Ring: H∗(Mn,Z) = Z[x1, x2, . . . , xn]/I where I is generated by xk yk with
yk =

∑n
j=1 Aj

k xj .

7 Problem: When does the cohomology ring determine the diffeomorphism type? (Choi,
Masuda, Panov, Suh)
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The Bott Tower Groupoid

1 Bott towers form the objects GBT
0 of a groupoid GBT (Bott tower groupoid) whose

morphisms GBT
1 are Tn equivariant biholomorphisms.

2 Elements of GBT
1 give equivalences of Bott towers.

3 The set of n dimensional Bott towers GBT
0 can be identified with the set of n × n lower

triangular unipotent matrices A over the integers Z, hence with Z
n(n−1

2 .
4 The isotropy subgroup Iso(Mn(A)) ⊂ GBT

1 at Mn(A) ∈ GBT
0 is Aut(Mn(A)).

5 The quotient stack GBT
0 /GBT

1 is the set of Bott manifolds.
6 A Bott manifold is a smooth projective toric variety whose polytope P is combinatorially

equivalent to an n-cube.
7 A Bott manifold has a Tn invariant compatible Kähler form ω. In fact its Kähler cone K is n

dimensional.
8 K is isomorphic to the ample cone A of Tn invariant ample divisors.
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Symplectic Structures

Given a Bott tower Mn(A) choose a Tn invariant compatible symplectic form ω. Then say
that the symplectic manifold (M2n, ω) is of Bott type

NB(M2n, ω) denotes the number of Tn invariant complex structures that are compatible
with (M2n, ω) which is isomorphic to the number of compatible Bott manifolds.
The number NB(M2n, ω) is finite (McDuff).

Theorem (1)

Let (M2n, ω) be a symplectic manifold of Bott type. Then the number of conjugacy classes of
maximal tori of dimension n in the symplectomorphism group Symp(M2n, ω) equals
NB(M2n, ω).

INGREDIENTS OF PROOF:

To each Bott tower Mn(A) compatible with (M2n, ω) we can assign an n dimensional torus in
Symp(M2n, ω) and hence its conjugacy class.
There is a bijection between the set of Bott manifolds compatible with (M2n, ω) and the set
of GBT

1 orbits in GBT
0 with an element compatible with ω.

Elements of GBT
0 /GBT

1 have distinct complex structures.
Then a cohomological rigidity result of Choi-Suh and Masuda-Panov gives a bijection
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An Example

Karshon proved the Theorem for Hirzebruch surface (stage 2 Bott manifolds) and gave a
formula for NB(M4, ω).

Example: Stage 3 Bott manifolds diffeomorphic to (S2)3 = S2 × S2 × S2 with symplectic
form ωk1,k2,k3 with ki ∈ R+ and ordered 0 < k3 ≤ k2 ≤ k1.

((S2)3, ωk1,k2,k3 ) is Kähler with respect to the Bott manifold M3(2a, 2b, 2c) if and only if one
of the following two cases hold:

1 c = 0 with k1 − |a|k2 − |b|k3 > 0, k2 > 0, k3 > 0.
2 c 6= 0 and b = ac with k1 − |a|(k2 − |c|k3) > 0, k2 − |c|k3 > 0, k3 > 0.

Then NB(M6, ωk1,k2,k3 ) =
∑bmax

j=0 d
k1−jk3

k2
e+

∑cmax
j=1 d

k1
k2−jk3

e where d a
b e is least integer greater

than or equal to a
b .
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Calabi’s Extremal Kähler Metrics
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Clearly a Kähler metric of constant scalar curvature is extremal. In particular,
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The Generalized Calabi Construction

Ingrediants

Given a principal T` bundle G−−−→CP1 construct the associated fiber bundle M = G×T` V
with fiber V where V is a compact toric Kähler manifold of complex dimension `.

The Moment map z : V−−−→t∗` with image the Delzant polytope P in the dual of the Lie
algebra t`.
A principal connection on G with curvature ωFS ⊗ p ∈ C∞(Σ,

∧1,1⊗t`) where ωFS is the
Fubini-Study form on CP1 and p ∈ t`.
A constant ĉ ∈ R such that the (1, 1)-form ĉ ωΣ + 〈v , ωΣ ⊗ p〉 is positive for v ∈ P.
The generalized Calabi data on M̊ = G×T` z−1(P̊) is

g = (ĉ + 〈p, z〉) gCP1 + 〈dz,G, dz〉+ 〈θ,H, θ〉
ω = (ĉ + 〈p, z〉)ωCP1 + 〈dz ∧ θ〉

dθ = ωCP1 ⊗ p,

where G = Hess(U) = H−1, U is the symplectic potential of the chosen toric Kähler
structure gV on V , and 〈·, ·, ·〉 denotes the pointwise contraction gt∗ × S2t` × t∗` → R or the
dual contraction.
Get compatible Kähler metrics on M and

Lemma (Apostolov, Calderbank, Gauduchon, Tønnesen-Friedmann)
If V admits an extremal toric Kähler metric gV , then M admits compatible extremal Kähler
metrics (at least in some Kähler classes).
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Extremal Kähler Metrics on Bott Manifolds

Theorem (2)
Any Bott manifold Mn admits a toric extremal Kähler metric. Alternatively, the extremal Kähler
cone E(Mn) is a non-empty open cone in the Kähler cone K(Mn).

The proof is induction using the Lemma of Apostolov, Calderbank, Gauduchon,
Tønnesen-Friedmann.
The last statement uses the well known LeBrun-Simanca rigidity result.

Problem

Describe the extremal Kähler cone E(Mn). In particular, when is E(Mn) = K(Mn)?

We can describe the Kähler cone K(Mn) of a Bott manifold Mn. It is often, but not always,
the first orthant in Rn.
For a Bott tower Mn(A) the connected component Aut(Mn(A))0 is the connected component
of the isotropy subgroup of GBT

1 at Mn(A).

Theorem (3)
Let Mn(A) be a Bott tower. If the elements below the diagonal of any row of the lower triangular
unipotent matrix A all have the same sign, then Mn(A) does not admit a Kähler metric with
constant scalar curvature. In particular, if A1

2 6= 0 then Mn(A) does not admit a Kähler metric
with constant scalar curvature.

The proof essentially follows from Demazure’s Theorem by computing possible root vectors.
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The Twist of Bott Manifolds

Following Choi-Suh we let t denote the number of non-trivial topological fibrations in the
defining sequence of a Bott tower Mn(A). It is well defined and t = 0, 1, . . . , n − 1.

A t-twist Bott manifold is diffeo to a bundle over (S2)n−t with fiber a stage t Bott manifold.

Theorem
Let Mn(A) be a Bott tower with twist t and matrix A of the form

A =



Ã 0 · · · 0

A1
n−t+1 1 · · ·

...
...

...
. . . 0

A1
n An−t+1

n · · · 1


, Ai

j ∈ Z,

where Ã 6= 1ln has 0-twist. Then Mn(A) does not admit a compatible Kähler metric with constant
scalar curvature. In particular, if t = 0 and the Bott manifold Mn(A) has a compatible Kähler
metric with constant scalar curvature, then it is the product (CP1)n.

The only 0 twist Fano Bott manifold is the product (CP1)n.
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1 Twist Bott Manifolds

A 1 twist Bott manifold is diffeomorphic to a non-trivial CP1 bundle over (S2)n−1.

The diffeomorphism type of a 1 twist Bott manifold is determined by its cohomology ring
(Choi-Suh).

Consider Bott manifolds Mn(k) with k = (k1, . . . , kn−1) satisfying k1k2 · · · kn−1 6= 0 with A
matrix

A =


1 0 · · · 0 0
0 1 · · · 0 0
...

...
. . .

...
...

0 0 · · · 1 0
k1 k2 · · · kn−1 1

 .

Then Mn(k) admits an extremal Kähler metric in every Kähler class.

If not all ki have the same sign, then some of these metrics will have constant scalar
curvature.

Mn(k) is Fano if and only if ki = ±1 for all i .

The monotone Kähler class admits a Kähler-Ricci soliton which is Kähler-Einstein if and
only if the number of +1 in k equals the number of −1 in k.

Much of this case recovers previous work of Koiso,Sakane,Guan,Hwang, and
Apostolov–Calderbank–Gauduchon–Tønnesen-Friedman
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Some Results for Stage 3 Bott Manifolds

For stage 3 Bott manifolds the cohomology ring determines its diffeomorphism type
(Choi-Masuda-Suh).

We divide stage 3 Bott Manifolds into 3 types: Type 1 is the generic type, not of type 2 or 3.
Type 2 has A1

2 = 0 and is CP1 bundle over CP1 × CP1. Type 3 has A2
3 = 0 and is a

CP1 × CP1 bundle over CP1. Note that types 2 and 3 can have non-trivial intersection.
A type 2 stage 3 Bott manifold M3(0,A1

3,A
2
3) can be realized a the projectivization

P(1l⊕ O(A1
3,A

2
3)). If A1

3A2
3 6= 0, it is a 1 twist Bott manifold. There is an infinite number of

diffeomorphism types determined by A1
3A2

3. The number of Bott manifolds in each
diffeomorphism type is determined by the factorizations of A1

3A2
3 with fixed parity of

(1 + A1
3)(1 + A2

3).

A 0 twist stage 3 Bott manifold is M3(2A1
3, 2A1

3, 0) or M3(2A1
2, 2A1

2A2
3, 2A2

3). The former is
type 3 whereas generically the later is type 1.
There are 5 stage 3 Fano Bott manifolds M3(A1

2,A
1
3,A

2
3), up to equivalence, with

representatives M3(0, 0, 0),M3(0, 1,−1),M3(0, 1, 1),M3(1, 0, 0),M3(−1, 0, 1). The first 2
admit constant scalar curvature Kähler metrics, the remaining 3 do not.
There is an infinite number of pairs of c-projectively equivalent
(Calderbank-Eastwood-Mateev-Neusser) constant scalar curvature Kähler metrics that are
not affinely equivalent.
There are many extremal orbifold Kähler metrics on stage 3 Bott manifolds.
There is an uncountable number of extremal almost Kähler metrics (non integrable) on
stage 3 Bott manifolds. These are not constant scalar curvature
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Thank You

THANK YOU FOR YOUR ATTENTION

and

HAPPY BIRTHDAY JACQUES
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