The Kähler Geometry of Bott Manifolds

Charles Boyer

University of New Mexico

August 25, 2017 Gauge Theories, Monopoles, Moduli Spaces and Integrable Systems A Conference honouring Jacques Hurtubise on his 60th birthday Montreal, Quebec, Canada

BON ANNIVERSAIRE JACQUES

• My talk is based on joint work with **David Calderbank and Christina Tønnesen-Friedman**.

- My talk is based on joint work with David Calderbank and Christina Tønnesen-Friedman.
- Bott Manifolds which are related to Bott-Samelson manifolds were anticipated by Raoul Bott and first studied in detail in Grossberg's thesis and later used in representation theory by Grossberg and Karshon.

- My talk is based on joint work with David Calderbank and Christina Tønnesen-Friedman.
- Bott Manifolds which are related to Bott-Samelson manifolds were anticipated by Raoul Bott and first studied in detail in Grossberg's thesis and later used in representation theory by Grossberg and Karshon.
- If the topology of **Bott manifolds** was then studied by Choi, Masuda, Panov, Suh and others.

- My talk is based on joint work with David Calderbank and Christina Tønnesen-Friedman.
- Bott Manifolds which are related to Bott-Samelson manifolds were anticipated by Raoul Bott and first studied in detail in Grossberg's thesis and later used in representation theory by Grossberg and Karshon.
- If the topology of **Bott manifolds** was then studied by Choi, Masuda, Panov, Suh and others.
- Bott Manifolds are smooth projective toric varieties; hence, they are integrable systems

- Wy talk is based on joint work with David Calderbank and Christina Tønnesen-Friedman.
- Bott Manifolds which are related to Bott-Samelson manifolds were anticipated by Raoul Bott and first studied in detail in Grossberg's thesis and later used in representation theory by Grossberg and Karshon.
- If the topology of **Bott manifolds** was then studied by Choi, Masuda, Panov, Suh and others.
- Bott Manifolds are smooth projective toric varieties; hence, they are integrable systems
- They are best approached through the notion of a Bott Tower which we now describe.

• Consider Closed Complex Manifolds M_k for k = 0, 1, ..., n with $M_0 = \{pt\}$ and M_k the total space of the \mathbb{CP}^1 -bundle $\pi_k : \mathbb{P}(\mathbb{1} \oplus \mathcal{L}_k) \to M_{k-1}$ giving the sequence

$$M_n \stackrel{\pi_n}{\to} M_{n-1} \stackrel{\pi_{n-1}}{\to} \cdots M_2 \stackrel{\pi_2}{\to} M_1 = \mathbb{CP}^1 \stackrel{\pi_1}{\to} \{\rho t\}$$

where \mathcal{L}_k is a holomorphic line bundle on M_{k-1} .

• Consider Closed Complex Manifolds M_k for k = 0, 1, ..., n with $M_0 = \{pt\}$ and M_k the total space of the \mathbb{CP}^1 -bundle $\pi_k : \mathbb{P}(\mathbb{1} \oplus \mathcal{L}_k) \to M_{k-1}$ giving the sequence

$$M_{n} \xrightarrow{\pi_{n}} M_{n-1} \xrightarrow{\pi_{n-1}} \cdots M_{2} \xrightarrow{\pi_{2}} M_{1} = \mathbb{CP}^{1} \xrightarrow{\pi_{1}} \{ pt \}$$

where \mathcal{L}_k is a holomorphic line bundle on M_{k-1} .

M_k is called the stage k Bott manifold of the Bott tower of height n.

• Consider Closed Complex Manifolds M_k for k = 0, 1, ..., n with $M_0 = \{pt\}$ and M_k the total space of the \mathbb{CP}^1 -bundle $\pi_k : \mathbb{P}(\mathbb{1} \oplus \mathcal{L}_k) \to M_{k-1}$ giving the sequence

$$M_{n} \xrightarrow{\pi_{n}} M_{n-1} \xrightarrow{\pi_{n-1}} \cdots M_{2} \xrightarrow{\pi_{2}} M_{1} = \mathbb{CP}^{1} \xrightarrow{\pi_{1}} \{ pt \}$$

where \mathcal{L}_k is a holomorphic line bundle on M_{k-1} .

- M_k is called the stage k Bott manifold of the Bott tower of height n.
- Stage 2 Bott manifolds are nothing but Hirzebruch surfaces.

• Consider Closed Complex Manifolds M_k for k = 0, 1, ..., n with $M_0 = \{pt\}$ and M_k the total space of the \mathbb{CP}^1 -bundle $\pi_k : \mathbb{P}(\mathbb{1} \oplus \mathcal{L}_k) \to M_{k-1}$ giving the sequence

$$M_{n} \stackrel{\pi_{n}}{\rightarrow} M_{n-1} \stackrel{\pi_{n-1}}{\rightarrow} \cdots M_{2} \stackrel{\pi_{2}}{\rightarrow} M_{1} = \mathbb{CP}^{1} \stackrel{\pi_{1}}{\rightarrow} \{ pt \}$$

where \mathcal{L}_k is a holomorphic line bundle on M_{k-1} .

- M_k is called the stage k Bott manifold of the Bott tower of height n.
- Stage 2 Bott manifolds are nothing but Hirzebruch surfaces.
- A Bott tower is a collection $(M_k, \pi_k, \sigma_k^0, \sigma_k^\infty)_{k=1}^n$ where σ_k^0 and σ_k^∞ are the zero and infinity sections of \mathcal{L}_k , respectively.

• Consider Closed Complex Manifolds M_k for k = 0, 1, ..., n with $M_0 = \{pt\}$ and M_k the total space of the \mathbb{CP}^1 -bundle $\pi_k : \mathbb{P}(\mathbb{1} \oplus \mathcal{L}_k) \to M_{k-1}$ giving the sequence

$$M_{n} \xrightarrow{\pi_{n}} M_{n-1} \xrightarrow{\pi_{n-1}} \cdots M_{2} \xrightarrow{\pi_{2}} M_{1} = \mathbb{CP}^{1} \xrightarrow{\pi_{1}} \{ pt \}$$

where \mathcal{L}_k is a holomorphic line bundle on M_{k-1} .

- M_k is called the stage k Bott manifold of the Bott tower of height n.
- Stage 2 Bott manifolds are nothing but Hirzebruch surfaces.
- A Bott tower is a collection $(M_k, \pi_k, \sigma_k^0, \sigma_k^\infty)_{k=1}^n$ where σ_k^0 and σ_k^∞ are the zero and infinity sections of \mathcal{L}_k , respectively.
- **③** The Quotient Construction: Any Bott tower is obtained from the complex torus action $(t_i)_{i=1}^n \in (\mathbb{C}^*)^n$ on $(z_j, w_j)_{i=1}^n \in (\mathbb{C}^2 \setminus \{0\})^n$ by

$$(t_i)_{i=1}^n \colon (z_j, w_j)_{j=1}^n \mapsto \left(t_j z_j, \left(\prod_{i=1}^n t_i^{A_j^i}\right) w_j\right)_{j=1}^n$$

where A_i^i are the entries of a lower triangular unipotent integer-valued matrix A.

• Consider Closed Complex Manifolds M_k for k = 0, 1, ..., n with $M_0 = \{pt\}$ and M_k the total space of the \mathbb{CP}^1 -bundle $\pi_k : \mathbb{P}(\mathbb{1} \oplus \mathcal{L}_k) \to M_{k-1}$ giving the sequence

$$M_{n} \xrightarrow{\pi_{n}} M_{n-1} \xrightarrow{\pi_{n-1}} \cdots M_{2} \xrightarrow{\pi_{2}} M_{1} = \mathbb{CP}^{1} \xrightarrow{\pi_{1}} \{ pt \}$$

where \mathcal{L}_k is a holomorphic line bundle on M_{k-1} .

- M_k is called the stage k Bott manifold of the Bott tower of height n.
- Stage 2 Bott manifolds are nothing but Hirzebruch surfaces.
- A Bott tower is a collection $(M_k, \pi_k, \sigma_k^0, \sigma_k^\infty)_{k=1}^n$ where σ_k^0 and σ_k^∞ are the zero and infinity sections of \mathcal{L}_k , respectively.
- **③** The Quotient Construction: Any Bott tower is obtained from the complex torus action $(t_i)_{i=1}^n \in (\mathbb{C}^*)^n$ on $(z_j, w_j)_{i=1}^n \in (\mathbb{C}^2 \setminus \{0\})^n$ by

$$(t_i)_{i=1}^n: (z_j, w_j)_{j=1}^n \mapsto \left(t_j z_j, \left(\prod_{i=1}^n t_i^{A_j^i}\right) w_j\right)_{j=1}^n$$

where A_i^i are the entries of a lower triangular unipotent integer-valued matrix A.

• The Cohomology Ring: $H^*(M_n, \mathbb{Z}) = \mathbb{Z}[x_1, x_2, ..., x_n]/\mathbb{I}$ where \mathbb{I} is generated by $x_k y_k$ with $y_k = \sum_{j=1}^n A_k^j x_j$.

• Consider Closed Complex Manifolds M_k for k = 0, 1, ..., n with $M_0 = \{pt\}$ and M_k the total space of the \mathbb{CP}^1 -bundle $\pi_k : \mathbb{P}(\mathbb{1} \oplus \mathcal{L}_k) \to M_{k-1}$ giving the sequence

$$M_{n} \xrightarrow{\pi_{n}} M_{n-1} \xrightarrow{\pi_{n-1}} \cdots M_{2} \xrightarrow{\pi_{2}} M_{1} = \mathbb{CP}^{1} \xrightarrow{\pi_{1}} \{ pt \}$$

where \mathcal{L}_k is a holomorphic line bundle on M_{k-1} .

- M_k is called the stage k Bott manifold of the Bott tower of height n.
- Stage 2 Bott manifolds are nothing but Hirzebruch surfaces.
- A Bott tower is a collection $(M_k, \pi_k, \sigma_k^0, \sigma_k^\infty)_{k=1}^n$ where σ_k^0 and σ_k^∞ are the zero and infinity sections of \mathcal{L}_k , respectively.
- **③** The Quotient Construction: Any Bott tower is obtained from the complex torus action $(t_i)_{i=1}^n \in (\mathbb{C}^*)^n$ on $(z_j, w_j)_{i=1}^n \in (\mathbb{C}^2 \setminus \{0\})^n$ by

$$(t_i)_{i=1}^n: (z_j, w_j)_{j=1}^n \mapsto \left(t_j z_j, \left(\prod_{i=1}^n t_i^{A_j^i}\right) w_j\right)_{j=1}^n$$

where A_i^i are the entries of a lower triangular unipotent integer-valued matrix A.

() The Cohomology Ring: $H^*(M_n, \mathbb{Z}) = \mathbb{Z}[x_1, x_2, ..., x_n]/\mathbb{J}$ where \mathbb{J} is generated by $x_k y_k$ with $y_k = \sum_{j=1}^n A_k^j x_j$.

Problem: When does the cohomology ring determine the diffeomorphism type? (Choi, Masuda, Panov, Suh) Bott towers form the objects S₀^{BT} of a groupoid S^{BT} (Bott tower groupoid) whose morphisms S₁^{BT} are Tⁿ equivariant biholomorphisms.

- Bott towers form the objects S₀^{BT} of a groupoid S^{BT} (Bott tower groupoid) whose morphisms S₁^{BT} are Tⁿ equivariant biholomorphisms.
- 2 Elements of \mathcal{G}_1^{BT} give equivalences of Bott towers.

- Bott towers form the objects 9^{BT}₀ of a groupoid 9^{BT} (Bott tower groupoid) whose morphisms 9^{BT}₁ are Tⁿ equivariant biholomorphisms.
- 2 Elements of \mathcal{G}_1^{BT} give equivalences of Bott towers.
- On the set of *n* dimensional Bott towers 9^{BT}₀ can be identified with the set of *n* × *n* lower triangular unipotent matrices *A* over the integers Z, hence with Z^{n(n-1)/2}.

- Bott towers form the objects 90^{BT} of a groupoid 9^{BT} (Bott tower groupoid) whose morphisms 9^{BT} are Tⁿ equivariant biholomorphisms.
- 2 Elements of \mathcal{G}_1^{BT} give equivalences of Bott towers.
- The set of *n* dimensional Bott towers \mathbb{G}_0^{BT} can be identified with the set of $n \times n$ lower triangular unipotent matrices *A* over the integers \mathbb{Z} , hence with $\mathbb{Z}^{\frac{n(n-1)}{2}}$.
- **()** The isotropy subgroup $Iso(M_n(A)) \subset \mathfrak{G}_1^{BT}$ at $M_n(A) \in \mathfrak{G}_0^{BT}$ is $\mathfrak{Aut}(M_n(A))$.

- Bott towers form the objects 90^{BT} of a groupoid 9^{BT} (Bott tower groupoid) whose morphisms 9^{BT} are Tⁿ equivariant biholomorphisms.
- 2 Elements of \mathcal{G}_1^{BT} give equivalences of Bott towers.
- The set of *n* dimensional Bott towers \mathbb{G}_0^{BT} can be identified with the set of $n \times n$ lower triangular unipotent matrices *A* over the integers \mathbb{Z} , hence with $\mathbb{Z}^{\frac{n(n-1)}{2}}$.
- The isotropy subgroup $Iso(M_n(A)) \subset \mathcal{G}_1^{BT}$ at $M_n(A) \in \mathcal{G}_0^{BT}$ is $\mathfrak{Aut}(M_n(A))$.
- **(**) The quotient stack $\mathcal{G}_0^{BT}/\mathcal{G}_1^{BT}$ is the set of **Bott manifolds**.

- Bott towers form the objects 90^{BT} of a groupoid 9^{BT} (Bott tower groupoid) whose morphisms 9^{BT} are Tⁿ equivariant biholomorphisms.
- Elements of G^{BT}₁ give equivalences of Bott towers.
- On the set of *n* dimensional Bott towers G₀^{BT} can be identified with the set of *n* × *n* lower triangular unipotent matrices *A* over the integers Z, hence with Z^{n(n-1)/2}.
- The isotropy subgroup $Iso(M_n(A)) \subset \mathcal{G}_1^{BT}$ at $M_n(A) \in \mathcal{G}_0^{BT}$ is $\mathfrak{Aut}(M_n(A))$.
- The quotient stack $\mathcal{G}_0^{BT}/\mathcal{G}_1^{BT}$ is the set of **Bott manifolds**.
- A Bott manifold is a smooth projective toric variety whose polytope P is combinatorially equivalent to an n-cube.

- Bott towers form the objects 90^{BT} of a groupoid 9^{BT} (Bott tower groupoid) whose morphisms 9^{BT} are Tⁿ equivariant biholomorphisms.
- Elements of G^{BT}₁ give equivalences of Bott towers.
- On the set of *n* dimensional Bott towers G₀^{BT} can be identified with the set of *n* × *n* lower triangular unipotent matrices *A* over the integers Z, hence with Z^{n(n-1)/2}.
- The isotropy subgroup $Iso(M_n(A)) \subset \mathcal{G}_1^{BT}$ at $M_n(A) \in \mathcal{G}_0^{BT}$ is $\mathfrak{Aut}(M_n(A))$.
- **(a)** The quotient stack $\mathcal{G}_0^{BT}/\mathcal{G}_1^{BT}$ is the set of **Bott manifolds**.
- A Bott manifold is a smooth projective toric variety whose polytope P is combinatorially equivalent to an n-cube.
- **(a)** A Bott manifold has a \mathbb{T}^n invariant compatible Kähler form ω . In fact its Kähler cone \mathcal{K} is *n* dimensional.

- Bott towers form the objects 90^{BT} of a groupoid 9^{BT} (Bott tower groupoid) whose morphisms 9^{BT} are Tⁿ equivariant biholomorphisms.
- Elements of G^{BT}₁ give equivalences of Bott towers.
- On the set of *n* dimensional Bott towers G₀^{BT} can be identified with the set of *n* × *n* lower triangular unipotent matrices *A* over the integers Z, hence with Z^{n(n-1)/2}.
- The isotropy subgroup $Iso(M_n(A)) \subset \mathcal{G}_1^{BT}$ at $M_n(A) \in \mathcal{G}_0^{BT}$ is $\mathfrak{Aut}(M_n(A))$.
- **(a)** The quotient stack $\mathcal{G}_0^{BT}/\mathcal{G}_1^{BT}$ is the set of **Bott manifolds**.
- A Bott manifold is a smooth projective toric variety whose polytope P is combinatorially equivalent to an n-cube.
- **(a)** A Bott manifold has a \mathbb{T}^n invariant compatible Kähler form ω . In fact its Kähler cone \mathcal{K} is *n* dimensional.
- **(a)** \mathcal{K} is isomorphic to the **ample cone** \mathcal{A} of \mathbb{T}^n **invariant ample divisors**.

• Given a Bott tower $M_n(A)$ choose a \mathbb{T}^n invariant compatible symplectic form ω . Then say that the symplectic manifold (M^{2n}, ω) is of Bott type

- Given a Bott tower $M_n(A)$ choose a \mathbb{T}^n invariant compatible symplectic form ω . Then say that the symplectic manifold (M^{2n}, ω) is of Bott type
- $N_B(M^{2n}, \omega)$ denotes the **number** of \mathbb{T}^n invariant **complex structures** that are compatible with (M^{2n}, ω) which is isomorphic to the **number** of compatible **Bott manifolds**.

- Given a Bott tower $M_n(A)$ choose a \mathbb{T}^n invariant compatible symplectic form ω . Then say that the symplectic manifold (M^{2n}, ω) is of Bott type
- $N_B(M^{2n}, \omega)$ denotes the **number** of \mathbb{T}^n invariant **complex structures** that are compatible with (M^{2n}, ω) which is isomorphic to the **number** of compatible **Bott manifolds**.
- The number $N_B(M^{2n}, \omega)$ is finite (McDuff).

- Given a Bott tower $M_n(A)$ choose a \mathbb{T}^n invariant compatible symplectic form ω . Then say that the symplectic manifold (M^{2n}, ω) is of Bott type
- $N_B(M^{2n}, \omega)$ denotes the **number** of \mathbb{T}^n invariant **complex structures** that are compatible with (M^{2n}, ω) which is isomorphic to the **number** of compatible **Bott manifolds**.
- The number $N_B(M^{2n}, \omega)$ is finite (McDuff).

Theorem (1)

Let (M^{2n}, ω) be a symplectic manifold of Bott type. Then the number of conjugacy classes of maximal tori of dimension *n* in the symplectomorphism group $\text{Symp}(M^{2n}, \omega)$ equals $N_B(M^{2n}, \omega)$.

- Given a Bott tower $M_n(A)$ choose a \mathbb{T}^n invariant compatible symplectic form ω . Then say that the symplectic manifold (M^{2n}, ω) is of Bott type
- $N_B(M^{2n}, \omega)$ denotes the **number** of \mathbb{T}^n invariant **complex structures** that are compatible with (M^{2n}, ω) which is isomorphic to the **number** of compatible **Bott manifolds**.
- The number $N_B(M^{2n}, \omega)$ is finite (McDuff).

Theorem (1)

Let (M^{2n}, ω) be a symplectic manifold of Bott type. Then the number of conjugacy classes of maximal tori of dimension *n* in the symplectomorphism group $\text{Symp}(M^{2n}, \omega)$ equals $N_B(M^{2n}, \omega)$.

- Given a Bott tower $M_n(A)$ choose a \mathbb{T}^n invariant compatible symplectic form ω . Then say that the symplectic manifold (M^{2n}, ω) is of Bott type
- $N_B(M^{2n}, \omega)$ denotes the **number** of \mathbb{T}^n invariant **complex structures** that are compatible with (M^{2n}, ω) which is isomorphic to the **number** of compatible **Bott manifolds**.
- The number $N_B(M^{2n}, \omega)$ is finite (McDuff).

Theorem (1)

Let (M^{2n}, ω) be a symplectic manifold of Bott type. Then the number of conjugacy classes of maximal tori of dimension *n* in the symplectomorphism group $\text{Symp}(M^{2n}, \omega)$ equals $N_B(M^{2n}, \omega)$.

• INGREDIENTS OF PROOF:

• To each Bott tower $M_n(A)$ compatible with (M^{2n}, ω) we can assign an *n* dimensional torus in $\text{Symp}(M^{2n}, \omega)$ and hence its conjugacy class.

- Given a Bott tower $M_n(A)$ choose a \mathbb{T}^n invariant compatible symplectic form ω . Then say that the symplectic manifold (M^{2n}, ω) is of Bott type
- $N_B(M^{2n}, \omega)$ denotes the **number** of \mathbb{T}^n invariant **complex structures** that are compatible with (M^{2n}, ω) which is isomorphic to the **number** of compatible **Bott manifolds**.
- The number $N_B(M^{2n}, \omega)$ is finite (McDuff).

Theorem (1)

Let (M^{2n}, ω) be a symplectic manifold of Bott type. Then the number of conjugacy classes of maximal tori of dimension *n* in the symplectomorphism group $\text{Symp}(M^{2n}, \omega)$ equals $N_B(M^{2n}, \omega)$.

- To each Bott tower $M_n(A)$ compatible with (M^{2n}, ω) we can assign an *n* dimensional torus in $\text{Symp}(M^{2n}, \omega)$ and hence its conjugacy class.
- There is a bijection between the set of Bott manifolds compatible with (M^{2n}, ω) and the set of $\mathfrak{G}_0^{B^T}$ orbits in $\mathfrak{G}_0^{B^T}$ with an element compatible with ω .

- Given a Bott tower $M_n(A)$ choose a \mathbb{T}^n invariant compatible symplectic form ω . Then say that the symplectic manifold (M^{2n}, ω) is of Bott type
- $N_B(M^{2n}, \omega)$ denotes the **number** of \mathbb{T}^n invariant **complex structures** that are compatible with (M^{2n}, ω) which is isomorphic to the **number** of compatible **Bott manifolds**.
- The number $N_B(M^{2n}, \omega)$ is finite (McDuff).

Theorem (1)

Let (M^{2n}, ω) be a symplectic manifold of Bott type. Then the number of conjugacy classes of maximal tori of dimension *n* in the symplectomorphism group $\text{Symp}(M^{2n}, \omega)$ equals $N_B(M^{2n}, \omega)$.

- To each Bott tower $M_n(A)$ compatible with (M^{2n}, ω) we can assign an *n* dimensional torus in $\text{Symp}(M^{2n}, \omega)$ and hence its conjugacy class.
- There is a bijection between the set of Bott manifolds compatible with (M^{2n}, ω) and the set of $\mathfrak{G}_0^{\mathsf{BT}}$ orbits in $\mathfrak{G}_0^{\mathsf{BT}}$ with an element compatible with ω .
- Elements of g_0^{BT}/g_1^{BT} have distinct complex structures.

- Given a Bott tower $M_n(A)$ choose a \mathbb{T}^n invariant compatible symplectic form ω . Then say that the symplectic manifold (M^{2n}, ω) is of Bott type
- $N_B(M^{2n}, \omega)$ denotes the **number** of \mathbb{T}^n invariant **complex structures** that are compatible with (M^{2n}, ω) which is isomorphic to the **number** of compatible **Bott manifolds**.
- The number $N_B(M^{2n}, \omega)$ is finite (McDuff).

Theorem (1)

Let (M^{2n}, ω) be a symplectic manifold of Bott type. Then the number of conjugacy classes of maximal tori of dimension *n* in the symplectomorphism group $\text{Symp}(M^{2n}, \omega)$ equals $N_B(M^{2n}, \omega)$.

- To each Bott tower $M_n(A)$ compatible with (M^{2n}, ω) we can assign an *n* dimensional torus in $\text{Symp}(M^{2n}, \omega)$ and hence its conjugacy class.
- There is a bijection between the set of Bott manifolds compatible with (M^{2n}, ω) and the set of \mathfrak{G}_0^{BT} orbits in \mathfrak{G}_0^{BT} with an element compatible with ω .
- Elements of g_0^{BT}/g_1^{BT} have distinct complex structures.
- Then a cohomological rigidity result of Choi-Suh and Masuda-Panov gives a bijection between the set of Bott manifolds compatible with (M^{2n}, ω) and the set of T^n invariant integrable complex structures J compatible with (M^{2n}, ω) .

- Given a Bott tower $M_n(A)$ choose a \mathbb{T}^n invariant compatible symplectic form ω . Then say that the symplectic manifold (M^{2n}, ω) is of Bott type
- $N_B(M^{2n}, \omega)$ denotes the **number** of \mathbb{T}^n invariant **complex structures** that are compatible with (M^{2n}, ω) which is isomorphic to the **number** of compatible **Bott manifolds**.
- The number $N_B(M^{2n}, \omega)$ is finite (McDuff).

Theorem (1)

Let (M^{2n}, ω) be a symplectic manifold of Bott type. Then the number of conjugacy classes of maximal tori of dimension *n* in the symplectomorphism group $\text{Symp}(M^{2n}, \omega)$ equals $N_B(M^{2n}, \omega)$.

- To each Bott tower $M_n(A)$ compatible with (M^{2n}, ω) we can assign an *n* dimensional torus in $\text{Symp}(M^{2n}, \omega)$ and hence its conjugacy class.
- There is a bijection between the set of Bott manifolds compatible with (M^{2n}, ω) and the set of \mathfrak{G}_0^{BT} orbits in \mathfrak{G}_0^{BT} with an element compatible with ω .
- Elements of $\mathcal{G}_0^{BT}/\mathcal{G}_1^{BT}$ have distinct complex structures.
- Then a cohomological rigidity result of Choi-Suh and Masuda-Panov gives a bijection between the set of Bott manifolds compatible with (M^{2n}, ω) and the set of T^n invariant integrable complex structures J compatible with (M^{2n}, ω) .
- Delzant's Theorem \Rightarrow (M^{2n}, ω, J) is a smooth projective toric variety.

- Given a Bott tower $M_n(A)$ choose a \mathbb{T}^n invariant compatible symplectic form ω . Then say that the symplectic manifold (M^{2n}, ω) is of Bott type
- $N_B(M^{2n}, \omega)$ denotes the **number** of \mathbb{T}^{n} invariant **complex structures** that are compatible with (M^{2n}, ω) which is isomorphic to the **number** of compatible **Bott manifolds**.
- The number $N_B(M^{2n}, \omega)$ is finite (McDuff).

Theorem (1)

Let (M^{2n}, ω) be a symplectic manifold of Bott type. Then the number of conjugacy classes of maximal tori of dimension *n* in the symplectomorphism group $\text{Symp}(M^{2n}, \omega)$ equals $N_B(M^{2n}, \omega)$.

- To each Bott tower $M_n(A)$ compatible with (M^{2n}, ω) we can assign an *n* dimensional torus in $\text{Symp}(M^{2n}, \omega)$ and hence its conjugacy class.
- There is a **bijection** between the set of **Bott manifolds** compatible with (M^{2n}, ω) and the set of \mathfrak{G}_0^{BT} orbits in \mathfrak{G}_0^{BT} with an element compatible with ω .
- Elements of $\mathcal{G}_0^{BT}/\mathcal{G}_1^{BT}$ have distinct complex structures.
- Then a cohomological rigidity result of Choi-Suh and Masuda-Panov gives a bijection between the set of Bott manifolds compatible with (M^{2n}, ω) and the set of T^n invariant integrable complex structures J compatible with (M^{2n}, ω) .
- Delzant's Theorem \Rightarrow (M^{2n}, ω, J) is a smooth projective toric variety.
- The corresponding **Delzant polytope** *P* is **combinatorially equivalent** to *n* cube.

- Given a Bott tower $M_n(A)$ choose a \mathbb{T}^n invariant compatible symplectic form ω . Then say that the symplectic manifold (M^{2n}, ω) is of Bott type
- $N_B(M^{2n}, \omega)$ denotes the **number** of \mathbb{T}^{n} invariant **complex structures** that are compatible with (M^{2n}, ω) which is isomorphic to the **number** of compatible **Bott manifolds**.
- The number $N_B(M^{2n}, \omega)$ is finite (McDuff).

Theorem (1)

Let (M^{2n}, ω) be a symplectic manifold of Bott type. Then the number of conjugacy classes of maximal tori of dimension *n* in the symplectomorphism group $\text{Symp}(M^{2n}, \omega)$ equals $N_B(M^{2n}, \omega)$.

- To each Bott tower $M_n(A)$ compatible with (M^{2n}, ω) we can assign an *n* dimensional torus in $\text{Symp}(M^{2n}, \omega)$ and hence its conjugacy class.
- There is a bijection between the set of Bott manifolds compatible with (M^{2n}, ω) and the set of \mathfrak{G}_0^{BT} orbits in \mathfrak{G}_0^{BT} with an element compatible with ω .
- Elements of $\mathcal{G}_0^{BT}/\mathcal{G}_1^{BT}$ have distinct complex structures.
- Then a cohomological rigidity result of Choi-Suh and Masuda-Panov gives a bijection between the set of Bott manifolds compatible with (M^{2n}, ω) and the set of T^n invariant integrable complex structures J compatible with (M^{2n}, ω) .
- Delzant's Theorem \Rightarrow (M^{2n}, ω, J) is a smooth projective toric variety.
- The corresponding **Delzant polytope** *P* is **combinatorially equivalent** to *n* cube.
- smooth projective toric varieties $\{M_{\mathcal{F}}\} \approx \{\mathcal{F}_M\}$ smooth normal fans \mathcal{F} over $\{P\}$.

• Karshon proved the Theorem for Hirzebruch surface (stage 2 Bott manifolds) and gave a formula for $N_B(M^4, \omega)$.

- Karshon proved the Theorem for Hirzebruch surface (stage 2 Bott manifolds) and gave a formula for $N_B(M^4, \omega)$.
- Example: Stage 3 Bott manifolds diffeomorphic to (S²)³ = S² × S² × S² with symplectic form ω_{k1,k2,k3} with k_i ∈ ℝ⁺ and ordered 0 < k₃ ≤ k₂ ≤ k₁.

- Karshon proved the Theorem for Hirzebruch surface (stage 2 Bott manifolds) and gave a formula for $N_B(M^4, \omega)$.
- Example: Stage 3 Bott manifolds diffeomorphic to (S²)³ = S² × S² × S² with symplectic form ω_{k1,k2,k3} with k_i ∈ ℝ⁺ and ordered 0 < k₃ ≤ k₂ ≤ k₁.
- $((S^2)^3, \omega_{k_1, k_2, k_3})$ is Kähler with respect to the **Bott manifold** $M_3(2a, 2b, 2c)$ if and only if one of the following two cases hold:
- Karshon proved the Theorem for Hirzebruch surface (stage 2 Bott manifolds) and gave a formula for $N_B(M^4, \omega)$.
- Example: Stage 3 Bott manifolds diffeomorphic to (S²)³ = S² × S² × S² with symplectic form ω_{k1,k2,k3} with k_i ∈ ℝ⁺ and ordered 0 < k₃ ≤ k₂ ≤ k₁.
- $((S^2)^3, \omega_{k_1, k_2, k_3})$ is Kähler with respect to the **Bott manifold** $M_3(2a, 2b, 2c)$ if and only if one of the following two cases hold:

() c = 0 with $k_1 - |a|k_2 - |b|k_3 > 0$, $k_2 > 0$, $k_3 > 0$.

- Karshon proved the Theorem for Hirzebruch surface (stage 2 Bott manifolds) and gave a formula for $N_B(M^4, \omega)$.
- Example: Stage 3 Bott manifolds diffeomorphic to (S²)³ = S² × S² × S² with symplectic form ω_{k1,k2,k3} with k_i ∈ ℝ⁺ and ordered 0 < k₃ ≤ k₂ ≤ k₁.
- $((S^2)^3, \omega_{k_1, k_2, k_3})$ is Kähler with respect to the **Bott manifold** $M_3(2a, 2b, 2c)$ if and only if one of the following two cases hold:
 - **1** c = 0 with $k_1 |a|k_2 |b|k_3 > 0$, $k_2 > 0$, $k_3 > 0$.
 - **2** $c \neq 0$ and b = ac with $k_1 |a|(k_2 |c|k_3) > 0$, $k_2 |c|k_3 > 0$, $k_3 > 0$.

- Karshon proved the Theorem for Hirzebruch surface (stage 2 Bott manifolds) and gave a formula for N_B(M⁴, ω).
- Example: Stage 3 Bott manifolds diffeomorphic to (S²)³ = S² × S² × S² with symplectic form ω_{k1,k2,k3} with k_i ∈ ℝ⁺ and ordered 0 < k₃ ≤ k₂ ≤ k₁.
- $((S^2)^3, \omega_{k_1, k_2, k_3})$ is Kähler with respect to the **Bott manifold** $M_3(2a, 2b, 2c)$ if and only if one of the following two cases hold:
 - **0** c = 0 with $k_1 |a|k_2 |b|k_3 > 0$, $k_2 > 0$, $k_3 > 0$. **2** $c \neq 0$ and b = ac with $k_1 - |a|(k_2 - |c|k_3) > 0$, $k_2 - |c|k_3 > 0$, $k_3 > 0$.
- Then $N_B(M^6, \omega_{k_1,k_2,k_3}) = \sum_{j=0}^{b_{max}} \lceil \frac{k_1 jk_3}{k_2} \rceil + \sum_{j=1}^{c_{max}} \lceil \frac{k_1}{k_2 jk_3} \rceil$ where $\lceil \frac{a}{b} \rceil$ is least integer greater than or equal to $\frac{a}{b}$.

• Calabi Energy functional $E(g) = \int_M s_g^2 d\mu_g$, where s_g is the scalar curvature of a Kähler metric g with Kähler form ω on a compact complex manifold M.

- Calabi Energy functional $E(g) = \int_{M} s_g^2 d\mu_g$, where s_g is the scalar curvature of a Kähler metric g with Kähler form ω on a compact complex manifold M.
- Variation $\omega \mapsto \omega + \partial \bar{\partial} \phi$ in the space of Kähler metrics with the same cohomology class $[\omega]$.

- Calabi Energy functional $E(g) = \int_{M} s_g^2 d\mu_g$, where s_g is the scalar curvature of a Kähler metric g with Kähler form ω on a compact complex manifold M.
- Variation $\omega \mapsto \omega + \partial \bar{\partial} \phi$ in the space of Kähler metrics with the same cohomology class $[\omega]$.
- A Kähler metric g is a critical point of E(g) if and only if the (1,0) gradient of s_g is holomorphic. Such a metric is called Extremal.

- Calabi Energy functional $E(g) = \int_{M} s_{g}^{2} d\mu_{g}$, where s_{g} is the scalar curvature of a Kähler metric g with Kähler form ω on a compact complex manifold M.
- Variation $\omega \mapsto \omega + \partial \bar{\partial} \phi$ in the space of Kähler metrics with the same cohomology class $[\omega]$.
- A Kähler metric g is a critical point of E(g) if and only if the (1,0) gradient of s_g is holomorphic. Such a metric is called Extremal.
- Clearly a K\u00e4hler metric of constant scalar curvature is extremal. In particular, K\u00e4hler-Einstein metrics are extremal.

- Calabi Energy functional $E(g) = \int_{M} s_{g}^{2} d\mu_{g}$, where s_{g} is the scalar curvature of a Kähler metric g with Kähler form ω on a compact complex manifold M.
- Variation $\omega \mapsto \omega + \partial \bar{\partial} \phi$ in the space of Kähler metrics with the same cohomology class $[\omega]$.
- A Kähler metric g is a critical point of E(g) if and only if the (1,0) gradient of s_g is holomorphic. Such a metric is called Extremal.
- Clearly a K\u00e4hler metric of constant scalar curvature is extremal. In particular, K\u00e4hler-Einstein metrics are extremal.
- Calabi: Critical points have maximal symmetry.

- Calabi Energy functional $E(g) = \int_{M} s_g^2 d\mu_g$, where s_g is the scalar curvature of a Kähler metric g with Kähler form ω on a compact complex manifold M.
- Variation $\omega \mapsto \omega + \partial \bar{\partial} \phi$ in the space of Kähler metrics with the same cohomology class $[\omega]$.
- A Kähler metric g is a critical point of E(g) if and only if the (1, 0) gradient of s_g is holomorphic. Such a metric is called Extremal.
- Clearly a K\u00e4hler metric of constant scalar curvature is extremal. In particular, K\u00e4hler-Einstein metrics are extremal.
- Calabi: Critical points have maximal symmetry.
- Lichnerowicz-Matushima: If a Kähler metric g has constant scalar curvature, then $\mathfrak{Aut}(M)_0$ is reductive.

- Calabi Energy functional $E(g) = \int_{M} s_{g}^{2} d\mu_{g}$, where s_{g} is the scalar curvature of a Kähler metric g with Kähler form ω on a compact complex manifold M.
- Variation $\omega \mapsto \omega + \partial \bar{\partial} \phi$ in the space of Kähler metrics with the same cohomology class $[\omega]$.
- A Kähler metric g is a critical point of E(g) if and only if the (1,0) gradient of s_g is holomorphic. Such a metric is called Extremal.
- Clearly a K\u00e4hler metric of constant scalar curvature is extremal. In particular, K\u00e4hler-Einstein metrics are extremal.
- Calabi: Critical points have maximal symmetry.
- Lichnerowicz-Matushima: If a Kähler metric g has constant scalar curvature, then $\mathfrak{Aut}(M)_0$ is reductive.
- Demazure: For smooth toric varieties M_𝔅 with fan 𝔅 the connected component of the group of automorphisms 𝔄ut(M_𝔅)₀ is generated as a group by the maximal torus 𝔅^c and the system of unipotent 1-parameter subgroups {λ_𝔅}_{𝔅𝔅𝔅𝔅ℓ} dual to the family of roots R(𝔅).

- Calabi Energy functional $E(g) = \int_{M} s_g^2 d\mu_g$, where s_g is the scalar curvature of a Kähler metric g with Kähler form ω on a compact complex manifold M.
- Variation $\omega \mapsto \omega + \partial \bar{\partial} \phi$ in the space of Kähler metrics with the same cohomology class $[\omega]$.
- A Kähler metric g is a critical point of E(g) if and only if the (1,0) gradient of s_g is holomorphic. Such a metric is called Extremal.
- Clearly a K\u00e4hler metric of constant scalar curvature is extremal. In particular, K\u00e4hler-Einstein metrics are extremal.
- Calabi: Critical points have maximal symmetry.
- Lichnerowicz-Matushima: If a Kähler metric g has constant scalar curvature, then $\mathfrak{Aut}(M)_0$ is reductive.
- Demazure: For smooth toric varieties M_𝔅 with fan 𝔅 the connected component of the group of automorphisms 𝔄tut(M_𝔅)₀ is generated as a group by the maximal torus 𝔅^c and the system of unipotent 1-parameter subgroups {λ_𝔅}_{𝔅𝔅𝔅𝔅ℓ} dual to the family of roots R(𝔅).

• $\mathfrak{Aut}(X_{\mathcal{F}})_0$ is **reductive** if and only if and only if $R(\mathcal{F}) = -R(\mathcal{F})$.

Ingrediants

• Given a principal \mathbb{T}^{ℓ} bundle $\mathfrak{G} \longrightarrow \mathbb{CP}^1$ construct the associated fiber bundle $M = \mathfrak{G} \times_{\mathbb{T}^{\ell}} V$ with fiber V where V is a compact toric Kähler manifold of complex dimension ℓ .

Ingrediants

- Given a principal \mathbb{T}^{ℓ} bundle $\mathfrak{G} \longrightarrow \mathbb{CP}^1$ construct the associated fiber bundle $M = \mathfrak{G} \times_{\mathbb{T}^{\ell}} V$ with fiber V where V is a compact toric Kähler manifold of complex dimension ℓ .
- The Moment map z : V→t^{*}_ℓ with image the Delzant polytope P in the dual of the Lie algebra t_ℓ.

Ingrediants

- Given a principal \mathbb{T}^{ℓ} bundle $\mathfrak{G} \longrightarrow \mathbb{CP}^1$ construct the associated fiber bundle $M = \mathfrak{G} \times_{\mathbb{T}^{\ell}} V$ with fiber V where V is a compact toric Kähler manifold of complex dimension ℓ .
- The Moment map z : V→t^{*}_ℓ with image the Delzant polytope P in the dual of the Lie algebra t_ℓ.
- A principal connection on 𝔅 with curvature ω_{FS} ⊗ p ∈ C[∞](Σ, ∧^{1,1} ⊗t_ℓ) where ω_{FS} is the Fubini-Study form on CP¹ and p ∈ t_ℓ.

Ingrediants

- Given a principal T^ℓ bundle 𝔅 →→Cℙ¹ construct the associated fiber bundle M = 𝔅 ×_{T^ℓ} V with fiber V where V is a compact toric Kähler manifold of complex dimension ℓ.
- The Moment map z : V→t^{*}_ℓ with image the Delzant polytope P in the dual of the Lie algebra t_ℓ.
- A principal connection on 𝔅 with curvature ω_{FS} ⊗ p ∈ C[∞](Σ, Λ^{1,1} ⊗t_ℓ) where ω_{FS} is the Fubini-Study form on CP¹ and p ∈ t_ℓ.
- A constant $\hat{c} \in \mathbb{R}$ such that the (1, 1)-form $\hat{c} \omega_{\Sigma} + \langle v, \omega_{\Sigma} \otimes p \rangle$ is positive for $v \in P$.

Ingrediants

- Given a principal T^ℓ bundle 𝔅 →→Cℙ¹ construct the associated fiber bundle M = 𝔅 ×_{T^ℓ} V with fiber V where V is a compact toric Kähler manifold of complex dimension ℓ.
- The Moment map z : V→t^{*}_ℓ with image the Delzant polytope P in the dual of the Lie algebra t_ℓ.
- A principal connection on 𝔅 with curvature ω_{FS} ⊗ p ∈ C[∞](Σ, Λ^{1,1} ⊗t_ℓ) where ω_{FS} is the Fubini-Study form on CP¹ and p ∈ t_ℓ.
- A constant $\hat{c} \in \mathbb{R}$ such that the (1, 1)-form $\hat{c} \omega_{\Sigma} + \langle v, \omega_{\Sigma} \otimes p \rangle$ is positive for $v \in P$.
- The generalized Calabi data on $\mathring{M} = \mathfrak{G} \times_{\mathbb{T}^{\ell}} z^{-1}(\mathring{P})$ is

$$egin{aligned} &g = (\hat{c} + \langle p, z
angle) \, g_{\mathbb{CP}^1} + \langle dz, \mathbf{G}, dz
angle + \langle heta, \mathbf{H}, heta
angle \ &\omega = (\hat{c} + \langle p, z
angle) \, \omega_{\mathbb{CP}^1} + \langle dz \wedge heta
angle \ &d heta = \omega_{\mathbb{CP}^1} \otimes p, \end{aligned}$$

where $\mathbf{G} = \operatorname{Hess}(U) = \mathbf{H}^{-1}$, U is the symplectic potential of the chosen toric Kähler structure g_V on V, and $\langle \cdot, \cdot, \cdot \rangle$ denotes the pointwise contraction $gt^* \times S^2 \mathfrak{t}_{\ell} \times \mathfrak{t}_{\ell}^* \to \mathbb{R}$ or the dual contraction.

Ingrediants

- Given a principal T^ℓ bundle 𝔅 →→Cℙ¹ construct the associated fiber bundle M = 𝔅 ×_{T^ℓ} V with fiber V where V is a compact toric Kähler manifold of complex dimension ℓ.
- The Moment map z : V→t^{*}_ℓ with image the Delzant polytope P in the dual of the Lie algebra t_ℓ.
- A principal connection on 𝔅 with curvature ω_{FS} ⊗ p ∈ C[∞](Σ, Λ^{1,1} ⊗t_ℓ) where ω_{FS} is the Fubini-Study form on CP¹ and p ∈ t_ℓ.
- A constant $\hat{c} \in \mathbb{R}$ such that the (1, 1)-form $\hat{c} \omega_{\Sigma} + \langle v, \omega_{\Sigma} \otimes p \rangle$ is positive for $v \in P$.
- The generalized Calabi data on $\mathring{M} = \mathfrak{G} \times_{\mathbb{T}^{\ell}} z^{-1}(\mathring{P})$ is

$$egin{aligned} &g = (\hat{c} + \langle p, z
angle) \, g_{\mathbb{CP}^1} + \langle dz, \mathbf{G}, dz
angle + \langle heta, \mathbf{H}, heta
angle \ &\omega = (\hat{c} + \langle p, z
angle) \, \omega_{\mathbb{CP}^1} + \langle dz \wedge heta
angle \ &d heta = \omega_{\mathbb{CP}^1} \otimes p, \end{aligned}$$

where $\mathbf{G} = \operatorname{Hess}(U) = \mathbf{H}^{-1}$, U is the symplectic potential of the chosen toric Kähler structure g_V on V, and $\langle \cdot, \cdot, \cdot \rangle$ denotes the pointwise contraction $gt^* \times S^2 \mathfrak{t}_{\ell} \times \mathfrak{t}_{\ell}^* \to \mathbb{R}$ or the dual contraction.

• Get compatible Kähler metrics on M and

Ingrediants

- Given a principal T^ℓ bundle 𝔅 →→Cℙ¹ construct the associated fiber bundle M = 𝔅 ×_{T^ℓ} V with fiber V where V is a compact toric Kähler manifold of complex dimension ℓ.
- The Moment map z : V→t^{*}_ℓ with image the Delzant polytope P in the dual of the Lie algebra t_ℓ.
- A principal connection on 𝔅 with curvature ω_{FS} ⊗ p ∈ C[∞](Σ, Λ^{1,1} ⊗t_ℓ) where ω_{FS} is the Fubini-Study form on CP¹ and p ∈ t_ℓ.
- A constant $\hat{c} \in \mathbb{R}$ such that the (1, 1)-form $\hat{c} \omega_{\Sigma} + \langle v, \omega_{\Sigma} \otimes p \rangle$ is positive for $v \in P$.
- The generalized Calabi data on $\mathring{M} = \mathfrak{G} \times_{\mathbb{T}^{\ell}} z^{-1}(\mathring{P})$ is

$$\begin{split} g &= (\hat{c} + \langle p, z \rangle) \, g_{\mathbb{CP}^1} + \langle dz, \mathbf{G}, dz \rangle + \langle \theta, \mathbf{H}, \theta \rangle \\ \omega &= (\hat{c} + \langle p, z \rangle) \, \omega_{\mathbb{CP}^1} + \langle dz \wedge \theta \rangle \\ d\theta &= \omega_{\mathbb{CP}^1} \otimes p, \end{split}$$

where $\mathbf{G} = \operatorname{Hess}(U) = \mathbf{H}^{-1}$, U is the symplectic potential of the chosen toric Kähler structure g_V on V, and $\langle \cdot, \cdot, \cdot \rangle$ denotes the pointwise contraction $gt^* \times S^2 \mathfrak{t}_{\ell} \times \mathfrak{t}_{\ell}^* \to \mathbb{R}$ or the dual contraction.

• Get compatible Kähler metrics on M and

Lemma (Apostolov, Calderbank, Gauduchon, Tønnesen-Friedmann)

If V admits an extremal toric Kähler metric g_V , then M admits compatible extremal Kähler metrics (at least in some Kähler classes).

Charles Boyer (University of New Mexico)

Theorem (2)

Any Bott manifold M_n admits a toric extremal Kähler metric. Alternatively, the extremal Kähler cone $\mathcal{E}(M_n)$ is a non-empty open cone in the Kähler cone $\mathcal{K}(M_n)$.

Theorem (2)

Any Bott manifold M_n admits a toric extremal Kähler metric. Alternatively, the extremal Kähler cone $\mathcal{E}(M_n)$ is a non-empty open cone in the Kähler cone $\mathcal{K}(M_n)$.

• The proof is **induction** using the **Lemma** of Apostolov, Calderbank, Gauduchon, Tønnesen-Friedmann.

Theorem (2)

Any Bott manifold M_n admits a toric extremal Kähler metric. Alternatively, the extremal Kähler cone $\mathcal{E}(M_n)$ is a non-empty open cone in the Kähler cone $\mathcal{K}(M_n)$.

- The proof is **induction** using the Lemma of Apostolov, Calderbank, Gauduchon, Tønnesen-Friedmann.
- The last statement uses the well known LeBrun-Simanca rigidity result.

Theorem (2)

Any Bott manifold M_n admits a toric extremal Kähler metric. Alternatively, the extremal Kähler cone $\mathcal{E}(M_n)$ is a non-empty open cone in the Kähler cone $\mathcal{K}(M_n)$.

- The proof is **induction** using the Lemma of Apostolov, Calderbank, Gauduchon, Tønnesen-Friedmann.
- The last statement uses the well known LeBrun-Simanca rigidity result.

Problem

Describe the extremal Kähler cone $\mathcal{E}(M_n)$. In particular, when is $\mathcal{E}(M_n) = \mathcal{K}(M_n)$?

Theorem (2)

Any Bott manifold M_n admits a toric extremal Kähler metric. Alternatively, the extremal Kähler cone $\mathcal{E}(M_n)$ is a non-empty open cone in the Kähler cone $\mathcal{K}(M_n)$.

- The proof is **induction** using the Lemma of Apostolov, Calderbank, Gauduchon, Tønnesen-Friedmann.
- The last statement uses the well known LeBrun-Simanca rigidity result.

Problem

Describe the extremal Kähler cone $\mathcal{E}(M_n)$. In particular, when is $\mathcal{E}(M_n) = \mathcal{K}(M_n)$?

• We can describe the Kähler cone $\mathcal{K}(M_n)$ of a Bott manifold M_n . It is often, but not always, the first orthant in \mathbb{R}^n .

Theorem (2)

Any Bott manifold M_n admits a toric extremal Kähler metric. Alternatively, the extremal Kähler cone $\mathcal{E}(M_n)$ is a non-empty open cone in the Kähler cone $\mathcal{K}(M_n)$.

- The proof is **induction** using the Lemma of Apostolov, Calderbank, Gauduchon, Tønnesen-Friedmann.
- The last statement uses the well known LeBrun-Simanca rigidity result.

Problem

Describe the extremal Kähler cone $\mathcal{E}(M_n)$. In particular, when is $\mathcal{E}(M_n) = \mathcal{K}(M_n)$?

- We can describe the Kähler cone $\mathcal{K}(M_n)$ of a Bott manifold M_n . It is often, but not always, the first orthant in \mathbb{R}^n .
- For a Bott tower $M_n(A)$ the connected component $\mathfrak{Aut}(M_n(A))_0$ is the connected component of the isotropy subgroup of \mathfrak{G}_1^{BT} at $M_n(A)$.

Theorem (2)

Any Bott manifold M_n admits a toric extremal Kähler metric. Alternatively, the extremal Kähler cone $\mathcal{E}(M_n)$ is a non-empty open cone in the Kähler cone $\mathcal{K}(M_n)$.

- The proof is **induction** using the Lemma of Apostolov, Calderbank, Gauduchon, Tønnesen-Friedmann.
- The last statement uses the well known LeBrun-Simanca rigidity result.

Problem

Describe the extremal Kähler cone $\mathcal{E}(M_n)$. In particular, when is $\mathcal{E}(M_n) = \mathcal{K}(M_n)$?

- We can describe the Kähler cone $\mathcal{K}(M_n)$ of a Bott manifold M_n . It is often, but not always, the first orthant in \mathbb{R}^n .
- For a Bott tower $M_n(A)$ the connected component $\mathfrak{Aut}(M_n(A))_0$ is the connected component of the isotropy subgroup of \mathfrak{G}_1^{BT} at $M_n(A)$.

Theorem (3)

Let $M_n(A)$ be a **Bott tower**. If the elements below the diagonal of any row of the lower triangular unipotent matrix A all have the same sign, then $M_n(A)$ does not admit a Kähler metric with constant scalar curvature. In particular, if $A_2^1 \neq 0$ then $M_n(A)$ does not admit a Kähler metric with constant scalar curvature.

Theorem (2)

Any Bott manifold M_n admits a toric extremal Kähler metric. Alternatively, the extremal Kähler cone $\mathcal{E}(M_n)$ is a non-empty open cone in the Kähler cone $\mathcal{K}(M_n)$.

- The proof is **induction** using the Lemma of Apostolov, Calderbank, Gauduchon, Tønnesen-Friedmann.
- The last statement uses the well known LeBrun-Simanca rigidity result.

Problem

Describe the extremal Kähler cone $\mathcal{E}(M_n)$. In particular, when is $\mathcal{E}(M_n) = \mathcal{K}(M_n)$?

- We can describe the Kähler cone $\mathcal{K}(M_n)$ of a Bott manifold M_n . It is often, but not always, the first orthant in \mathbb{R}^n .
- For a Bott tower $M_n(A)$ the connected component $\mathfrak{Aut}(M_n(A))_0$ is the connected component of the isotropy subgroup of $\mathfrak{G}_{1}^{\mathsf{BT}}$ at $M_n(A)$.

Theorem (3)

Let $M_n(A)$ be a **Bott tower**. If the elements below the diagonal of any row of the lower triangular unipotent matrix A all have the same sign, then $M_n(A)$ does not admit a Kähler metric with constant scalar curvature. In particular, if $A_2^1 \neq 0$ then $M_n(A)$ does not admit a Kähler metric with constant scalar curvature.

• The proof essentially follows from Demazure's Theorem by computing possible root vectors.

The Twist of Bott Manifolds

• Following Choi-Suh we let *t* denote the number of **non-trivial topological fibrations** in the defining sequence of a Bott tower $M_n(A)$. It is well defined and t = 0, 1, ..., n - 1.

The Twist of Bott Manifolds

- Following Choi-Suh we let *t* denote the number of **non-trivial topological fibrations** in the defining sequence of a Bott tower $M_n(A)$. It is well defined and t = 0, 1, ..., n 1.
- A *t*-twist **Bott manifold** is **diffeo** to a bundle over $(S^2)^{n-t}$ with fiber a stage *t* **Bott manifold**.

- Following Choi-Suh we let *t* denote the number of **non-trivial topological fibrations** in the defining sequence of a Bott tower $M_n(A)$. It is well defined and t = 0, 1, ..., n 1.
- A *t*-twist **Bott manifold** is **diffeo** to a bundle over $(S^2)^{n-t}$ with fiber a stage *t* **Bott manifold**.

Theorem

Let
$$M_n(A)$$
 be a Bott tower with twist t and matrix A of the form

$$A = \begin{pmatrix} \tilde{A} & 0 & \cdots & 0 \\ A_{n-t+1}^1 & 1 & \cdots & \vdots \\ \vdots & \vdots & \ddots & 0 \\ A_n^1 & A_n^{n-t+1} & \cdots & 1 \end{pmatrix}, \quad A_j^i \in \mathbb{Z},$$

where $\tilde{A} \neq \mathbb{I}_n$ has 0-twist. Then $M_n(A)$ does not admit a compatible Kähler metric with constant scalar curvature. In particular, if t = 0 and the Bott manifold $M_n(A)$ has a compatible Kähler metric with constant scalar curvature, then it is the product $(\mathbb{CP}^1)^n$.

- Following Choi-Suh we let *t* denote the number of **non-trivial topological fibrations** in the defining sequence of a Bott tower $M_n(A)$. It is well defined and t = 0, 1, ..., n 1.
- A *t*-twist **Bott manifold** is **diffeo** to a bundle over $(S^2)^{n-t}$ with fiber a stage *t* **Bott manifold**.

Theorem

 $A = \begin{pmatrix} \tilde{A} & 0 & \cdots & 0 \\ & & & & \\ A_{n-t+1}^{1} & 1 & \cdots & \vdots \\ \vdots & \vdots & \ddots & 0 \\ A_{n}^{1} & A_{n}^{n-t+1} & \cdots & 1 \end{pmatrix}, \qquad A_{j}^{i} \in \mathbb{Z},$

where $\tilde{A} \neq \mathbb{I}_n$ has 0-twist. Then $M_n(A)$ does not admit a compatible Kähler metric with constant scalar curvature. In particular, if t = 0 and the Bott manifold $M_n(A)$ has a compatible Kähler metric with constant scalar curvature, then it is the product $(\mathbb{CP}^1)^n$.

The only 0 twist Fano Bott manifold is the product (CP¹)ⁿ.

Let $M_n(A)$ be a **Bott tower** with twist t and matrix A of the form

• A 1 twist **Bott manifold** is diffeomorphic to a non-trivial \mathbb{CP}^1 bundle over $(S^2)^{n-1}$.

- A 1 twist **Bott manifold** is diffeomorphic to a non-trivial \mathbb{CP}^1 bundle over $(S^2)^{n-1}$.
- The diffeomorphism type of a 1 twist Bott manifold is determined by its cohomology ring (Choi-Suh).

- A 1 twist **Bott manifold** is diffeomorphic to a non-trivial \mathbb{CP}^1 bundle over $(S^2)^{n-1}$.
- The diffeomorphism type of a 1 twist Bott manifold is determined by its cohomology ring (Choi-Suh).
- Consider Bott manifolds $M_n(\mathbf{k})$ with $\mathbf{k} = (k_1, \dots, k_{n-1})$ satisfying $k_1 k_2 \cdots k_{n-1} \neq 0$ with A matrix

$$A = \begin{pmatrix} 1 & 0 & \cdots & 0 & 0 \\ 0 & 1 & \cdots & 0 & 0 \\ \vdots & \vdots & \ddots & \vdots & \vdots \\ 0 & 0 & \cdots & 1 & 0 \\ k_1 & k_2 & \cdots & k_{n-1} & 1 \end{pmatrix}.$$

- A 1 twist **Bott manifold** is diffeomorphic to a non-trivial \mathbb{CP}^1 bundle over $(S^2)^{n-1}$.
- The diffeomorphism type of a 1 twist Bott manifold is determined by its cohomology ring (Choi-Suh).
- Consider Bott manifolds $M_n(\mathbf{k})$ with $\mathbf{k} = (k_1, \dots, k_{n-1})$ satisfying $k_1 k_2 \cdots k_{n-1} \neq 0$ with A matrix

$$A = \begin{pmatrix} 1 & 0 & \cdots & 0 & 0 \\ 0 & 1 & \cdots & 0 & 0 \\ \vdots & \vdots & \ddots & \vdots & \vdots \\ 0 & 0 & \cdots & 1 & 0 \\ k_1 & k_2 & \cdots & k_{n-1} & 1 \end{pmatrix}.$$

• Then M_n(**k**) admits an extremal Kähler metric in every Kähler class.

- A 1 twist **Bott manifold** is diffeomorphic to a non-trivial \mathbb{CP}^1 bundle over $(S^2)^{n-1}$.
- The diffeomorphism type of a 1 twist Bott manifold is determined by its cohomology ring (Choi-Suh).
- Consider Bott manifolds $M_n(\mathbf{k})$ with $\mathbf{k} = (k_1, \dots, k_{n-1})$ satisfying $k_1 k_2 \cdots k_{n-1} \neq 0$ with A matrix

	/1	0		0	0\	
	0	1	• • •	0	0	
A =	:	1	1.		:	
	Ó	0		1	Ó	
	k_1	k ₂		<i>k</i> _{<i>n</i>-1}	-1/	

- Then $M_n(\mathbf{k})$ admits an **extremal Kähler metric** in **every** Kähler class.
- If not all k_i have the same sign, then some of these metrics will have constant scalar curvature.

- A 1 twist **Bott manifold** is diffeomorphic to a non-trivial \mathbb{CP}^1 bundle over $(S^2)^{n-1}$.
- The diffeomorphism type of a 1 twist Bott manifold is determined by its cohomology ring (Choi-Suh).
- Consider Bott manifolds $M_n(\mathbf{k})$ with $\mathbf{k} = (k_1, \dots, k_{n-1})$ satisfying $k_1 k_2 \cdots k_{n-1} \neq 0$ with A matrix

	/1	0		0	0\	
	0	1	•••	0	0	
A =	:	÷	$\gamma_{\rm el}$		÷	
	0	0		1	0	
	k_1	k ₂		k_{n-1}	-1/	

- Then $M_n(\mathbf{k})$ admits an **extremal Kähler metric** in **every** Kähler class.
- If not all k_i have the same sign, then some of these metrics will have constant scalar curvature.
- $M_n(\mathbf{k})$ is Fano if and only if $k_i = \pm 1$ for all *i*.
1 Twist Bott Manifolds

- A 1 twist **Bott manifold** is diffeomorphic to a non-trivial \mathbb{CP}^1 bundle over $(S^2)^{n-1}$.
- The diffeomorphism type of a 1 twist Bott manifold is determined by its cohomology ring (Choi-Suh).
- Consider Bott manifolds $M_n(\mathbf{k})$ with $\mathbf{k} = (k_1, \dots, k_{n-1})$ satisfying $k_1 k_2 \cdots k_{n-1} \neq 0$ with A matrix

	/1	0		0	0\	
	0	1	• • •	0	0	
A =	:	÷	÷.,		- :	
	0	0		1	0	
	k_1	k ₂		k_{n-1}	1/	

- Then *M_n*(**k**) admits an **extremal Kähler metric** in **every** Kähler class.
- If not all k_i have the same sign, then some of these metrics will have constant scalar curvature.
- $M_n(\mathbf{k})$ is Fano if and only if $k_i = \pm 1$ for all *i*.
- The monotone Kähler class admits a Kähler-Ricci soliton which is Kähler-Einstein if and only if the number of +1 in k equals the number of -1 in k.

1 Twist Bott Manifolds

- A 1 twist Bott manifold is diffeomorphic to a non-trivial CP¹ bundle over (S²)^{n−1}.
- The diffeomorphism type of a 1 twist Bott manifold is determined by its cohomology ring (Choi-Suh).
- Consider Bott manifolds $M_n(\mathbf{k})$ with $\mathbf{k} = (k_1, \dots, k_{n-1})$ satisfying $k_1 k_2 \cdots k_{n-1} \neq 0$ with A matrix

	/1	0		0	0\	
	0	1	• • •	0	0	
A =	:	÷	÷.,		÷	
	0	0		1	0	
	k_1	k ₂		<i>k</i> _{<i>n</i>-1}	-1/	

- Then *M_n*(**k**) admits an **extremal Kähler metric** in **every** Kähler class.
- If not all *k_i* have the same sign, then some of these metrics will have **constant scalar curvature**.
- $M_n(\mathbf{k})$ is Fano if and only if $k_i = \pm 1$ for all *i*.
- The monotone Kähler class admits a Kähler-Ricci soliton which is Kähler-Einstein if and only if the number of +1 in k equals the number of -1 in k.
- Much of this case recovers previous work of Koiso,Sakane,Guan,Hwang, and Apostolov–Calderbank–Gauduchon–Tønnesen-Friedman

• For stage 3 Bott manifolds the cohomology ring determines its diffeomorphism type (Choi-Masuda-Suh).

- For stage 3 Bott manifolds the cohomology ring determines its diffeomorphism type (Choi-Masuda-Suh).
- We divide stage 3 Bott Manifolds into 3 types: Type 1 is the generic type, not of type 2 or 3.
 Type 2 has A¹₂ = 0 and is CP¹ bundle over CP¹ × CP¹. Type 3 has A²₃ = 0 and is a
 CP¹ × CP¹ bundle over CP¹. Note that types 2 and 3 can have non-trivial intersection.

- For stage 3 Bott manifolds the cohomology ring determines its diffeomorphism type (Choi-Masuda-Suh).
- We divide stage 3 Bott Manifolds into 3 types: Type 1 is the generic type, not of type 2 or 3.
 Type 2 has A₂¹ = 0 and is CP¹ bundle over CP¹ × CP¹. Type 3 has A₃² = 0 and is a
 CP¹ × CP¹ bundle over CP¹. Note that types 2 and 3 can have non-trivial intersection.
- A type 2 stage 3 Bott manifold $M_3(0, A_3^1, A_3^2)$ can be realized a the projectivization $\mathbb{P}(\mathbb{1} \oplus \mathbb{O}(A_3^1, A_3^2))$. If $A_3^1 A_3^2 \neq 0$, it is a 1 twist Bott manifold. There is an **infinite number** of diffeomorphism types determined by $A_3^1 A_3^2$. The number of **Bott manifolds** in each diffeomorphism type is determined by the **factorizations** of $A_3^1 A_3^2$ with fixed parity of $(1 + A_3^1)(1 + A_3^2)$.

- For stage 3 Bott manifolds the cohomology ring determines its diffeomorphism type (Choi-Masuda-Suh).
- We divide stage 3 Bott Manifolds into 3 types: Type 1 is the generic type, not of type 2 or 3.
 Type 2 has A₂¹ = 0 and is CP¹ bundle over CP¹ × CP¹. Type 3 has A₃² = 0 and is a
 CP¹ × CP¹ bundle over CP¹. Note that types 2 and 3 can have non-trivial intersection.
- A type 2 stage 3 Bott manifold $M_3(0, A_3^1, A_3^2)$ can be realized a the projectivization $\mathbb{P}(\mathbb{1} \oplus \mathbb{O}(A_3^1, A_3^2))$. If $A_3^1 A_3^2 \neq 0$, it is a 1 twist Bott manifold. There is an **infinite number** of diffeomorphism types determined by $A_3^1 A_3^2$. The number of **Bott manifolds** in each diffeomorphism type is determined by the **factorizations** of $A_3^1 A_3^2$ with fixed parity of $(1 + A_3^1)(1 + A_3^2)$.
- A 0 twist stage 3 Bott manifold is $M_3(2A_3^1, 2A_3^1, 0)$ or $M_3(2A_2^1, 2A_2^1A_3^2, 2A_3^2)$. The former is type 3 whereas generically the later is type 1.

- For stage 3 Bott manifolds the cohomology ring determines its diffeomorphism type (Choi-Masuda-Suh).
- We divide stage 3 Bott Manifolds into 3 types: Type 1 is the generic type, not of type 2 or 3.
 Type 2 has A₂¹ = 0 and is CP¹ bundle over CP¹ × CP¹. Type 3 has A₃² = 0 and is a
 CP¹ × CP¹ bundle over CP¹. Note that types 2 and 3 can have non-trivial intersection.
- A type 2 stage 3 Bott manifold $M_3(0, A_3^1, A_3^2)$ can be realized a the projectivization $\mathbb{P}(\mathbb{1} \oplus \mathbb{O}(A_3^1, A_3^2))$. If $A_3^1A_3^2 \neq 0$, it is a 1 twist Bott manifold. There is an **infinite number** of diffeomorphism types determined by $A_3^1A_3^2$. The number of **Bott manifolds** in each diffeomorphism type is determined by the **factorizations** of $A_3^1A_3^2$ with fixed parity of $(1 + A_3^1)(1 + A_3^2)$.
- A 0 twist stage 3 Bott manifold is $M_3(2A_3^1, 2A_3^1, 0)$ or $M_3(2A_2^1, 2A_2^1A_3^2, 2A_3^2)$. The former is type 3 whereas generically the later is type 1.
- There are 5 stage 3 Fano Bott manifolds M₃(A¹₂, A¹₃, A²₃), up to equivalence, with representatives M₃(0,0,0), M₃(0,1,-1), M₃(0,1,1), M₃(1,0,0), M₃(-1,0,1). The first 2 admit constant scalar curvature Kähler metrics, the remaining 3 do not.

- For stage 3 Bott manifolds the cohomology ring determines its diffeomorphism type (Choi-Masuda-Suh).
- We divide stage 3 Bott Manifolds into 3 types: Type 1 is the generic type, not of type 2 or 3.
 Type 2 has A¹₂ = 0 and is CP¹ bundle over CP¹ × CP¹. Type 3 has A²₃ = 0 and is a
 CP¹ × CP¹ bundle over CP¹. Note that types 2 and 3 can have non-trivial intersection.
- A type 2 stage 3 Bott manifold $M_3(0, A_3^1, A_3^2)$ can be realized a the projectivization $\mathbb{P}(\mathbb{1} \oplus \mathbb{O}(A_3^1, A_3^2))$. If $A_3^1 A_3^2 \neq 0$, it is a 1 twist Bott manifold. There is an **infinite number** of diffeomorphism types determined by $A_3^1 A_3^2$. The number of **Bott manifolds** in each diffeomorphism type is determined by the **factorizations** of $A_3^1 A_3^2$ with fixed parity of $(1 + A_3^1)(1 + A_3^2)$.
- A 0 twist stage 3 Bott manifold is $M_3(2A_3^1, 2A_3^1, 0)$ or $M_3(2A_2^1, 2A_2^1A_3^2, 2A_3^2)$. The former is type 3 whereas generically the later is type 1.
- There are 5 stage 3 Fano Bott manifolds M₃(A¹₂, A¹₃, A²₃), up to equivalence, with representatives M₃(0,0,0), M₃(0,1,-1), M₃(0,1,1), M₃(1,0,0), M₃(-1,0,1). The first 2 admit constant scalar curvature Kähler metrics, the remaining 3 do not.
- There is an infinite number of pairs of c-projectively equivalent (Calderbank-Eastwood-Mateev-Neusser) constant scalar curvature Kähler metrics that are not affinely equivalent.

- For stage 3 Bott manifolds the cohomology ring determines its diffeomorphism type (Choi-Masuda-Suh).
- We divide stage 3 Bott Manifolds into 3 types: Type 1 is the generic type, not of type 2 or 3.
 Type 2 has A¹₂ = 0 and is CP¹ bundle over CP¹ × CP¹. Type 3 has A²₃ = 0 and is a
 CP¹ × CP¹ bundle over CP¹. Note that types 2 and 3 can have non-trivial intersection.
- A type 2 stage 3 Bott manifold $M_3(0, A_3^1, A_3^2)$ can be realized a the projectivization $\mathbb{P}(\mathbb{I} \oplus \mathbb{O}(A_3^1, A_3^2))$. If $A_3^1A_3^2 \neq 0$, it is a 1 twist Bott manifold. There is an **infinite number** of diffeomorphism types determined by $A_3^1A_3^2$. The number of **Bott manifolds** in each diffeomorphism type is determined by the **factorizations** of $A_3^1A_3^2$ with fixed parity of $(1 + A_3^1)(1 + A_3^2)$.
- A 0 twist stage 3 Bott manifold is $M_3(2A_3^1, 2A_3^1, 0)$ or $M_3(2A_2^1, 2A_2^1A_3^2, 2A_3^2)$. The former is type 3 whereas generically the later is type 1.
- There are 5 stage 3 Fano Bott manifolds M₃(A¹₂, A¹₃, A²₃), up to equivalence, with representatives M₃(0,0,0), M₃(0,1,-1), M₃(0,1,1), M₃(1,0,0), M₃(-1,0,1). The first 2 admit constant scalar curvature Kähler metrics, the remaining 3 do not.
- There is an infinite number of pairs of *c*-projectively equivalent (Calderbank-Eastwood-Mateev-Neusser) constant scalar curvature Kähler metrics that are not affinely equivalent.
- There are many extremal orbifold Kähler metrics on stage 3 Bott manifolds.

- For stage 3 Bott manifolds the cohomology ring determines its diffeomorphism type (Choi-Masuda-Suh).
- We divide stage 3 Bott Manifolds into 3 types: Type 1 is the generic type, not of type 2 or 3.
 Type 2 has A¹₂ = 0 and is CP¹ bundle over CP¹ × CP¹. Type 3 has A²₃ = 0 and is a
 CP¹ × CP¹ bundle over CP¹. Note that types 2 and 3 can have non-trivial intersection.
- A type 2 stage 3 Bott manifold $M_3(0, A_3^1, A_3^2)$ can be realized a the projectivization $\mathbb{P}(\mathbb{I} \oplus \mathbb{O}(A_3^1, A_3^2))$. If $A_3^1A_3^2 \neq 0$, it is a 1 twist Bott manifold. There is an **infinite number** of diffeomorphism types determined by $A_3^1A_3^2$. The number of **Bott manifolds** in each diffeomorphism type is determined by the **factorizations** of $A_3^1A_3^2$ with fixed parity of $(1 + A_3^1)(1 + A_3^2)$.
- A 0 twist stage 3 Bott manifold is $M_3(2A_3^1, 2A_3^1, 0)$ or $M_3(2A_2^1, 2A_2^1A_3^2, 2A_3^2)$. The former is type 3 whereas generically the later is type 1.
- There are 5 stage 3 Fano Bott manifolds M₃(A¹₂, A¹₃, A²₃), up to equivalence, with representatives M₃(0,0,0), M₃(0,1,-1), M₃(0,1,1), M₃(1,0,0), M₃(-1,0,1). The first 2 admit constant scalar curvature Kähler metrics, the remaining 3 do not.
- There is an infinite number of pairs of c-projectively equivalent (Calderbank-Eastwood-Mateev-Neusser) constant scalar curvature Kähler metrics that are not affinely equivalent.
- There are many extremal orbifold Kähler metrics on stage 3 Bott manifolds.
- There is an uncountable number of extremal almost Kähler metrics (non integrable) on stage 3 Bott manifolds. These are not constant scalar curvature

THANK YOU FOR YOUR ATTENTION

and

HAPPY BIRTHDAY JACQUES