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The well known Cauchy-Riemann (in short: C-R) equations provide neces-
sary and sufficient conditions for a complex function f(z) to be holomorphic
(c.f. [4], [1]). One traditional framework to introduce the C-R conditions is
through the consideration of harmonic conjugates, {u(x,y),v(z,y)}, as the real
and imaginary parts of a holomorphic function f(z), after performing the substi-
tution z — x +1y, yielding f(x+iy) = u(z,y) +iv(z,y). The Cauchy-Riemann
conditions are a cornerstone in Complex Analysis and an essential ingredient of
its many applications to Physics, Engineering, etc. Computer Algebra seems,
at first glance, to be quite alien to this context.

In our contribution we would like to show that Computer Algebra can be
useful in the study of C-R equations and harmonic conjugates. We will consider
two different, but related, issues: first, we will address the specific factorization
properties of conjugate harmonic polynomials and, second, we will attempt
generalizing C-R conditions by replacing the real/complex framework by some
more general field extensions. Let us briefly describe both topics in what follows.

An analytic polynomial (a terminology taken from the popular textbook in
Complex Analysis, see e.g. [1]), is a bivariate polynomial P(x,y), with complex
coefficients, which arises by substituting z — x + ¢y on a univariate polynomial
p(z) € Clz], i.e. p(z) — p(z +iy) = P(x,y). In our work we have studied
the factorization properties of analytic polynomials, showing, among other re-
markable facts, that conjugate harmonic polynomials can not have a common
factor. This is a quite basic result, but we were not able to find it in the con-
sulted bibliography, probably because it requires an algebraic approach which
is usually missing in the Complex Variables framework. On the other hand we
can generalize this result from polynomials to other functions (several variables,
germs of holomorphic functions at a point, entire functions), all of them having
in common being elements of rings with some good factorization properties.

A computational relevant context (and in fact our original motivation) of our
work about the factorization of harmonic polynomials is the following situation.
Consider a rational function f(z) € C(z) in several complex variables and with
complex coefficients, then perform the substitution z = x+iy and compute the
real and imaginary parts of the resulting analytic rational function f(x+iy) =
u(x,y)+iv(x,y). These two rational functions in R(x,y) involve, usually, quite
huge expressions, so it is reasonable to ask if there is a possibility of simplifying
them by canceling out some common factors of the involved numerators and
denominators. Moreover, such functions appear quite naturally when working
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with complex parametrizations of curves [2], [3], and the key to show that some
time-consuming steps can be avoided is, precisely, the analysis of the potential
common factors for the two numerators of w,v. Learning about factorization
properties of harmonic polynomials is useful in this respect.

In fact, as a consequence of our study we can prove here that that the
assertion ged(numer(u), numer(v)) = 1 holds under reasonable assumptions and
also that, if a rational function f(z) in prime (also called irreducible) form is
given, then the standard way of obtaining u and v yields also rational functions
in prime form, i.e. not simplifiable.

As stated above, a second goal of our contribution deals with generalizing
C-R conditions when suitably replacing the pair real/complex numbers by some
other field extension. For a simple example, take as base field K = Q and
then K(a), with a such that a® +2 = 0. Then we will consider polynomi-
als (or more complicated functions) f(z) € K(«)[z] and perform the substi-
tution z = x¢ + 1 + 2202, yielding f(zo + z1a + x20?) = ug(wo, 1, 72) +
uy (20, 11, T2)a + ua (20, 11, T2)a?, where, u; € Klxg, 1, 22]. Finally, we will like
to find the necessary and sufficient conditions on a collection of polynomials
{u;(xo, x1,22) }i=0,1,2 to be, as above, the components of the expansion of a
polynomial f(z) in the given field extension.

More generally, suppose K is a field, K is the algebraic closure of K, and «
is an algebraic element over K of degree r + 1. In this context we proceed, first,
generalizing the concept of analytic polynomial, as follows:

Definition. A polynomial p(wo, ..., ;) € K(a)[zo,...,z,] is called analytic if
there exists a polynomial f(z) € K[z] such that

flao+zia+ -+ z.a") =p(xg, ..., T).

We say that f is the generating polynomial of p. An analytic polynomial can be
uniquely written as

p(zo, ...y xr) = uwo(xoy ..., Tr) +ur(zo, ..., xr)a+ -+ up(xo, ...,z )",
where u; € K[zg,...,2,]. The polynomial u; are called the K—-components of
p(x()a s 7x7‘)'

We denote the ring of (a-)analytic polynomials by Ag(a)[To,...,7,]. The
main result in this setting is the following analogue of C-R conditions:

Theorem Let uo, . .., u, be the K-components of a polynomial p(zo, ...,z,) €
Ak(a)[To, ., 2], and let o™ = a;0 + @100 + - + a; .07, with a; ; € K and



i1=1,...,r. It holds that
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where Vu; denotes the gradient of u;(zg, ..., x,). And, conversely, if these equa-

tions hold among a collection of polynomials u;, then they are the K-components
of an analytic polynomial.

As expected, the above statement gives, in the complex case, the well known
Cauchy—Riemann conditions. In fact, let K =R, o = i, and P(z,y) € Clxo, z1]
be an analytic polynomial. If ug,u; are the real and imaginary parts of P, the
Theorem states that
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which is a matrix form expression of the classic C-R equations:

8UQ - 8U1 6u1 - 6UQ

dxy  Ozg’ 9z Oz

It might be interesting to remark that the square matrix expressing the C-
R conditions in the Theorem above, is a Hankel matrix ([5]), an ubiquitous
companion of Computer Algebra practitioners.
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