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We can think of the real plane as the field of complex numbers C, an algebraic
extension of the reals R of degree 2. Analogously, we can consider a character-
istic zero base field K and an algebraic extension of degree n, K(α) = K[α], i.e.
expressions given by K-polynomials in α up to degree n − 1 (which turns to
include as well all quotients of such expressions, exactly in the same way as a
quotient of two complex numbers –a R-polynomial of degree 1 in the letter i–
is again a complex number). Let us identify K(α) as the vector space Kn, via
the choice of a suitable base, such as the one given by the powers of α.

Then, recall that a real circle can be defined as the image (in the real plane,
suitably identified with the complex numbers) of the real axis under a Moebius
transformation (of the kind at+b

ct+d , with a, b, c, d ∈ C) in the complex field. Like-
wise, and roughly speaking, a hypercircle (i.e. a non-standard circle) can be
defined as the curve in Kn that is the image of “the K-axis” under the trans-
formation at+b

ct+d : K(α) → K(α). They have been introduced in [1] and studied
in detail in [2].

For example, if we take K = Q and α such that α3 + 2 = 0, and we consider

the map Φ =
t+ α

t− α
, we obtain the hypercircle in Q3 parametrized (i.e. obtained

as the image of a mapping from Q −→ Q3 defined) by [
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with plot as follows

The study of these hypercircles is fascinating and opens the door to stat-
ing many different questions. For instance, circles, through classical Moebius
transformations, are related to conformal (=angle perserving) geometry and
to complex holomorphic (i.e. functions of one complex variable are complex-
differentiable at every point) functions. Which analogous notions of angle-
perserving and holomorphic functions could be defined through the general
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framework that allows the definition of hypercircles? We think that the possi-
bility of connecting that part of Mathematics to Computer Algebra is, again,
highly non-standard.

In this direction, we will focus in our communication on a humble and basic
problem. Given an algebraic extension of degree n, K(α), and a parametric
curve in Kn, when is it a hypercircle? And, if so, we want to algorithmically
identify the transformation at+b

ct+d : K(α)→ K(α) yielding the hypercircle. Notice
that, for the classical case of standard circles, the problem is to determine if a
plane curve, given by a parametrization (perhaps with complex coefficients), is
a circle and, in the affirmative case, to find its geometric elements, since they
determine the Moebius transformation.

We will present a complete and algorithmic solution to both questions for
hypercircles and will briefly comment on the following application of this (on
the other hand quite natural) problem. Assume a planar or spatial rational
curve C is given by a parametrization over K(α). Then, we want to obtain,
whenever possible, a simpler parametrization over K of the same curve C. In [1]
it is shown that this problem is reduced to determining that a certain curve is a
hypercircle. Moreover, if we have a K parametrization of this hypercircle, a K
parametrization of the original curve is then achieved by a simple substitution.
This may-be hypercircle is found manipulating algorithmically the parametriza-
tion of the originally given curve, by a method analogous to Weil’s descent (see
[3] for a detailed description of this procedure).

So, the communication we propose here contributes to closing the solution
to this simplification problem, since it allows to algorithmically decide if a given
curve is a hypercircle and to parametrize it over K, which is trivial once the
corresponding ”Moebius” transformation is known.
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