Rubrics For Math 402

1 Relevant Student Learning Outcomes (SLOs)

In discussion with the faculty, the undergraduate committee created the student learning outcomes for the pure math major. The following SLOs are pertinent to the course content in Math 402.

- 1. Students will be able to compute limits and derivatives using their definitions, and use the fundamental theorem of calculus to compute definite and indefinite integrals.
- 2. Students will be able to write rigorous and well written proofs which show comprehension of formal mathematical definitions, recognize hypotheses, and form logical conclusions.
- 3. Students will be able to work with the fundamentals of logic, including mathematical statements and their converses and contrapositives.
- 4. Students will be able to construct counterexamples to mathematical statements and understand the importance of hypotheses.

Math 402 offers several opportunities for creating exam questions which assess student performance in these areas. Outcome #1 can be assessed by asking students to prove the existence of a derivative, limit, or convergence of a sequence using the formal ϵ - δ or ϵ -Ndefinition. Outcome #2 will be naturally be assessed in most exam questions. Outcome #3 can be assessed by questions which involve an "if and only if" statement or by questions which naturally involve a proof by contrapositive or proof by contradiction. Outcome #4 can be assessed by questions which ask students to disprove a mathematical statement, perhaps after a certain hypothesis is relaxed.

Every instructor for Math 402 is asked to report on the performance of these students in achieving these outcomes. Instructors will be asked to separate the results from different concentrations and majors. To that end, students should be asked to self-identify which major or concentration they have declared, perhaps with a question on the first exam or on a survey administered to the class.

In addition to the SLOs listed above, instructors will be asked to aggregate the results from homeworks and examinations and assess student progress towards the following broad outcomes.

- 5. Students will have sufficient preparation for courses in real and complex analysis, algebra, topology, and geometry at the graduate level.
- 6. Students will demonstrate effective written mathematical communication.

These are program level SLOs written out verbatim; it is understood that Math 402 instructors will only be able to comment on preparation for real analysis courses at the graduate level.

Finally, instructors should ask students to self-assess their performance on these SLOs through questions on an electronically administered survey.

2 Rubrics

The purpose of the rubrics is to ensure that assessment occurs independently from the instructor's chosen grading scale. For example, some instructors may view that a student who gets 80-90% of the points to have given a "very good" solution while others may expect 100% credit to be rated at this level, using the "excellent" rating to distinguish exceptional solutions.

2.1 Rubric for SLO #1:

Students will be able to compute limits and derivatives using their definitions, and use the fundamental theorem of calculus to compute definite and indefinite integrals.

E	Γ_{-}
Excellent	Exemplary ϵ - δ or ϵ - N proof, with full justification for each step and
	the logic of argument flows naturally. Choice of the threshold δ or N
	is well motivated and effective for the given problem. Mathematical
	and English language is highly articulate.
Very Good	Cogent ϵ - δ or ϵ - N proof, with most key steps clearly justified. Choice
	of the threshold δ or N is effective for the given problem. Mathe-
	matical and English language is easily understandable.
Satisfactory	Comprehensible ϵ - δ or ϵ - N proof, with justification for the essen-
	tial steps. Choice of the threshold δ or N is effective for the given
	problem. Errors are relatively minor. Mathematical and English
	language is decipherable.
Questionable	Partial progress on the ϵ - δ or ϵ - N proof, only some essential steps are
	justified. Some visible progress on selecting the choice of the thresh-
	old δ or N for the given problem. Errors are significant. Mathemat-
	ical and English language is incomplete.
Unacceptable	Poorly written ϵ - δ or ϵ - N proof, essential steps lack justification.
	Choice of the threshold δ or N is unclear or is ineffective for the given
	problem. Errors are striking. Mathematical and English language is
	unclear.

2.2 Rubric for SLO #2:

Students will be able to write rigorous and well written proofs which show comprehension of formal mathematical definitions, recognize hypotheses, and form logical conclusions.

Excellent	Exemplary proof, with full justification for each step and the logic of
	argument flows naturally. The chosen strategy for the proof is natu-
	ral, well motivated, and effective. Proof shows full comprehension of
	the pertinent mathematical definitions. Mathematical and English
	language is highly articulate.
Very Good	Cogent proof, with most key steps clearly justified. The chosen strat-
	egy for the proof is apparent and effective. Proof shows good com-
	prehension of the pertinent mathematical definitions. Mathematical
	and English language is easily understandable.
Satisfactory	Comprehensible proof, with justification for the essential steps. The
	chosen strategy for the proof is recognizable and mostly effective.
	Proof shows reasonable comprehension of the pertinent mathematical
	definitions. Errors are relatively minor. Mathematical and English
	language is decipherable.
Questionable	Partial progress on the proof, only some essential steps are justi-
	fied. The chosen strategy for the proof has potential. Proof shows
	an indication of some comprehension of the pertinent mathematical
	definitions. Errors are significant. Mathematical and English lan-
	guage is incomplete.
Unacceptable	Poorly written proof, essential steps lack justification. The chosen
	strategy for the proof is unclear and/or ineffective. Comprehension
	of the pertinent mathematical definitions is uncertain. Errors are
	striking. Mathematical and English language is unclear.

2.3 Rubric for SLO #3:

Students will be able to work with the fundamentals of logic, including mathematical statements and their converses and contrapositives.

Excellent	Exemplary proof which demonstrates full comprehension of the fun-
	damentals of logic. The chosen strategy for the proof is natural, well
	motivated, and effective. Student has a clear understanding of what
	constitutes the converse or contrapositive statement. Mathematical
	and English language is highly articulate.
Very Good	Cogent proof which demonstrates good comprehension of the fun-
	damentals of logic. The chosen strategy for the proof is apparent
	and effective. Student has a good understanding of what constitutes
	the converse or contrapositive statement. Mathematical and English
	language is easily understandable.
Satisfactory	Understandable proof which demonstrates reasonable comprehension
	of the fundamentals of logic. The chosen strategy for the proof is
	recognizable and mostly effective. Student has an understanding of
	what constitutes the converse or contrapositive statement. Errors
	are relatively minor. Mathematical and English language is deci-
	pherable.
Questionable	Incomplete proof which demonstrates a partial comprehension of the
	fundamentals of logic. The chosen strategy for the proof has po-
	tential. Proof shows an indication of some comprehension of the
	pertinent mathematical definitions. Student indicates a partial un-
	derstanding of what constitutes the converse or contrapositive state-
	ment. Errors are significant. Mathematical and English language is
	incomplete.
Unacceptable	Poorly written proof which demonstrates little or no comprehension
	of the fundamentals of logic. The chosen strategy for the proof is
	unclear and/or ineffective. Student does not demonstrate an under-
	standing of what constitutes the converse or contrapositive state-
	ment. Errors are striking. Mathematical and English language is
	unclear.
L	1

2.4 Rubric for SLO #4:

Students will be able to construct counterexamples to mathematical statements and understand the importance of hypotheses.

[
Excellent	Exemplary proof which disproves a mathematical statement by con-
	structing a natural counterexample. Proof includes full justification
	for why the example satisfies the hypothesis but not the conclusion.
	Student has a complete understanding that the mathematical state-
	ment is false. Mathematical and English language is highly articu-
	late.
Very Good	Cogent proof which disproves a mathematical statement by con-
	structing an effective counterexample. Proof includes justification
	for why the example satisfies the hypothesis but not the conclusion.
	Student has a good understanding that the mathematical statement
	is false. Mathematical and English language is easily understandable.
Satisfactory	Comprehensible proof which disproves a mathematical statement by
	constructing an effective counterexample. Student gives at least
	some indication why the example satisfies the hypothesis but not
	the conclusion. Student has some understanding that the mathe-
	matical statement is false. Mathematical and English language is
	decipherable.
Questionable	Incomplete proof with only partial progress towards a counterexam-
	ple. Student may show some comprehension of the relevant concepts,
	but not necessarily that the statement is false. Student understands
	that the statement is false, but does not justify why the hypotheses
	are satisfied but not the conclusion. Errors are significant. Mathe-
	matical and English language is incomplete.
Unacceptable	Poorly written proof which casts some doubt as to whether or not the
	student understands the falsity of the statement. Errors are striking.
	Mathematical and English language is unclear.

2.5 Rubric for SLO #5:

Students will have sufficient preparation for courses in real and complex analysis, algebra, topology, and geometry at the graduate level.

Excellent	Student is unquestionably prepared for graduate courses in real anal-
	ysis in most Ph.D. programs, including those which focus on measure
	theory, functional analysis, and other advanced topics over foundations.
	Instructor estimates that the student is prepared for courses with a sim-
	ilar level of sophistication in other subjects. The body of graded work
	demonstrates an extraordinary intellect and work ethic. Instructor would
	support the student's admission into almost all Ph.D. programs without
	reservation.
Very Good	Student is likely prepared for graduate courses in introductory real anal-
	ysis in most Ph.D. programs offered in the country, including those which
	treat measure theory, functional analysis, and other advanced topics. In-
	structor estimates that the student ought to be prepared for courses with
	a similar level of sophistication in other subjects. The body of graded
	work demonstrates a strong intellect and work ethic. Instructor would
	support the student's admission into the majority of Ph.D. programs
	without reservation.
Satisfactory	Student is likely prepared for the rigors of graduate school and the
	chances of success in introductory real analysis courses found in most
	Master's programs and some Ph.D. programs are good. Instructor esti-
	mates that the student is reasonably well prepared for courses in other
	subjects. The body of graded work demonstrates a good intellect and
	work ethic. Instructor would support the student's admission into most
	Master's programs and some Ph.D. programs.
Questionable	Preparation for real analysis at the graduate level is unclear. Instructor
	is unsure the student is prepared for graduate courses in other subjects.
	Evidence of the intellect and work ethic needed for graduate school is
	deficient. Instructor would have reservations about supporting the stu-
	dent's admission into Master's programs.
Unacceptable	Student is ill prepared for real analysis courses beyond Math 402. In-
	structor doubts the student is prepared for graduate courses in other
	subjects. Evidence of the intellect and work ethic needed for graduate
	school is inadequate. Instructor would not support the student's admis-
	sion into graduate programs.
L	

2.6 Rubric for SLO #6:

Students will demonstrate effective written mathematical communication.

In courses such as Math 402, written mathematical communication will likely be evaluated in student's proofs. Instructors should therefore use the Rubric for SLO #2 to give overall rating to the student's cumulative body of work.