Geometric measure theory as a tool in free boundary regularity problems by TATIANA TORO
 (University of Washington, Seattle, WA)

Ninth New Mexico Analysis Seminar University of New Mexico Albuquerque, April 6-8, 2006

Geometric measure theory as a tool in free boundary regularity problems

- Introduction - Motivation
- Basic facts about harmonic and subharmonic functions
- Non-negative harmonic functions on NTA domains
- Sets of locally finite perimeter
- Free boundary regularity problem for the Poisson kernel: results and open questions

1. Introduction

Let $\Omega \subset \mathbb{R}^{n+1}$ be an open connected domain such that int $\Omega^{c} \neq \emptyset$.

Dirichlet problem in Ω : given a bounded continuous function f on $\partial \Omega\left(f \in C_{b}(\partial \Omega)\right)$ does there exist a solution $u_{f} \in C_{b}(\bar{\Omega}) \cap C^{2}(\Omega)$ to
(1)

$$
\left\{\begin{array}{ll}
\Delta u=0 & \text { in } \Omega \\
u=f & \text { on } \partial \Omega
\end{array} ?\right.
$$

Definition. Ω is regular if $\forall f \in C_{b}(\partial \Omega)$ there exists $u_{f} \in C_{b}(\bar{\Omega}) \cap C^{2}(\Omega)$ satisfying (1).

Remark. If Ω is bounded and regular by the maximum principle
(2) $\quad\left|u_{f}(X)\right| \leq \max _{\partial \Omega}(f) \quad \forall X \in \Omega$.

Thus for $X \in \Omega$ the linear operator

$$
L_{X}: C(\partial \Omega) \rightarrow \mathbb{R} \text { where } L_{X} f=u_{f}(X)
$$

is bounded.

By the Riesz Representation theorem for $X \in$ Ω there exists a Radon measure ω^{X} satisfying

$$
\begin{equation*}
u_{f}(X)=\int_{\partial \Omega} f(Q) d \omega^{X}(Q) \tag{3}
\end{equation*}
$$

$\forall f \in C_{b}(\partial \Omega)$. Since $u_{1}(X)=1$, (2) implies that ω^{X} is a probability measure.
ω^{X} is the harmonic measure of Ω with pole X

Let

$$
F(X)= \begin{cases}-\frac{1}{2 \pi} \log |X| & \text { if } n=1 \\ \frac{1}{(n-1) \sigma_{n}|X|^{n-1}} & \text { if } n \geq 2\end{cases}
$$

where $\sigma_{n}=\left|\mathbb{S}^{n}\right|$. Then

$$
u(X)=\int_{\mathbb{R}^{n+1}} F(X-Y) \varphi(Y) d Y
$$

satisfies

$$
-\Delta u=\varphi \text { in } \mathbb{R}^{n+1}
$$

i.e $\Delta F=-\delta_{X=0}$ where δ is the Dirac delta function.

Green's formula: let $u, v \in C^{1}(\bar{\Omega}) \cap C^{2}(\Omega)$, where Ω is a C^{1} domain then
(4) $\int_{\Omega} u \Delta v-\int_{\Omega} v \Delta u=\int_{\partial \Omega}\left(u \frac{\partial v}{\partial \nu}--v \frac{\partial u}{\partial \nu}\right) d \sigma$.

Here σ denotes the surface measure to $\partial \Omega$, and ν the outward pointing unit normal to $\partial \Omega$.

If Ω is regular then for $X \in \Omega$ solve

$$
\begin{cases}\Delta u_{X}=0 & \text { in } \Omega \\ u_{X}(Q)=F(Q-X) & \text { for } Q \in \partial \Omega\end{cases}
$$

Then $G(X, Y)=F(Y-X)-u_{X}(Y)$ satisfies

$$
\begin{cases}\Delta G(X, \cdot) & =-\delta_{X} \\ G(X, Q) & \text { in } \Omega \\ 0 & \text { for } Q \in \partial \Omega\end{cases}
$$

$G(X, \cdot)$ is the Green function of Ω with pole X

Applying (4) in $\Omega \backslash B(X, \epsilon)$ to $u \in C^{1}(\bar{\Omega}) \cap C^{2}(\Omega)$ and $v(Y)=G(X, Y)$, and letting $\epsilon \rightarrow 0$ we have
(5) $u(X)=-\int_{\partial \Omega} u(Q) \frac{\partial G(X, Q)}{\partial \nu} d \sigma(Q)$

$$
-\int_{\Omega} G(X, Y) \Delta u(Y) d Y .
$$

If u satisfies (1) then (5) becomes
(6) $u(X)=-\int_{\partial \Omega} f(Q) \frac{\partial G(X, Q)}{\partial \nu} d \sigma(Q)$.

The maximum principle, (3) and (6) ensure that
(7) $\quad k_{X}(Q)=d \omega^{X}(Q)=-\frac{\partial G(X, Q)}{\partial \nu} d \sigma(Q)$.
k_{X} is the Poisson kernel of Ω with pole X.

Using (7) and applying (4) in $\Omega \cap B(Q, R)$ where $Q \in \partial \Omega$ and $2 R<|X-Q|$ to $G(X, \cdot)$ and $\varphi \in$ $C_{c}^{\infty}(B(Q, R))$ we have
(8)

$$
\int_{\Omega} G(X, Y) \Delta \varphi(Y) d Y=\int_{\partial \Omega} \varphi(Q) d \omega^{X}(Q) .
$$

Example: Let $\Omega=B(0, r)$ for $X \in B(0, r)$ and $Q \in \partial B(0, r)$,

$$
k_{X}(Q)=\frac{r^{2}-|X|^{2}}{\sigma_{n} r|X-Q|^{n+1}}
$$

In particular $k_{0}(Q)=\frac{1}{\sigma_{n} r^{n}}$.

Classical boundary regularity results

$$
\begin{aligned}
& \text { If } \Omega \text { is } C^{\infty}, \quad \Longrightarrow \quad \log k_{X} \in C^{\infty} \\
& \vec{n} \in C^{\infty}
\end{aligned}
$$

If Ω is $C^{k+1, \alpha}, \quad \Longrightarrow \quad \log k_{X} \in C^{k, \alpha}$ $\vec{n} \in C^{k, \alpha}$

If Ω is $C^{1, \alpha}, \quad \Longrightarrow \quad \log k_{X} \in C^{0, \alpha}$ $\vec{n} \in C^{0, \alpha}$

Kellogg

Question: What happens as $\alpha \rightarrow 0$?

$$
\begin{gathered}
\text { If } \Omega \text { is } C^{1}, \Longrightarrow \log k_{X} \in \operatorname{VMO}(\partial \Omega) \\
\text { Jerison-Kenig }
\end{gathered}
$$

The free boundary regularity problem for the Poisson kernel addresses the question of whether, under the appropriate hypothesis the previous implications are equivalences

Theorem [AC]. Assume that:

1. " Ω satisfies the divergence theorem, and that the surface measure of $\partial \Omega$ has Euclidean growth,"
2. " $\partial \Omega$ is flat enough,"
3. ${ }^{\prime} \log k_{X} \in C^{0, \beta}$ for some $\beta \in(0,1)$,'
then Ω is a $C^{1, \alpha}$ domain for some $\alpha \in(0,1)$ which depends on β.

2. Harmonic and subharmonic functions

Definition. Let $Q_{0} \in \partial \Omega$, we say that Ω satisfies the interior sphere condition at Q_{0} if there is an open ball $B \subset \Omega$ so that $\partial \Omega \cap \bar{B}=\left\{Q_{0}\right\}$.

Examples.

Theorem. (Hopf boundary point lemma)

Assume that u is harmonic in $\Omega, Q_{0} \in \partial \Omega$ and

- u is continuous at Q_{0}.
- $u\left(Q_{0}\right)<u(X)$ for all $x \in \Omega$.
- Ω satisfies the interior sphere condition at Q_{0}.

If the outward unit normal to $\partial \Omega$ at Q_{0} exists,

$$
-\frac{\partial u}{\partial \nu}\left(Q_{0}\right)=-\nabla u \cdot \nu\left(Q_{0}\right)>0
$$

Otherwise, if the outward unit normal does not exist then

$$
\liminf _{\substack{X \rightarrow Q_{0}}} \frac{u(X)-u\left(Q_{0}\right)}{\left|X-Q_{0}\right|}>0
$$

(non-tangentially)

Let $D \subset \mathbb{R}^{n}$ be an open connected domain.

Definition. A function $f \in C(D)$ is said to be subharmonic if $\forall \phi \in C_{c}^{\infty}(D)$, with $\phi \geq 0$

$$
\int_{D} f \Delta \phi \geq 0
$$

If $f \in C^{2}(D), f$ is subharmonic if and only if $\Delta f \geq 0$.

Remark. If f is subharmonic the operator L : $C_{c}^{\infty}(D) \rightarrow \mathbb{R}$ defined by

$$
L(\phi)=\int_{D} \Delta \phi f
$$

is a non-negative bounded linear operator. By the Riesz Representation Theorem there exists a non-negative Radon measure λ such that

$$
L(\phi)=\int_{D} \phi d \lambda \quad \forall \phi \in C_{c}^{\infty}(D) .
$$

For f is subharmonic and $\phi \in C_{c}^{\infty}(D)$ we have

$$
\int \phi \Delta f=\int_{D} f \Delta \phi
$$

where

$$
d \lambda=\Delta f \geq 0 \text { as a Radon measure. }
$$

Representation formula for subharmonic functions

Let $f \in C(D) \cap W_{\text {loc }}^{1,2}(D)$ be subharmonic in D. Let $\overline{B(y, r)} \subset D$ and let $G_{r}(x,-)$ denote the Green's function of $B(y, r)$ with pole at $x \in B(y, r)$ then

$$
\begin{array}{r}
f(x)=-\int_{\partial B(y, r)} f(q) \frac{\partial G_{r}(x, q)}{\partial \nu} d \sigma(q) \\
-\int_{B(y, r)} G_{r}(x, z) \Delta f(z) .
\end{array}
$$

In particular
$f(y)=f_{\partial B(y, r)} f(q) d \sigma(q)-\int_{B(y, r)} G_{r}(y, z) \Delta f(z)$

Mean value inequality for subharmonic functions

Let $f \in C(D) \cap W_{\text {loc }}^{1,2}(D)$ be subharmonic in D. If $\overline{B(y, r)} \subset D$ then

$$
f(y) \leq f_{\partial B(y, r)} f(q) d \sigma(q)
$$

and for $x \in B(y, r)$

$$
\begin{aligned}
f(x) & \leq-\int_{\partial B(y, r)} f(q) \frac{\partial G_{r}(x, Q)}{\partial \nu} d \sigma(q) \\
& \leq \frac{r^{2}-|x-y|^{2}}{\sigma_{n-1} r} \int_{\partial B(y, r)} \frac{f(z)}{|z-x|^{n}} d \sigma(z) .
\end{aligned}
$$

Recall the following equivalent definition of subharmonicity.

Theorem. Let $f \in C(D), f$ is subharmonic in D if and only if for every ball B such that $\bar{B} \subset D$, and every harmonic function $h \in C(\bar{B})$ satisfying $f \leq h$ on ∂B then $f \leq h$ in B.

3. Non-tangentially accessible domains NTA

Definition. A domain Ω is non-tangentially accessible (NTA) if there exists constants $M>$ 2 and $R>0$ ($R=\infty$ if Ω is unbounded) such that $\forall Q \in \partial \Omega, \forall r \in(0, R)$

1. Ω satisfies the corkscrew condition:

there exists $A=A(Q, r) \in \Omega$ such that

$$
\frac{r}{M} \leq|A-Q| \leq r \text { and } d(A, \partial \Omega) \geq \frac{r}{M}
$$

2. Ω^{C} satisfies the corkscrew condition.
3. Ω satisfies the Harnack Chain Condition; if $\epsilon>0$, and $X_{1}, X_{2} \in B\left(Q, \frac{r}{4}\right) \cap \Omega$ with $\left|X_{1}-X_{2}\right| \leq 2^{k} \epsilon$ and $d\left(X_{i}, \partial \Omega\right) \geq \epsilon$ for $i=1,2$, there exists a chain of $M k$ balls $B_{1}, \ldots, B_{M k}$ in Ω connecting $X_{1} \in B_{1}$ to $X_{2} \in B_{M k}$ so that $\operatorname{diam} B_{j} \sim d\left(B_{j}, \partial \Omega\right)$ and $\operatorname{diam} B_{j} \geq C^{-1} \min \left\{d\left(X_{1}, B_{j}\right), d\left(X_{2}, B_{j}\right)\right\}$ for $C>1$.

Corkscrew condition:

Harnack Chain Condition

Condition 3 guarantees that the Harnack principle for non-negative harmonic functions holds in Ω. If

$$
\Delta u=0 \text { in } \Omega, \quad \text { and } u \geq 0
$$

then for $X_{1}, X_{2} \in B\left(Q, \frac{r}{4}\right) \cap \Omega$,

$$
M^{-k} u\left(X_{1}\right) \leq u\left(X_{2}\right) \leq M^{k} u\left(X_{1}\right) \text { for . }
$$

Theorem.[JK] NTA domains are regular.

Examples.

1. A domain with a cusp is not an NTA domain, it does not satisfy the corkscrew condition at the cusp point.

2.

Ω is not an NTA domain because X_{1} and X_{2} cannot be joined by a Harnack Chain.
3. $\Omega=\mathbb{R}_{+}^{n+1}=\left\{\left(x, x_{n+1}\right): x \in \mathbb{R}^{n}, x_{n+1}>0\right\}$ is an NTA domain.
4. $\Omega=\left\{(x, t) \in \mathbb{R}^{n+1}: x \in \mathbb{R}^{n}, t>\varphi(x)\right\}$ with φ Lipschitz (i.e. $\|\nabla \varphi\|_{\infty}<\infty$), is an NTA domain.

Recall that for $A, B \subset \mathbb{R}^{n+1}$,

$$
\begin{aligned}
D[A, B]=\sup \{d(a, B) & : a \in A\} \\
& +\sup \{d(b, A): b \in B\}
\end{aligned}
$$

denotes the Hausdorff distance between A and B.

For $Q \in \partial \Omega$ we denote by

$$
\theta(Q, r)=\inf _{L}\left\{\frac{1}{r} D[\partial \Omega \cap B(Q, r), L \cap B(Q, r)]\right\}
$$

where the infimum is taken over all n-planes containing Q.

If $\theta(Q, r) \leq \delta$ there exists an n-plane $L(Q, r)$ containing $Q \in \partial \Omega$ and such that

$$
\text { 1. } \partial \Omega \cap B(Q, r) \subset \underbrace{}_{\delta r} \underbrace{(L(Q, r) \cap B(Q, r), \delta r)}_{\text {neighborhood of } L(Q, r) \cap B(Q, r)}
$$

and
2. $L(Q, r) \cap B(Q, r) \subset(\partial \Omega \cap B(Q, r) ; \delta r)$

Definition. Let $\delta \in(0,1 / 8) . \Omega \subset \mathbb{R}^{n+1}$ is a δ-Reifenberg flat domain if for each compact set $K \subset \mathbb{R}^{n+1}$, there exists $R_{K}>0$ such that

1. $\sup _{0<r<R_{K}} \sup _{Q \in K \cap \partial \Omega} \theta(Q, r) \leq \delta$
2. sup $\sup \theta(Q, r) \leq 1 / 8$ (if Ω is unbounded) $r>0 Q \in \partial \Omega$

Examples.

1. C^{1} domains
2. $\Omega=\left\{(x, t) \in \mathbb{R}^{2}: x \in \mathbb{R}^{n}, t>\varphi(x)\right\}$ with $\varphi(x)=\sum_{k \geq 1} \frac{\cos \left(2^{k} x\right)}{2^{k} \sqrt{k}}$.

In both cases $\lim _{r \rightarrow 0} \theta(Q, r)=0$.

Remark. If for each compact set $K \subset \mathbb{R}^{n+1}$ there is $R_{K}>0$ such that for $r \in\left(0, R_{K}\right)$

$$
\sup _{Q \in K \cap \partial \Omega} \theta(Q, r) \leq C_{K}\left(\frac{r}{R_{K}}\right)^{\beta},
$$

then Ω is a $C^{1, \beta}$ domain.

Theorem.[R] δ-Reifenberg flat domains are have Hölder continuous boundaries, provided δ is small enough.

Theorem.[KT] δ-Reifenberg flat domains are NTA, provided δ is small enough.

Boundary behavior of harmonic functions on NTA domains.

Let Ω be an NTA domain with constants $M>$ 2 and $R>0$, and let K be a compact set. The constant C below only depends on the NTA constant and on K.

Lemma.[JK] For $Q \in \partial \Omega \cap K, 0<2 r<R$, and $X \in \Omega \backslash B(Q, 2 M r)$. Then for $s \in[0, r]$
(9) $\quad \omega^{X}(B(Q, 2 s)) \leq C \omega^{X}(B(Q, s))$
i.e. ω^{X} is a doubling measure.

Lemma.[JK] There exists $\beta>0$ such that for all $Q \in \partial \Omega \cap K, 0<4 r<R$, and every harmonic function u in $\Omega \cap B(Q, 4 r)$, if u vanishes continuously on $B(Q, 4 r) \cap \partial \Omega$, then for $X \in \Omega \cap B(r, Q)$,

$$
|u(X)| \leq C\left(\frac{|X-Q|}{r}\right)^{\beta} \sup _{Y \in B(Q, 2 r) \cap \Omega}|u(Y)| .
$$

Corollary. Let $Q \in \partial \Omega \cap K, 0<2 r<R$ then

$$
\omega^{A(Q, r)}(B(Q, r)) \geq C .
$$

Lemma.[JK] Let $Q \in \partial \Omega \cap K$, and $0<4 r<$ R. If $u \geq 0, \Delta u=0$ in Ω, and $u=0$ in on $B(Q, 2 r) \cap \partial \Omega$, then
(10)

$$
\sup _{Y \in B(Q, r) \cap \Omega} u(Y) \leq C u(A(Q, r)) .
$$

Lemma.[JK] Let $Q \in \partial \Omega \cap K, 0<2 r<R$, and $X \in \Omega \backslash B(Q, M r)$. Then
(11)

$$
C^{-1}<\frac{\omega^{X}(B(Q, r))}{r^{n-1} G(A(Q, r), X)}<C
$$

where $G(A(Q, r),-)$ is the Green's function of Ω with pole $A(Q, r)$.

Lemma.[JK] (Comparison Principle)
Let $r<R / M$. Let $u, v \geq 0, \Delta u=\Delta v=0$ in Ω $u=v=0$ on $B(Q, M r) \cap \partial \Omega$ for $Q \in \partial \Omega$. Then for all $X \in B(Q, r) \cap \Omega$,

$$
C^{-1} \frac{u(A(Q, r))}{v(A(Q, r))} \leq \frac{u(X)}{v(X)} \leq C \frac{u(A(Q, r))}{v(A(Q, r))} .
$$

Theorem.[JK] There exists $\alpha>0$, such that for $r<R / M$, if $u, v \geq 0, \Delta u=\Delta v=0$ in Ω $u=v=0$ on $B(Q, M r) \cap \partial \Omega$ for $Q \in \partial \Omega$ then for $X, Y \in \Omega \cap B(Q, r)$,
(12)

$$
\left|\frac{u(X)}{v(X)}-\frac{u(Y)}{v(Y)}\right| \leq C \frac{u(A(Q, r))}{v(A(Q, r))}\left(\frac{|X-Y|}{r}\right)^{\alpha}
$$

In particular, $\lim _{X \rightarrow Q} \frac{u(X)}{v(X)}$ exists.

Lemma. Let Ω be an unbounded NTA domain and $Q_{0} \in \partial \Omega$. There exists a unique function u such that
(13)

$$
\left\{\begin{array}{cl}
\Delta u=0 & \text { in } \Omega \\
u>0 & \text { in } \Omega \\
u=0 & \text { on } \partial \Omega
\end{array}\right.
$$

and

$$
u\left(A\left(Q_{0}, 1\right)\right)=1
$$

u is the Green function with pole ∞

Proof. Assume that $Q_{0}=0$. Let $A(0,1)=A$.
Uniqueness: Let u, v be as above. By the comparison principle for $\rho>1$ and $X \in B(0, \rho) \cap \Omega$

$$
C^{-1} \frac{u(A(0, \rho))}{v(A(0, \rho))} \leq \frac{u(X)}{v(X)} \leq C \frac{u(A(0, \rho))}{v(A(0, \rho))} .
$$

Since $A \in B(0, \rho)$, and $u(A)=v(A)$ then for $X \in$ $B(0, \rho) \cap \Omega$

$$
\begin{equation*}
C^{-1} \leq \frac{u(X)}{v(X)} \leq C \tag{14}
\end{equation*}
$$

By (12) and (14) for $X \in B(0, \rho) \cap \Omega$

$$
\left|\frac{u(X)}{v(X)}-1\right| \leq C \frac{u(A(0, \rho))}{v(A(0, \rho))}\left(\frac{|X-A|}{\rho}\right)^{\alpha} \leq C\left(\frac{|X-A|}{\rho}\right)^{\alpha}
$$

Letting $\rho \rightarrow \infty$ we conclude that $u=v$ in Ω.

Existence: For $Y \in \Omega$ let

$$
u_{Y}(X)=\frac{G(Y, X)}{G(Y, A)}
$$

u_{Y} is a nonnegative harmonic function on $B(0,|Y|) \cap \Omega$. Let $K \subset \mathbb{R}^{n+1}$ be a fixed compact set. Fix $\rho>0$ such that $K \cap \Omega \subset B(0, \rho) \cap \Omega$, and let $|Y| \geq 2 \rho$. Let $X \in K \cap \Omega$. (10) and the Harnack Principle yield

$$
G(Y, X) \leq C G(Y, A(0, \rho)) \leq C_{K, n} G(Y, A)
$$

Thus for $|Y| \geq 2 \rho$

$$
\sup _{X \in K \cap \Omega} u_{Y}(X) \leq C_{K, n} .
$$

Moreover by (9) and (11) the Radon measures $\frac{\omega^{Y}}{G(Y, A)}$ are uniformly bounded on $B(0, \rho)$. Let $\left\{Y_{j}\right\}_{j} \subset \Omega$ be such that $\left|Y_{j}\right| \rightarrow \infty$ as $j \rightarrow \infty$. There exists a subsequence $\left\{Y_{j^{\prime}}\right\}$ such that $u_{j^{\prime}}$ converges uniformly to a nonnegative harmonic function u in $B(0, \rho) \cap \Omega$ (Arzela-Ascoli) and

$$
\int \phi \frac{d \omega^{Y_{j^{\prime}}}}{G\left(Y_{j^{\prime}}, A\right)} \rightarrow \int \phi d \mu
$$

where μ is a Radon measure and $\phi \in C_{c}^{\infty}(B(0, \rho))$.

Letting $\rho \rightarrow \infty$ and taking a diagonal subsequence we conclude that there is a subsequence $u_{j_{k}}$ which converges to the nonnegative harmonic function u, uniformly on compact sets of Ω. Moreover

$$
\frac{\omega^{Y_{j_{k}}}}{G\left(Y_{j_{k}}, A\right)} \rightharpoonup \mu
$$

Since $u(A)=1$ and $u=0$ on $\partial \Omega, u>0$ in Ω, u satisfies (13). By the uniqueness proved above we conclude that $u_{|Y|} \rightarrow u$ as $|Y| \rightarrow \infty$.

By (8)

$$
\int_{\Omega} \frac{G\left(Y_{j_{k}}, X\right)}{G\left(Y_{j_{k}}, A\right)} \Delta \varphi(X) d X=\int_{\partial \Omega} \varphi(Q) \frac{d \omega^{Y_{j_{k}}}(Q)}{G\left(Y_{j_{k}}, A\right)} .
$$

Hence

$$
\begin{aligned}
& \qquad \int_{\partial \Omega} \varphi d \mu=\int_{\Omega} u \Delta \varphi d X \quad \forall \varphi \in C_{c}^{\infty}\left(\mathbb{R}^{n+1}\right) \\
& \omega^{\infty}=\frac{\mu}{\mu(B(0,1))} \text { and } v=\frac{u}{\mu(B(0,1))} \text { satisfy } \omega^{\infty}(B(0,1))=1, \\
& \text { and }
\end{aligned}
$$

$$
\int_{\partial \Omega} \varphi d \omega^{\infty}=\int_{\Omega} v \Delta \varphi \quad \forall \varphi \in C_{c}^{\infty}\left(\mathbb{R}^{n+1}\right)
$$

Properties:

- If $u=0$ and $v=0$ in Ω^{c}, u adn v are the subharmonic on \mathbb{R}^{n+1}.
- For $Q \in \partial \Omega$ by (11)

$$
C^{-1}<\frac{\omega^{\infty}(B(Q, r))}{r^{n-1} v(A(Q, r))}<C
$$

Corollary. Let Ω be an unbounded NTA domain, and $Q_{0} \in \partial \Omega$. There exists a unique doubling Radon measure ω^{∞}, supported on $\partial \Omega$ satisfying:

$$
\int_{\partial \Omega} \varphi d \omega^{\infty}=\int_{\Omega} v \Delta \varphi \quad \forall \varphi \in C_{c}^{\infty}\left(\mathbb{R}^{n+1}\right)
$$

where

$$
\begin{cases}\Delta v=0 & \text { in } \Omega \\ v>0 & \text { in } \Omega \\ v=0 & \text { on } \partial \Omega,\end{cases}
$$

and

$$
\omega^{\infty}\left(B\left(Q_{0}, 1\right)\right)=1
$$

ω^{∞} is the harmonic measure of Ω with pole ∞

Proof. ω^{∞} is doubling. Let $K \subset \mathbb{R}^{n+1}$ be compact, $Q \in K \cap \partial \Omega$. Given $r>0$, for j_{k} large, $Y_{j_{k}} \in \Omega \backslash B(2 M r, Q)$. Then for $s \in[0, r]$ by (9)

$$
\omega^{Y_{j_{k}}}(B(Q, 2 s)) \leq C \omega^{Y_{j_{k}}}(B(Q, s))
$$

Hence

$$
\begin{aligned}
\omega^{\infty}(B(Q, 2 s)) & \leq \liminf _{j_{k} \rightarrow \infty} \frac{\omega^{Y_{j_{k}}}(B(Q, 2 s))}{\mu(B(0,1)) G\left(Y_{j_{k}}, A\right)} \\
& \leq C \liminf _{j_{k} \rightarrow \infty} \frac{\omega^{Y_{j_{k}}}\left(\bar{B}\left(Q, \frac{s}{2}\right)\right)}{\mu(B(0,1)) G\left(Y_{j_{k}}, A\right)} \\
& \leq C \omega^{\infty}\left(\bar{B}\left(Q, \frac{s}{2}\right)\right) \\
& \leq C \omega^{\infty}(B(Q, s))
\end{aligned}
$$

Theorem [AC]. Assume that:

1. " Ω satisfies the divergence theorem, and that the surface measure of its boundary has Euclidean growth,"
2. Ω is a unbounded δ-Reifenberg flat domain for some $\delta>0$ small enough,
3. ' $\log h \in C^{0, \beta}$ for some $\beta \in(0,1)^{\prime}$ ',
then Ω is a $C^{1, \alpha}$ domain for some $\alpha \in(0,1)$ which depends on β.

Here h denotes the Poisson kernel with pole at infinity (i.e. the Radon Nikodym derivative of the harmonic measure with pole at ∞ w.r.t. to the surface measure of $\partial \Omega$).

4. Sets of locally finite perimeter

Definition. A measurable set $\Omega \subset \mathbb{R}^{n+1}$ has locally finite perimeter if $X_{\Omega} \in B V_{\text {loc }}\left(\mathbb{R}^{n+1}\right)$, i.e.

$$
\sup \left\{\int_{\Omega} \operatorname{div} \varphi d x \mid \varphi \in C_{c}^{1}\left(\mathbb{R}^{n+1}, \mathbb{R}^{n+1}\right)\right\}<\infty
$$

Theorem. Let Ω be a set of locally finite perimeter. There exist a Radon measure $\|\partial \Omega\|$ on \mathbb{R}^{n+1} and a $\|\partial \Omega\|$ measurable function ν_{Ω} : $\mathbb{R}^{n+1} \rightarrow \mathbb{R}^{n+1}$ s.t.

1. $\left|\nu_{\Omega}\right|=1 \quad\|\partial \Omega\|$ a.e.
2. $\int_{\Omega} \operatorname{div} \varphi=\int_{\mathbb{R}^{n+1}} \varphi \cdot \nu_{\Omega} d\|\partial \Omega\|$ $\forall \varphi \in C_{c}^{1}\left(\mathbb{R}^{n+1}, \mathbb{R}^{n+1}\right)$.

Example. Let $\Omega \subset \mathbb{R}^{n+1}$ be a smooth domain such that for each compact set $K \subset \mathbb{R}^{n+1}$ $\mathcal{H}^{n}(\partial \Omega \cap K)<\infty$. By divergence theorem if $\varphi \in C_{c}^{1}\left(\mathbb{R}^{n+1}, \mathbb{R}^{n+1}\right)$ then

$$
\int_{\Omega} \operatorname{div} \varphi d x=\int_{\partial \Omega} \varphi \cdot \nu d \mathcal{H}^{n}
$$

where ν is the outward unit normal to $\partial \Omega$.

$$
\text { If }|\varphi| \leq 1 \text { and support } \varphi=K
$$

$$
\begin{aligned}
\left|\int_{\Omega} \operatorname{div} \varphi d x\right| & \leq \int_{\partial \Omega}|\varphi \cdot \nu| d \mathcal{H}^{n} \\
& \leq \mathcal{H}^{n}(\partial \Omega \cap K)<\infty .
\end{aligned}
$$

Thus Ω has locally finite perimeter and

$$
\|\partial \Omega\|=\mathcal{H}^{n}\left\llcorner\partial \Omega \text { and } \nu_{\Omega}=\nu \mathcal{H}^{n} \text { a.e. } \partial \Omega\right.
$$

i.e. E Borel

$$
\|\partial \Omega\|(E)=H^{n}(E \cap \partial \Omega)
$$

Let Ω be set of locally finite perimeter.

Definition. $X \in \partial^{*} \Omega$, the reduced boundary of Ω if
i) $\|\partial \Omega\|(B(X, r))>0 \quad \forall r>0$.
ii) $\lim _{r \rightarrow 0} f_{B(X, r)} \nu_{\Omega} d\|\partial \Omega\|=\nu_{\Omega}(X)$ and
iii) $\left|\nu_{\Omega}(X)\right|=1$

In particular

$$
\|\partial \Omega\|\left(\mathbb{R}^{n+1} \backslash \partial^{*} \Omega\right)=0
$$

Lemma. Let $\varphi \in C_{c}^{1}\left(\mathbb{R}^{n+1}, \mathbb{R}^{n+1}\right)$ then

$$
\begin{aligned}
\int_{\Omega \cap B(X, r)} \operatorname{div} \varphi d Y= & \int_{B(X, r)} \varphi \cdot \nu_{\Omega} d\|\partial \Omega\| \\
& +\int_{\Omega \cap \partial B(X, r)} \varphi \cdot \nu d \mathcal{H}^{n}
\end{aligned}
$$

for a.e. $r>0, \nu$ is the outward unit normal to $B(X, r)$.

Lemma. There exist $A_{1}, A_{2}>0$ such that for $X \in \partial^{*} \Omega$
i) $\liminf _{r \rightarrow 0} \frac{\mathcal{H}^{n+1}(B(X, r) \cap \Omega)}{r^{n+1}} \geq A_{1}$
ii) $\liminf _{r \rightarrow 0} \frac{\mathcal{H}^{n+1}(B(X, r) \backslash \Omega)}{r^{n+1}} \geq A_{2}$

Definition. $X \in \partial_{*} \Omega$ the measure theoretic boundary of Ω if

$$
\begin{aligned}
& \limsup _{r \rightarrow 0} \frac{\mathcal{H}^{n+1}(B(X, r) \cap \Omega)}{r^{n+1}}>0 \\
& \limsup _{r \rightarrow 0} \frac{\mathcal{H}^{n+1}(B(X, r) \backslash \Omega)}{r^{n+1}}>0
\end{aligned}
$$

Lemma. 1) $\partial^{*} \Omega \subset \partial_{*} \Omega$

$$
\text { 2) } \mathcal{H}^{n}\left(\partial_{*} \Omega \backslash \partial^{*} \Omega\right)=0
$$

Remark. Let Ω be set of locally finite perimeter and NTA domain: Ω and Ω^{c} satisfy the corkscrew condition. Thus for $r>0 Q \in \partial \Omega$

$$
\mathcal{H}^{n+1}(\Omega \cap B(Q, r)) \geq c_{n} r^{n+1}
$$

and

$$
\mathcal{H}^{n+1}(B(r, Q) \backslash \Omega) \geq c_{n} r^{n+1}
$$

Thus $Q \in \partial_{*} \Omega$, and $\partial_{*} \Omega=\partial \Omega$,

$$
\mathcal{H}^{n}\left(\partial \Omega \backslash \partial^{*} \Omega\right)=0
$$

Theorem. [Isoperimetric inequality]

$$
\begin{gathered}
\min \left\{\mathcal{H}^{n+1}(B(X, r) \cap \Omega), \mathcal{H}^{n+1}(B(X, r) \backslash \Omega)\right\}^{\frac{n}{n+1}} \\
\leq C\|\partial \Omega\|(B(X, r))
\end{gathered}
$$

For $Q \in \partial^{*} \Omega$ let

$$
\begin{aligned}
H(Q) & =\left\{Y \in \mathbb{R}^{n+1}: \nu_{\Omega}(Q) \cdot(Y-Q)=0\right\} \\
H^{+}(Q) & =\left\{Y \in \mathbb{R}^{n+1}: \nu_{\Omega}(Q) \cdot(Y-Q) \geq 0\right\} \\
H^{-}(Q) & =\left\{Y \in \mathbb{R}^{n+1}: \nu_{\Omega}(Q) \cdot(Y-Q) \leq 0\right\}
\end{aligned}
$$

Picture

Theorem. [Blow up of the reduced boundary] If $Q \in \partial^{*} \Omega$ then

$$
\chi_{\eta_{Q, r}}(\Omega) \underset{r \rightarrow 0}{\longrightarrow} \chi_{H^{-}(Q)} \text { in } \quad L_{\mathrm{loc}}^{1}\left(\mathbb{R}^{n+1}\right),
$$

where $\eta_{Q, r}(\Omega)=\frac{1}{r}(\Omega-Q)$

Corollary. If $Q \in \partial^{*} \Omega$ then

1. $\lim _{r \rightarrow 0} \frac{\mathcal{H}^{n+1}\left(B(Q, r) \cap \Omega \cap H^{+}(Q)\right)}{r^{n+1}}=0$
2. $\lim _{r \rightarrow 0} \frac{\left.\mathcal{H}^{n+1}(B(Q, r) \backslash \Omega) \cap H^{-}(Q)\right)}{r^{n+1}}=0$
3. $\lim _{r \rightarrow 0} \frac{\|\partial \Omega\|(B(Q, r))}{\omega_{n} r^{n}}=1$

Theorem. [Structure theorem for sets of locally finite perimeter] Let Ω be set of locally finite perimeter then

1. $\partial^{*} \Omega \in \bigcup_{k=1}^{\infty} \Sigma_{k} \cup \Sigma_{0}$ where

$$
\|\partial \Omega\|\left(\Sigma_{0}\right)=0
$$

Σ_{k} is a C^{1} hypersurface
2. $\left.\nu\right|_{\partial^{*} \Omega \cap \Sigma_{k}}$ is the outer unit normal to Σ_{k}.
iii) $\|\partial \Omega\|=\mathcal{H}^{n}\left\llcorner\partial^{*} \Omega\right.$

Corollary. If Ω is NTA and a set of locally finite perimeter

$$
\|\partial \Omega\|=\mathcal{H}^{n}\llcorner\partial \Omega
$$

Theorem.[Generalized Gauss-Green theorem] Let Ω be an NTA domain and a set of locally finite perimeter then

$$
\begin{aligned}
\int_{\Omega} \operatorname{div} \varphi d x= & \int_{\partial \Omega} \varphi \cdot \nu_{\Omega} d \mathcal{H}^{n} \\
& \forall \varphi \in C_{c}^{1}\left(\mathbb{R}^{n+1}, \mathbb{R}^{n+1}\right)
\end{aligned}
$$

ν_{Ω} is the unique measure theoretic outer unit normal.

Proof.

$$
\begin{aligned}
\int_{\Omega} \operatorname{div} \varphi d x & =\int \varphi \cdot \nu_{\Omega} d\|\partial \Omega\| \\
& =\int \varphi \cdot \nu_{\Omega} d \mathcal{H}^{n} L \partial \Omega \\
& =\int_{\partial \Omega} \varphi \cdot \nu_{\Omega} d \mathcal{H}^{n}
\end{aligned}
$$

5. Free boundary regularity problem for the Poisson kernel

Definition. An domain Ω is a chord arc domain if:

- Ω is NTA
- Ω is a set of locally finite perimeter
- the surface measure of $\partial \Omega \sigma=\mathcal{H}^{n}\llcorner\partial \Omega$ is Ahlfors regular, i.e.

$$
\exists C>1 \quad C^{-1} \leq \frac{\sigma(B(r, Q))}{r^{n}} \leq C
$$

for $r<\operatorname{diam} \Omega$.

Theorem [AC]. Assume that:

1. Ω is an unbounded chord arc domain
2. Ω is a δ-Reifenberg flat domain for some $\delta>0$ small enough,
3. $\log h \in C^{0, \beta}$ for some $\beta \in(0,1)$,
then Ω is a $C^{1, \alpha}$ domain for some $\alpha \in(0,1)$ which depends on β. Moreover if h is identically equal to 1 then Ω is a half-space.

Here

$$
\begin{aligned}
& \int_{\Omega} u \Delta \varphi d x=\int_{\partial \Omega} \varphi h d \mathcal{H}^{n}, \text { for } \varphi \in C_{c}^{\infty}\left(\mathbb{R}^{n+1}\right) \\
& \text { and }
\end{aligned}
$$

$$
\begin{cases}\Delta u=0 & \text { in } \Omega \\ u>0 & \text { in } \Omega \\ u=0 & \text { on } \partial \Omega,\end{cases}
$$

h is the Poisson kernel with pole at ∞

Let $Q_{j} \in \partial \Omega$, and $r_{j}>0$, consider

$$
\begin{aligned}
\Omega_{j} & =\frac{1}{r_{j}}\left(\Omega-Q_{j}\right) \\
\partial \Omega_{j} & =\frac{1}{r_{j}}\left(\partial \Omega-Q_{j}\right) \\
u_{j}(X) & =\frac{u\left(r_{j} X+Q_{j}\right)}{r_{j} f_{B\left(Q_{j}, r_{j}\right)} h d \sigma_{j}} \\
\omega_{j}(E) & =\frac{\omega\left(r_{j} E+Q_{j}\right)}{r_{j}^{n} f_{B\left(Q_{j}, r_{j}\right)^{h d \sigma_{j}}}} \\
d \omega_{j} & =h_{j} d \sigma_{j} \mathcal{H}^{n}-a . e . \text { in } \partial \Omega_{j} \\
h_{j}(Q) & =\frac{h\left(r_{j} Q+Q_{j}\right)}{f_{B\left(Q_{j}, r_{j}\right)^{h d \sigma_{j}}}}
\end{aligned}
$$

Theorem. Let Ω be a chord arc domain as above. Then

$$
\begin{aligned}
\Omega_{j} & \rightarrow \Omega_{\infty} \\
\partial \Omega_{j} & \rightarrow \partial \Omega_{\infty}
\end{aligned}
$$

where Ω_{∞} is an unbounded chord arc domain. Moreover there exists u_{∞} such that

$$
\begin{aligned}
& u_{j} \rightarrow u_{\infty} \text { uniformly on compact sets } \\
& \left\{\begin{aligned}
\Delta u_{\infty}=0 & \text { in } \Omega_{\infty} \\
u_{\infty}=0 & \text { on } \partial \Omega_{\infty} \\
u_{\infty}>0 & \text { in } \Omega_{\infty} .
\end{aligned}\right.
\end{aligned}
$$

Furthermore

$$
\omega_{j} \rightharpoonup \omega_{\infty} \quad \text { and } \quad \sigma_{j} \rightharpoonup \sigma_{\infty}
$$

weakly on Radon measures. ω_{∞} is the harmonic measure of Ω_{∞} with pole at infinity, and σ_{∞} is the surface measure of $\partial \Omega_{\infty}$. The Poisson kernel of Ω_{∞} with pole at infinity h_{∞} satisfies

$$
h_{\infty}=\frac{d \omega_{\infty}}{d \sigma_{\infty}}=1 \quad \mathcal{H}^{n}-a . e \text { in } \partial \Omega_{\infty} .
$$

Theorem [AC], [KT]. Assume that:

1. Ω is an unbounded chord arc domain
2. Ω is a δ-Reifenberg flat domain for some $\delta>0$ small enough,
3. $h=1, \mathcal{H}^{n}$-a.e. in $\partial \Omega$

Then Ω is a half-space.

Theorem [LV] Assume that:

1. Ω be a bounded chord arc domain
2. $0 \in \Omega$, and $k_{0}=1, \mathcal{H}^{n}$-a.e. in $\partial \Omega$.

Then $\Omega=B(0, R)$ with $\sigma_{n} R^{n}=1$.

Question: Is the flatness assumption necessary in the unbounded case?

Examples.

- $\Omega=\mathbb{R}_{+}^{n+1}, u\left(x, x_{n+1}\right)=x_{n+1}$ and $h=1$.
- Keldysh-Lavrentiev constructed a set of Iocally finite perimeter $\Omega \subset \mathbb{R}^{2}$ whose boundary is not Ahlfors regular, whose Poisson kernel is identically equal to 1 and Ω is not C^{1}.
- Kowalski-Preiss cone:

$$
\begin{aligned}
& \Omega=\left\{\left(x_{1}, \ldots, x_{4}\right) \in \mathbb{R}^{4}:\left|x_{4}\right|<\sqrt{x_{1}^{2}+x_{2}^{2}+x_{3}^{2}}\right\} . \\
& \text { Let } r^{2}=x_{1}^{2}+x_{2}^{2}+x_{3}^{2}+x_{4}^{2}, \theta \in\left[\frac{\pi}{4}, \frac{3 \pi}{4}\right], \text { and } \\
& x_{4}=r \cos \theta, \text { then } X=\left(x_{1}, x_{2}, x_{3}, x_{4}\right) \in \bar{\Omega} . \\
& \qquad u(X)=-\frac{r}{2 \sqrt{2}} \frac{\cos 2 \theta}{\sin \theta} .
\end{aligned}
$$

satisfies $\Delta u=0$ in $\Omega, u>0$ in Ω and $u=0$ on $\partial \Omega$. $\omega^{\infty}=\mathcal{H}^{n}\left\llcorner\partial \Omega\right.$, i.e $h=1, \mathcal{H}^{n}$-a.e in $\partial \Omega$.

Main Theorem [KT]. Assume that:

1. Ω is an unbounded chord arc domain
2. Ω is a δ-Reifenberg flat domain for some $\delta>0$ small enough,
3. $\sup _{\Omega}|\nabla u| \leq 1$ and $h \geq 1, \mathcal{H}^{n}$-a.e. in $\partial \Omega$

Then modulo translation and rotation $\Omega=$ \mathbb{R}_{+}^{n+1} and $u\left(x, x_{n+1}\right)=x_{n+1}$.

Here

$$
\begin{aligned}
& \int_{\Omega} u \Delta \varphi d x=\int_{\partial \Omega} \varphi h d \mathcal{H}^{n}, \text { for } \varphi \in C_{c}^{\infty}\left(\mathbb{R}^{n+1}\right), \\
& \text { and }
\end{aligned}
$$

$$
\begin{cases}\Delta u=0 & \text { in } \Omega \\ u>0 & \text { in } \Omega \\ u=0 & \text { on } \partial \Omega\end{cases}
$$

Definition. For $0<\sigma_{+}, \sigma_{<1}, Q_{0} \in \partial \Omega, \rho>0$. $u \in F\left(\sigma_{+} ; \sigma_{-}\right)$in $B\left(Q_{0}, \rho\right)$ in the direction ν if

$$
u(X)=0 \text { for }\left\langle X-Q_{0}, \nu\right\rangle \geq \sigma_{+} \rho
$$

and
$u(X) \geq-\left[\left\langle X-Q_{0}, \nu\right\rangle+\sigma_{-} \rho\right]$

$$
\text { for }\left\langle X-Q_{0}, \nu\right\rangle \leq-\sigma_{-} \rho \text {. }
$$

Lemma A. If $u \in F(\sigma ; 1)$ in $B\left(Q_{0}, \rho\right)$ in the direction ν then $u \in F(2 \sigma ; C \sigma)$ in $B\left(Q_{0}, \frac{\rho}{2}\right)$ in the direction ν.

$$
\begin{aligned}
& u \in F(\sigma ; 1) \text { in } B\left(Q_{0}, \rho\right) \text { then } \\
& u \in F(2 \sigma ; C \sigma) \text { in } B\left(Q_{0}, \frac{\rho}{2}\right)
\end{aligned}
$$

Lemma B. Given $\theta \in(0,1)$ there exist $\sigma_{n, \theta}>0$ and $\eta_{\theta}=\eta \in(0,1)$ so that if $\sigma \leq \sigma_{n, \theta}$ and $u \in F(\sigma ; \sigma)$ in $B\left(Q_{0}, \rho\right)$ in the direction $\nu_{Q_{0}, \rho}$ for $Q_{0} \in \partial \Omega$, then $u \in F(\theta \sigma ; 1)$ in $B\left(Q_{0} ; \eta \rho\right)$ in the direction $\nu_{Q_{0}, \eta \rho}$ and

$$
\left|\nu_{Q_{0}, \rho}-\nu_{Q_{0}, \eta \rho}\right| \leq C \sigma
$$

$$
\begin{aligned}
& u \in F(\sigma ; \sigma) \text { in } B\left(Q_{0}, \rho\right) \text { then } \\
& u \in F(\theta \sigma ; 1) \text { in } B\left(Q_{0}, \eta \rho\right)
\end{aligned}
$$

Proof of the Main Theorem. Since Ω is a δ-Reifenberg flat chord arc domain, $u \in F(\delta ; 1)$ in $B(Q, 2 r)$ for $r>0$ and $Q \in \partial \Omega$. If $Q=0, B(0, r)=B(r)$
(A) $u \in F(\delta ; 1)$ in $B(2 r)$ then $u \in F(2 \delta, C \delta)$ in $B(r)$

Choosing δ so that $\max \{2 \delta, C \delta\} \leq \sigma$ we have
(B) $u \in F(\sigma ; \sigma)$ in $B(r)$ then $u \in F\left(\theta^{\prime} \sigma, 1\right)$ in $B(2 \eta r)$
(A) $u \in F\left(\theta^{\prime} \sigma ; 1\right)$ in $B(2 \eta r)$ then $u \in F\left(2 \theta^{\prime} \sigma, C \theta^{\prime} \sigma\right)$ in $B(\eta r)$

Choosing θ^{\prime} so that $\max \left\{2 \theta^{\prime}, C \theta^{\prime}\right\} \leq \theta$ we have
($\mathrm{B}+\mathrm{A}) u \in F(\sigma ; \sigma)$ in $B(r)$ then $u \in F(\theta \sigma, \theta \sigma)$ in $B(\eta r)$
By iteration

$$
u \in F\left(\theta^{m} \sigma ; \theta^{m} \sigma\right) \text { in } B\left(\eta^{m} r\right) \text { for } r>0
$$

Moreover if $\nu_{m}=\nu_{0, \eta^{m} r}$ then

$$
\left|\nu_{m}-\nu_{m+1}\right| \leq C \theta^{m} \sigma .
$$

Let $\nu_{r}=\lim _{m \rightarrow \infty} \nu_{m}$, and $\Lambda(r)$ is the n-plane orthogonal to ν_{r} then for $s \in(0, r)$ we have

$$
\frac{1}{s} D[B(s) \cap \partial \Omega ; \wedge(r) \cap B(s)] \leq C\left(\frac{s}{r}\right)^{\beta}
$$

for some $\beta>0$. Since \mathbb{S}^{n} is compact there exists an increasing sequence $r_{i} \rightarrow \infty$ and an n-plane Λ_{∞} such that for $s>0$

$$
D\left[B(s) \cap \partial \Omega ; \wedge_{\infty} \cap B(s)\right]=0
$$

Thus $\partial \Omega=\Lambda_{\infty}$ w.l.o.g $\Omega=\mathbb{R}_{+}^{n+1}, 0 \leq u \leq x_{n+1}$ and $\frac{\partial u}{\partial x_{n+1}}=1$ on Λ_{∞}. Moreover by (12)

$$
\left|\frac{u(X)}{x_{n+1}}-1\right| \leq C \frac{u(A(0, r))}{r}\left(\frac{|X|}{r}\right)^{\alpha} \leq C\left(\frac{|X|}{r}\right)^{\alpha},
$$

letting $r \rightarrow \infty$ we conclude that $u\left(x, x_{n+1}\right)=x_{n+1}$.

Lemma B is proved by contradiction. Assume that there exist $\theta \in(0,1)$ such that for every $\eta>0$ and every non-negative decreasing sequence $\left\{\sigma_{j}\right\}$,

$$
u \in F\left(\sigma_{j} ; \sigma_{j}\right) \text { in } B\left(Q_{j}, \rho_{j}\right) \text { in the direction } \nu_{j}
$$

but

$$
u \notin F\left(\theta \sigma_{j} ; 1\right) \text { in } B\left(Q_{j}, \eta \rho_{j}\right) .
$$

Assume that $h\left(Q_{j}\right) \geq 1$, and $\nu_{j}=e_{n+1}$. For $X \in B(0,1)$ let

$$
u_{j}(X)=\frac{1}{\rho_{j}} u\left(\rho_{j} X+Q_{j}\right) .
$$

Note that $\Delta u_{j}=0$ in $\Omega_{j}=\frac{1}{\rho_{j}}\left(\Omega-Q_{j}\right), u_{j}>0$ in $\Omega_{j}, u_{j}=0$ on $\partial \Omega_{j}=\frac{1}{\rho_{j}}\left(\partial \Omega-Q_{j}\right)$, and
$\int_{\Omega_{j}} u_{j} \Delta \varphi d X=\int_{\partial \Omega_{j}} \varphi h_{j} d \mathcal{H}^{n}$ for all $\varphi \in C_{c}^{\infty}\left(\mathbb{R}^{n+1}\right)$ where

$$
h_{j}(Q)=h\left(\rho_{j} Q+Q_{j}\right)
$$

Moreover

(15)
$\sup _{\Omega_{j}}\left|\nabla u_{j}\right| \leq 1 \quad$ and $\quad h_{j} \geq 1 \quad \mathcal{H}^{n}$ a.e. in $\partial \Omega_{j}$.

The hypothesis yields

$$
\begin{aligned}
& u_{j} \in F\left(\sigma_{j}, \sigma_{j}\right) \text { in } B(0,1) \\
& \quad \text { in the direction } e_{n+1}
\end{aligned}
$$

(16) $u_{j} \notin F\left(\theta \sigma_{j} ; 1\right)$ in $B(0, \eta)$,
with $\sigma_{j} \rightarrow 0$ as $j \rightarrow \infty$.

Idea [AC]:

- Define sequences of scaled height functions corresponding to $\partial \Omega_{j}$.
- Prove that these sequences converge to a subharmonic Lipschitz function.
- Use this information to contradict the fact that $u_{j} \notin F\left(\theta \sigma_{j} ; 1\right)$ in $B(\eta, 0)$ for j large enough.

For $y \in B(0,1) \cap \mathbb{R}^{n} \times\{0\}=B^{\prime}$ define

$$
f_{j}^{+}(y)=\sup \left\{h:\left(y, \sigma_{j} h\right) \in \partial\left\{u_{j}>0\right\}\right\} \leq 1
$$

and

$$
f_{j}^{-}(y)=\inf \left\{h ;\left(y, \sigma_{j} h\right) \in \partial\left\{u_{j}>0\right\}\right\} \geq-1
$$

Lemma. There exists a subsequence k_{j} such that for $y \in B^{\prime}$

$$
f(y)=\limsup _{\substack{k_{j} \rightarrow \infty \\ z \rightarrow y}} f_{k_{j}}^{+}(z)=\liminf _{\substack{k_{j} \rightarrow \infty \\ z \rightarrow y}} f_{k_{j}}^{-}(z) .
$$

Corollary. f is a continuous function in B^{\prime}, $f(0)=0$; and $f_{k_{j}}^{+}$and $f_{k_{j}}^{-}$converge uniformly to f on compact sets of B^{\prime}.

Lemma.* f is subharmonic in B^{\prime}.

Lemma. There is a constant $C>0$ such that for $y \in B_{\frac{1}{2}}^{\prime}$

$$
0 \leq \int_{0}^{\frac{1}{4}} \frac{1}{r^{2}}\left(f_{y, r}-f(y)\right) d r \leq C
$$

where

$$
f_{y, r}=f_{\partial B^{\prime}(y, r)} f d \mathcal{H}^{n-1}
$$

Lemma.* f is Lipschitz in $B_{\frac{1}{16}}^{\prime}$.

Lemma. There exists $C>0$ such that for any given $\theta \in(0,1)$ there exist $\eta=\eta(\theta)>0$ and $l \in \mathbb{R}^{n} \times\{0\}$ with $|l| \leq C$ so that

$$
f(y) \leq\langle l, y\rangle+\frac{\theta}{4} \eta \quad \text { for } \quad y \in B_{\eta}^{\prime} .
$$

Contradiction in the proof of Lemma B For $\theta \in(0,1)$ there exists $\eta=\eta(\theta)>0$ such that for j large enough that

$$
f_{j}^{+}(y) \leq\langle l, y\rangle+\frac{\theta}{2} \eta \quad \text { for } \quad y \in B_{\eta}^{\prime} .
$$

Since $f_{j}^{+}(y)=\sup \left\{h:\left(y, \sigma_{j} h\right) \in \partial\left\{u_{j}>0\right\}\right\}$
(17)

$$
\begin{aligned}
u_{j}(X)= & 0 \text { for } \quad X \in B(0, \eta) \\
& \text { with } x_{n+1} \geq \sigma_{j}\langle l, x\rangle+\theta \eta \sigma_{j} .
\end{aligned}
$$

Let $\bar{\nu}=\left(1+\left.\sigma_{j}^{2}|l|\right|^{2}\right)^{-\frac{1}{2}}\left(-\sigma_{j} l, 1\right)$, (17) implies that
(18)
$u_{j}(X)=0$ for $X \in B(0, \eta)$

$$
\text { with }\langle X ; \bar{\nu}\rangle \geq \frac{\theta \eta \sigma_{j}}{2\left(1+\sigma_{j}^{2}|l|^{2}\right)^{\frac{1}{2}}} \geq \theta \eta \sigma_{j}
$$

for j large enough. (18) states that for every $\theta \in(0,1)$ there is $\eta>0$ so that $u_{j} \in F\left(\theta \sigma_{j}, 1\right)$ in $B(0, \eta)$ in the direction $\bar{\nu}$, which contradicts (16).

6. Weiss monotonicity formula

Assume that:

1. $\Omega \subset \mathbb{R}^{n+1}$ is an unbounded chord arc domain
2.

$$
\begin{cases}\Delta u=0 & \text { in } \Omega \\ u>0 & \text { in } \Omega \\ u=0 & \text { on } \partial \Omega,\end{cases}
$$

3. $h=1, \mathcal{H}^{n}$-a.e. in $\partial \Omega$ i.e

$$
\int_{\Omega} u \Delta \varphi=\int_{\partial \Omega} \varphi d \mathcal{H}^{n} \quad \forall \varphi \in C_{c}^{\infty}\left(\mathbb{R}^{n+1}\right)
$$

For $Q \in \partial \Omega$ and $r>0$ the quantity

$$
\begin{gathered}
\phi(Q, r)=\frac{1}{r^{n+1}} \int_{B(Q, r)}|\nabla u|^{2}-\frac{1}{r^{n+2}} \int_{\partial B(Q, r)} u^{2} \\
+\frac{\mathcal{H}^{n+1}(\Omega \cap B(Q, r))}{r^{n+1}}
\end{gathered}
$$

is monotone and

$$
\begin{aligned}
& \phi(Q, r)-\phi(Q, s)= \\
& \quad 2 \int_{s}^{r} t^{-n-1} \int_{\partial B(Q, r)}\left(\nabla u \cdot \frac{P-Q}{|P-Q|}-\frac{u}{r}\right)^{2} d \mathcal{H}^{n} d t
\end{aligned}
$$

This monotonicity formula yields that the blow up limits of u are homogeneous functions of degree 1.

Theorem. [W] Assume that:

1. $\Omega \subset \mathbb{R}^{n+1}$ is an unbounded chord arc domain
2. $h=1, \mathcal{H}^{n}$-a.e. in $\partial \Omega$ i.e
$\partial^{*} \Omega$ is $C^{\infty} . \quad \Sigma=\partial \Omega \backslash \partial^{*} \Omega$ the singular set of $\partial \Omega$, satisfies:

- If $n=1, \Sigma=\emptyset$
- If $n=2, \Sigma$ consists of isolated points.
- Σ is a closed set of Hausdorff dimension at most $n-2$.

Question: Does there exist a characterization of Σ in terms $\phi(Q)=\lim _{r \rightarrow 0} \phi(Q, r)$?

References

[AC] Alt \& Caffarelli, Existence and Regularity for a minimum problem with free boundary,J. Reine Angew. Math. 325 (1981), 105-144
[EG] Evans \& Gariepy, Measure Theory and Fine Properties of Functions, Studies in Advanced Mathematics, CRC Press, 1992.
[JK] Jerison \& Kenig, Boundary Behavior of Harmonic Functions in Nontangentially Accessible Domains, Adv. in Math. 46 (1982), 80-147.
[JK] Jerison \& Kenig, The logarithm of the Poisson Kernel of a C^{1} Domain has Vanishing Mean Oscillation, Trans. Amer. Math. Soc., 273 (1982), 781-794.
[KL] Keldysh \& Lavrentiev, Sur la représentation conforme des domaines limités par des courbes rectifiables, Ann. Sci. Ecole. Norm. Sup., 54 (1937), 1-38.
[K] Kenig, Harmonic Analysis Techniques for Second Order Elliptic Boundary Value Problems, CBMS, 83, 1994.
[KT] Kenig \& Toro, Free Boundary Regularity for harmonic measures and Poisson kernels, Ann. of Math., 150 (1999), 369-454.
[KT] Kenig \& Toro, Poisson Kernel Characterization of Reifenberg Flat Chord Arc Domains, Ann. Scient. Ec. Norm. Sup. 36, 2003, 323-401.
[KT] Kenig \& Toro, On the free boundary regularity theorem of Alt and Caffarelli, Discrete and Continuous Dynamical Systems 10, 2004, 397-422.
[KT] Kenig \& Toro, On the free boundary regularity theorem of Alt and Caffarelli, Errata, Discrete and Continuous Dynamical Systems 14, 2006, 857-859.
[W] Weiss, Partial regularity for the minimum problem with free boundary, Journal of Geom. Anal. 9,(1999), 317-326.
[W] Weiss, Partial regularity for weak solutions of an elliptic free boundary problem, Comm. Partial Diff. Equations. 23,(1998), 439-455.

