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1. Introduction

Let Q c R*T1 be an open connected domain
such that int Q¢ # 0.

Dirichlet problem in €2: given a bounded con-
tinuous function f on 92 (f € C,(052)) does
there exist a solution uy € Cp(2) N C?(£2) to

(1) {AuzO in Q

u=f on 02 7

Definition. 2 is regular if V f € C,(02) there
exists uy € Cp(2) N C%(Q) satisfying (1).



Remark. If 2 is bounded and regular by the
maximum principle

2 X)| < max VX e

(2)  |up(X)] < max(f)

Thus for X € 2 the linear operator

Ly : C(@Q) — R where Lxf = uf(X)

IS bounded.

By the Riesz Representation theorem for X &
Q there exists a Radon measure w* satisfying

@  wX) =] f(QdN(Q)

Ve Cy(of2). Since ui1(X) = 1, (2) implies
that w® is a probability measure.

wX is the harmonic measure of 2 with pole X




Let

(n—1)on|Xn~1
where op, = |S™]. Then

w(X) =/ F(X = Y)p(Y)dY

Rn+1
satisfies
—Au = in Rn_H,
i.e AF = —Jdx—g Where ¢ is the Dirac delta
function.

Green's formula: let u,v € CHQ) N C3(Q),
where Q is a C1 domain then

(4) /uA’v—/ vAu=/ (u@——v%)da
Q Q 02 ov ov

Here o denotes the surface measure to 90€2, and
v the outward pointing unit normal to 0f2.
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If €2 is regular then for X € Q2 solve

Auy =0 in Q
ux(Q) = F(Q — X) for Q € 922
Then G(X,Y) = F(Y — X) —ux(Y) satisfies

AG(X,) = —6bx inQ
G(X,Q) 0 for Q € 0%2

G(X,) is the Green function of 2 with pole X




Applying (4) in Q\B(X,¢) tou € CL(Q)NC2(Q)
and v(Y) = G(X,Y), and letting ¢ — 0 we have

5)  u(x)=- [ u(@?@

o ov do(Q)

_ /Q G(X,Y)Au(Y)dY.

If u satisfies (1) then (5) becomes

© w0 =-[ @2 Do)

The maximum principle, (3) and (6) ensure
that

0G(X,Q)

() kx(@) =dw™(Q) = ——~

do(Q).

kx is the Poisson kernel of €2 with pole X.




Using (7) and applying (4) in 2NB(Q, R) where
Q €00 and 2R < | X — Q] to G(X,-) and ¢ €
C(B(Q, R)) we have

(8)
_ X
/Q G(X,Y)Ap(Y)dY = /a e @dw*(Q).

Example: Let Q2 = B(0,r) for X € B(0,r) and
Q € 0B(0,r),

2 2
e = |X]
kx(Q) = o X — QL

In particular ko(Q) = anlr”'




Classical boundary regularity results

If Q is (C°, =S log kx € C°°
ne O

If €2 is C’k'l‘l’o‘, — logkyx € Ok,
ﬁe C’k’,O&

If Q is cle == log ky € 0,
ﬁe 0,
Kellogg

Question: What happens as o« — 07

If Q is Cl, = logky € VMO(OQ)

ne C9
Jerison-Kenig



The free boundary regularity problem for the
Poisson kernel addresses the question of whether,
under the appropriate hypothesis the previous
implications are equivalences
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Theorem [AC]. Assume that:

1. "Q2 satisfies the divergence theorem, and
that the surface measure of 9€2 has Euclidean
growth,”

2. "0 is flat enough,”

3. ‘logky € C9P for some 3 € (0,1),’

then Q is a C¢1® domain for some a € (0,1)
which depends on g.
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2. Harmonic and subharmonic functions

Definition. Let Qg € 9€2, we say that €2 satis-
fies the interior sphere condition at g if there
is an open ball B C  so that 02N B = {Qg}.

Examples.

NED®
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Theorem. (Hopf boundary point lemma)
Assume that « is harmonic in €2, Qg € 052 and

e v IS continuous at Qq.
o u(Qp) < u(X) for all z € Q.

e (2 satisfies the interior sphere condition at

Qo-

If the outward unit normal to 02 at Qg exists,

0
—(Q0) = ~Vu-1(Qo) > 0.

Otherwise, if the outward unit normal does not
exist then

lim inf w(X) —u(Qo)
X—Qo | X — Qo

(non—tangentially)

0.
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Let D C R™ be an open connected domain.

Definition. A function f € C(D) is said to be
subharmonic if V¢ € C°(D), with ¢ > 0

| rnezo.

If f € C2(D), f is subharmonic if and only if
AF>0.
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Remark. If f is subharmonic the operator L :
C2°(D) — R defined by

L(¢) = [ n¢f

IS @ non-negative bounded linear operator. By
the Riesz Representation Theorem there exists
a non-negative Radon measure X such that

L(¢) = [ gar  voe (D).

For f is subharmonic and ¢ € CZ°(D) we have

[enr=] rn¢

where

dA\ = Af >0 as a Radon measure.
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Representation formula for subharmonic
functions

Let f € C(D) N Wé’f(D) be subharmonic in
D. Let B(y,r) C D and let Gy(xz,—) denote
the Green's function of B(y,r) with pole at

x € B(y,r) then

_ 8G7‘(:C7Q)
f@y=— [ F@T o (a)

= oo Gr(z,z)Af(2).

In particular

@) =, F@do= [ Gy, A7)

oB(y,r)
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Mean value inequality for subharmonic
functions

Let f € C(D)NW,g2(D) be subharmonic in D.
If B(y,r) C D then
< do(q),
f(y) < on (y’r)f(Q) o(q)
and for z € B(y,r)

f@) < - Fg2Cr®: @)

OB (y,r) ov dJ(Q)

IA

re — |z —yl|? f(2)
/8 do(z).

Op—1T B(y,r) |z — x|
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Recall the following equivalent definition of
subharmonicity.

Theorem. Let f € C(D), f is subharmonic
in D if and only if for every ball B such that
B C D, and every harmonic function h € C(B)
satisfying f < h on 0B then f <h in B.
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3. Non-tangentially accessible domains -
NTA

Definition. A domain 2 is non-tangentially
accessible (NTA) if there exists constants M >
2 and R >0 (R = oo if 2 is unbounded) such
that VQ € 992, Vr € (O, R)

1. €2 satisfies the corkscrew condition:
there exists A = A(Q,r) € 2 such that

T Tr
— < |A—-Q| <rand d(A,02) > —
7 S1A-QI<rand d(4,09) >

2. QC satisfies the corkscrew condition.

3. 2 satisfies the Harnack Chain Condition;

if e >0, and X1, X5 € B(Q,7)NQ with | X;—X>| < 2Fe
and d(X;,02) > e for 1 = 1,2, there exists a chain
of Mk balls B1,..., By in £2 connecting X; € B; to
X2 € By so that diamB; ~ d(B;,0%2) and

diamB; > C~ ! min{d(X1, B;),d(X2, B;)} for C > 1.
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Corkscrew condition:

Harnack Chain Condition

0x2
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Condition 3 guarantees that the Harnack prin-
ciple for non-negative harmonic functions holds
in €. If

Au=0 inS, and u>0
then for X1, X5 € B(Q,7) N,

M Fu(X1) < u(X5) < MFu(Xy) for .

Theorem.[JK] NTA domains are regular.

Examples.

1. A domain with a cusp is not an NTA do-
main, it does not satisfy the corkscrew condi-
tion at the cusp point.

’ ( ; )
i
!

|

\ I
v /

\ 7

N .

21



9 Q is not an NTA do-
main because X7 and

( Xo cannot be joined

by a Harnack Chain.

3. Q= Rj__l_l = {(z,zp41) 2z € R", 2,41 > 0}

iIs an NTA domain.

4. Q = {(z,t) € R*T1 . 2z € Rt > ()}
with ¢ Lipschitz (i.e. |[Vg|loo < 00), is an NTA
domain.

R
graph ¢
_R"™
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Recall that for A, B C Rrt1
D[A,B] = sup{d(a,B) :a€ A}

+sup{d(b, A) : b € B}.

denotes the Hausdorff distance between A and
B.

For Q € 0X2 we denote by
_ 1

0(Q,r) = mf{—D[asz N B(Q,r), LN B(@,m]},
L r

where the infimum is taken over all n-planes
containing Q.
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If 6(Q,r) < 6 there exists an n-plane L(Q,r)
containing @ € 02 and such that

1. 0Q2NB(Q,r) C (L(Q,r) N B(Q,r),6r)
5r neighborhood of L(Q,r)NB(Q,r)

02

or . T

—0 L(r,Q)

\
\
\
N
~

2. L(Q,r)NB(Q,r) C (02N B(Q,r);dr)

or 0%
>/ﬁgﬁ/ L(r, Q)

and
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Definition. Let § € (0,1/8). Q c R*T1l is 3
0-Reifenberg flat domain if for each compact
set K ¢ R*"*1 there exists Rx > 0 such that

1. sup sup 0(Q,r) <6
O<r<Ry QEKNON

2. sup sup 0(Q,r) <1/8 (if 2 is unbounded)
r>0 Qe

Examples.
1. ¢! domains

2. Q= {(z,t) € R? : z € R™, ¢t > p(x)} with

B cos(2kz)
w(w)—%:l N

In both cases |iI’T(1) 0(Q,r) = 0.
T—
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Remark. If for each compact set Kk ¢ RnT1
there is Rx > 0 such that for » € (0, Rg)

N
sup  0(Q,r) <Cg (R—> ,

QEKNIN K

then Q is a ¢1% domain.

Theorem.[R] /-Reifenberg flat domains are
have HOlder continuous boundaries, provided
o is small enough.

Theorem.[KT] §-Reifenberg flat domains are
NTA, provided ¢ is small enough.
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Boundary behavior of harmonic functions
on NTA domains.

Let €2 be an NTA domain with constants M >
2 and R > 0, and let K be a compact set. The
constant C below only depends on the NTA
constant and on K.

Lemma.[JK] For Q € 9Q2NK, 0 < 2r < R, and
X € Q\B(Q,2Mr). Then for s € [0, r]

(9) WX (B(Q,2s)) < CwX(B(Q, s))

i.e. w is a doubling measure.

Lemma.[JK] There exists 8 > 0 such that
for all Q € 02N K, 0 < 4r < R, and every
harmonic function v in QN B(Q,4r), if u van-
ishes continuously on B(Q,4r) N 0L2, then for
X eQnNnB(r,Q),

W—Q)B

/ra

sup lu(Y)].
YeB(Q,2r)N

|mxnsc<
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Corollary. Let Q € 902N K, 0 < 2r < R then

LARQTN(B(Q,r)) > C.

Lemma.[JK] Let Q € 02N K, and 0 < 4r <
R. If u>0, Au =0 in €, and u = 0 in on
B(Q,2r) N 0L2, then

(10) sup  u(Y) < Cu(A(Q,7)).
YeB(Q,r)N

Lemma.[JK] Let Q € 02N K, 0 < 2r < R, and
X € Q\B(Q, Mr). Then

w* (B(Q, 1))
rn=1G(A(Q, ), X)
where G(A(Q,r),—) is the Green’'s function of
Q2 with pole A(Q,r).

(11) c!< < C,
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Lemma.[JK] (Comparison Principle)
Letr < R/M. Letu, v >0, Au=Av=0in Q2
u=v=0o0on B(Q,Mr)no2 for Q € 92. Then
for all X € B(Q,r) N <2,

1(AQ 1) _ w(X) _ u(AQ,1))

C A = o) = Yuta,n)

Theorem.[JK] There exists a > 0, such that
forr < R/M, if u, v >0, Au= Av =0 in Q
u=wv =0 on B(Q,Mr)No2 for Q € 022 then
for XY e QN B(Q,r),
(12)

u(X) u@)) L u(A@,r)) (IX — Y|>O‘
v(X) o) v(AQ 7)) r

. ou(X)
In particular, |im exists.

X—Q v(X)
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Lemma. Let 2 be an unbounded NTA domain
and Qg € 02. There exists a unique function
u such that

Au=0 in
(13) u>0 inQ
u=0 on 012,

and

u(A(Qo, 1)) = 1.

u is the Green function with pole oo

Proof. Assume that Qo = 0. Let A(0,1) = A.

Uniqueness: Let u, v be as above. By the comparison
principle for p > 1 and X € B(0,p) N2

1840, p) _ u(X) _ u(A(0,p))
v(A0,0) ~ v(X) = w(A0, )’

Since A € B(0,p), and u(A) = v(A) then for X €
B(0,p) N2

1 u(X)
(14) C 1§U(X) < C.

By (12) and (14) for X € B(0,p) N2

u(x) MAmmD(W—ABQ CX—AQ“
oo HE%aom ) =9l )

Letting p — oo we conclude that v = v in 2.
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Existence: For Y € Q2 let

uy iS @ nonnegative harmonic function on B(0,|Y|) N <.
Let K C R*! be a fixed compact set. Fix p > 0 such
that KN C B(0,p)NS2, and let |Y| > 2p. Let X € KN.
(10) and the Harnack Principle yield

G(Y,X) < CG(Y, A0, p)) < CruG(Y, A).
Thus for |Y| > 2p

sup uy(X) < Cgp.
XeKNN

Moreover by (9) and (11) the Radon measures G(YA) are

uniformly bounded on B(0,p). Let {Y;}; C €2 be such
that |Y;| — oo as j — oo. There exists a subsequence
{Y;} such that u; converges uniformly to a nonnegative
harmonic function « in B(0, p) N2 (Arzela-Ascoli) and

dwY’
/ch(Y 5 /qsdu,

where p is @ Radon measure and ¢ € C*(B(0,p)).
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Letting p — oo and taking a diagonal subsequence we
conclude that there is a subsequence u;, which converges
to the nonnegative harmonic function u, uniformly on
compact sets of 2. Moreover
wYin R
G(Yj,, A)
Since u(A) =1 and u =0 on 922, u > 0 in €, u satisfies
(13). By the uniqueness proved above we conclude that
ujy| — u as |Y| — oo.

By (8)

/ G(Yj, X)
Q G(Y7k7A)

L

_ dw¥(Q)
Ap(X)dX = /(‘3Q @(Q)m-

Hence

/ god,u=/uAg0dX Vo € C*(R™ 1),
0% Q

and

n(B(0,1))

/ gpdwOOZ/vAgo Vo € C*(R™T1).
02 Q
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Properties:

e If u =0 and v =0 in Q2¢ « adn v are the
subharmonic on R*t1.

e For Q € 92 by (11)

1 w*(B(Q,r))
S T (A(Q, )

C C,
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Corollary. Let €2 be an unbounded NTA do-
main, and Qg € 0f2. There exists a unique
doubling Radon measure w®°, supported on 952
satisfying:

/('EQ pdw™> = /Q vAp Vo e CRRMT

where
Av=0 1in
v>0 in €2
v=20 on 0f2,

and
w>(B(Qo, 1)) = 1.

w®° is the harmonic measure of 2 with pole o
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Proof. w™ is doubling. Let K Cc R"*! be compact,
Q € KNo. Given r > 0, for ji large, Y;, € Q\B(2Mr, Q).
Then for s € [0,r] by (9)

w"(B(Q,2s)) < Cw'(B(Q,s)).
Hence

. _ ) wY}k(B(Q725))
WHB(Q,29)) < Mt S TGy, A)

O WN(BQ)
S Climinf 50, 1)G0, 4)

< C™(BQ.3))

< Cw™(B(Q,s)).
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Theorem [AC]. Assume that:

1. "Q2 satisfies the divergence theorem, and
that the surface measure of its boundary has
Euclidean growth,”

2. Q2 is a unbounded ¢-Reifenberg flat domain
for some 6 > 0 small enough,

3. 'logh € C9P for some B € (0,1)’,

then Q is a C1H® domain for some a € (0,1)
which depends on g.

Here h denotes the Poisson kernel with pole at
infinity (i.e. the Radon Nikodym derivative of
the harmonic measure with pole at co w.r.t. to
the surface measure of 9Q2).
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4. Sets of locally finite perimeter

Definition. A measurable set Q ¢ R?1T1 has
locally finite perimeter if Xo € BVjg(R*T1),
I.e.

sup{/Q divpdr |¢ € Ccl(R”+1,IR{”+1)} < 00

Theorem. Let 2 be a set of locally finite
perimeter. There exist a Radon measure [|0€2||
on R"*t1 and a ||8Q2|| measurable function vq :
RPTL - ReTL st

1. jvol=1 |09 a.e.

2. /Q legpz/Rn+1cp~VQd||8Q||

Vo e CHRPT1 RrT1Y,
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Example. Let © ¢ R**1 be a smooth do-
main such that for each compact set K ¢ Rn+1
H*" (02 N K) < oco. By divergence theorem if
o € CL(R*T1 R7+1) then

div pda = vdH™,
Joy vt = [0

where v is the outward unit normal to 0f2.

If || <1 and supportyp = K

divede] < [ lp-v]dH"
[ divede] < | Jp-v
< HY"(OQNK) < co.

Thus €2 has locally finite perimeter and

1092 = H" L 02 and v = v H" a.e.02

i.e. E Borel

109|(E) = H(E N 8%).

38



Let €2 be set of locally finite perimeter.

Definition. X € 02, the reduced boundary
of Q if

D 109 (B(X,7) >0  Vr>O0.

) I redlofl =va(X) and
i) Jra(X)| =1

In particular

10| (R"T1\ 6*Q) = 0.
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Lemma. Let ¢ € CHR"TL R T1) then

divody = / v d||OS
/QﬂB(X,r) ’ Bxn T 2 jo<2|

cvdH"
+./Qﬂ8B(X,r)CP g

for a.e. r > 0, v is the outward unit normal to
B(X,r).

Lemma. There exist A1, A> > 0 such that for

X € 0"

. HYTH(BX,r)NQ)

i) I|7(n_10nf 1 > A4
n—+1 X @)

i iminf b (BX, )\ )>A2

r—0 rrtl o

40



Definition. X ¢ 0.{2 the measure theoretic
boundary of 2 if

HPHL(B(X,r) N Q)

IIT—SASJD rn+1 0
. HYTPL(B(X,r)\Q)
Ilrpjgp | > 0

Lemma. 1) 90*Q C 02
2) H™"(0+s02\0*Q) =0

Remark. Let 2 be set of locally finite perime-
ter and NTA domain: 2 and €2¢ satisfy the
corkscrew condition. Thus for r > 0 Q € 902

HTHQN B(Q, 7)) > cnr™t!
and

H (B, Q) \ Q) > cpr™ L.
Thus Q € 0«2, and 0«2 = 912,

H (02 \ 8*Q) = 0.

41



Theorem. [Isoperimetric inequality]
min {H"F1(B(X,r) N Q), H"TH(B(X,r) \ @)}

< C|o2[|(B(X, 7))

For @ € 0*Q2 let

HQ) = {Y eR"T1:0q(Q) (Y —Q) =0}
HY(Q) = {Y eR"™:0uq(Q) (Y —Q) >0}
H(Q) Y eR" ™1 0q(Q) - (Y — Q) <0}

Picture
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Theorem. [Blow up of the reduced boundary]
If Q € 0*Q2 then

: 1 n—+1
XﬁQﬂ«(Q)?:SXH_(Q) N Lijg (R )

where 7q () = (2 - Q)

Corollary. If Q € 902 then

H'HH(B(Q, ) NQNHT(Q)) _

L. f,ll_r)% rn+1 0
 HMTYBQ, )\ NH(Q))

2. Iim =0
r—0 rnt1

3 (im 1OS2(BQ, 7)) _

r—0 wnrh

1
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Theorem. |[Structure theorem for sets of
locally finite perimeter] Let Q2 be set of lo-
cally finite perimeter then

o
1. 0" e U X UXg where
k=1

10€2][(X0) =0

>, is a C1 hypersurface

2. v IS the outer unit normal to ;..
8*Qﬂzk

i) |09 = H" L 9*Q

Corollary. If €2 is NTA and a set of locally
finite perimeter

10Q2|| = H"™ L 02
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Theorem.[Generalized Gauss-Green theo-
rem] Let 2 be an NTA domain and a set of
locally finite perimeter then

divodr = cvo dH"

Vo e CHRMTE R,

vo Is the unique measure theoretic outer unit
normal.

Proof.

/ dngode/go-l/QdH@QH
Q
=/g0-VQdH”L8§2

/ w - vodH"
0x2
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5. Free boundary regularity problem for
the Poisson kernel

Definition. An domain €2 is a chord arc do-
main if:

e C2is NTA
e (2 is a set of locally finite perimeter

e the surface measure of 902 o = H"™ L 022 is
Ahlfors regular, i.e.

1 o(B(r,Q)) <C

3C > 1 C

Y
Tn

for »r < diam €2.
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Theorem [AC]. Assume that:
1. 2 is an unbounded chord arc domain

2. Q2 is a o-Reifenberg flat domain for some
o > 0 small enough,

3. logh € €9 for some 3 € (0,1),

then Q is a C1® domain for some a € (0,1)
which depends on 3. Moreover if h is identically
equal to 1 then 2 is a half-space.

Here
Ny :/ hdH", for ¢ e C°(R" L
/Qu pdv = [ ¢ p € C( )

and
Au=0 1in
u>0 in €2
u=20 on 0f2,

h is the Poisson kernel with pole at oo
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Let Q; € 9€2, and r; > 0, consider

¥

J

0S2;

J

uj(X)

w;(E)
dw ;

J

h;(Q)

1
— (2 - Q;)
T

Loa-q))
T

u(r; X + Q)
T B(Q;r)do;
w(r;E+ Q;)
T?UCB(Qj,rj)h dO‘j

hj dO'] Hn — a.e. in 8Qj

h(r;Q + Q;)
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T heorem. Let €2 be a chord arc domain as
above. Then

where (2~ iS an unbounded chord arc domain.
Moreover there exists uso such that

Uj — Uoo uniformly on compact sets

Nuso =0 in Qs
Uoo = 0 ONn 0N

Furthermore

Wi — Woo and 0; — Oco

weakly on Radon measures. woo IS the har-
monic measure of 2 with pole at infinity,
and o~ is the surface measure of 0¥2~. The
Poisson kernel of €2 with pole at infinity hso
satisfies

d
hoozdw—oozl H™ — a.e in 9us.

0)e’%)
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Theorem [AC], [KT]. Assume that;:

1. €2 is an unbounded chord arc domain

2. Q2 is a -Reifenberg flat domain for some
d > 0 small enough,

3. h=1, H™a.e. in 02

Then €2 is a half-space.

Theorem [LV] Assume that:

1. 2 be a bounded chord arc domain
2. 0, and kg =1, H™a.e. in 012.

Then 2 = B(0, R) with o, R" = 1.

Question: Is the flatness assumption
necessary in the unbounded case?
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Examples.
e Q=R u(x,x ) = and h=1
— B4 » fn+1 Tp+41 .

e Keldysh-Lavrentiev constructed a set of |o-
cally finite perimeter 2 ¢ R2 whose bound-
ary is not Ahlfors regular, whose Poisson
kernel is identically equal to 1 and €2 is not
ct.

e Kowalski-Preiss cone:
Q= {(:cl, e, Ta) € R? lxq| < \/x% + :1:% -+ x%} :

Let r2 —:I;1+:132+:1:3—|—:B4, 0 € [7T 37T] and
x4 = rcosh, then X = (x1,x0,x3,24) € Q2.

r COS20

24/2 sinf

satisfies Au=0in2, u>0inQ2andu=20
on 0L2. w® = H"L 922, i.e h =1, H"™-a.e
in 052.

uw(X) = —

51



Main Theorem [KT]. Assume that:
1. €2 is an unbounded chord arc domain

2. Q2 is a -Reifenberg flat domain for some
d > 0 small enough,

3. sup|Vu| <1 and h > 1, H™a.e. in 92
Q

Then modulo translation and rotation 2 =

R?’I_—i_l and u(z,xp41) = Tpt1-

Here
Apd :/ hdH", for e CX(RM1),
/Qu pdv = | ¢ p e C( )

and
Au=0 1in
u >0 in 2
u=2~0 on 0f2,
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Definition. For 0 <o ,0<1, Qg € 952, p > 0.
u € F(o4;0-) in B(Qo,p) in the direction v if
uw(X) =0 for (X — Qo,v) > o4 p

and
u(X) > —[{(X —Qo,v)+o-p]

for <X - QO)V> < —o—p.
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Lemma A. If u € F(o;1) in B(Qp,p) in the
direction v then u € F(20;Co) in B(Qop,5) in
the direction v.

u € F(o;1) in B(Qg, p) then
u € F(20;Co) in B(Qg,5

Lemma B. Given ¢ € (0,1) there exist o), 9 > 0
and nyp = n € (0,1) so that if o < 0,9 and
u € F(o;0) in B(Qq,p) in the direction vq, ,
for Qg € 022, then uw € F'(fo;1) in B(Qq;np) in
the direction vg, ,, and

Q0,0 — VQompl < Co

u € F(o;0) in B(Qp, p) then
u € F(0o;1) in B(Qo,np)
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Proof of the Main Theorem. Since Q2 is a J-Reifenberg
flat chord arc domain, u € F'(6;1) in B(Q,2r) for » > 0
and Q € 92. If Q = 0, B(0,r) = B(r)

(A) weF(6;1)in B(2r) then v € F(25,C9) in B(r)

Choosing § so that max{24,Céd} < o we have

(B) we F(o:0) in B(r) then u € F(0'c,1) in B(2nr)

(A) we F(0o;1) in B(2nr) then u € F(20'0,C0'c) in B(nr)

Choosing ¢’ so that max{26’,C0'} < 6 we have

(B+A) we F(o;0) in B(r) then u € F(00,00) in B(nr)

By iteration
ue€ F(0Mo;0mc) in B(n™r) for r > 0.

Moreover if vy, = vg,m then

|Vm — I/m_|_1| S Co"o.
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Let v, = lim v, and A(r) is the n-plane orthogonal to

m—0o0

v, then for s € (0,7) we have

%D[ms) NOSHEA(r) N B(s)] < C (—)B ’

for some B > 0. Since S™ is compact there exists an
increasing sequence r; — oo and an n-plane Ay such
that for s > 0O

D[B(s) N92; A\oo N B(s)] = 0.

Thus 0Q = A W.lLo.g Q =R, 0 < u < 2,41 and
ou

8xn+1

=1 on Aw. Moreover by (12)

u(x) 1| < UA©.) (|X|>a < (@)

Tr Tr Tr

letting » — oo we conclude that u(z,z,+1) = Tpt1.
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Non-homogeneous blow-up

Lemma B is proved by contradiction. Assume
that there exist 6 € (0,1) such that for every
n > 0 and every non-negative decreasing se-
quence {0},

u € F(oj,05) in B(Qj,p;) in the direction v;
but

u & F(00;,1) in B(Qj,mp;).

Assume that h(Q;) > 1, and v; = e,41. For
X € B(0,1) let

1
u;j(X) = —ul(p; X + Q).
Pj
Note that Au; =0 in Q; = plj(sz —Qj), u; >0

in €2;, u; =0 on 992; = pij(aQ—Qj), and

/Q.ujAcde — /mphj dH" for all ¢ € C(R™H1)
J J
where

hi(Q) = h(p;Q + Q).
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Moreover

(15)

sup [Vu;| <1 and h;>1 H" a.e. in 0%;.
j

The hypothesis vields

u;j € F(oj,05)in B(0,1)
in the direction e, 1

(16) w; ¢ F(0o;;1) in B(O,n),

with o; — 0 as 7 — oo.

58



Idea [AC]:

e Define sequences of scaled height functions
corresponding to 8Qj.

e Prove that these sequences converge to a
subharmonic Lipschitz function.

e Use this information to contradict the fact
that u; ¢ F(0oj;1) in B(n,0) for j large
enough.

For y € B(0,1) NR™ x {0} = B’ define

;7 () =supfh: (y,o5h) € 8{u; > 0}} < 1

and

f; () = inf{h; (y,05h) € O{u; > 0}} > -1
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Lemma. There exists a subsequence kj such
that for y € B’

f(y) = limsup f;f (2) = liminf £, (2).
kj—o00 J kj—oo ™7
Z—Y =Y

Corollary. f is a continuous function in B/,

f(0) = 0; and f,jf and f, converge uniformly
J J

to f on compact sets of B’.

Lemma.* f is subharmonic in B’.

Lemma. There is a constant ' > 0 such that

for y € B
2

1
7 1
0 < /4 —(fyr — f(y))dr < C
Or
where

fyr =1 faHt,

OB’ (y,r)
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Lemma.* f is Lipschitz in B/, .

1

Lemma. There exists C' > 0 such that for any
given 0 € (0,1) there exist n = n(f#) > 0 and
[l € R™ x {0} with |I| < C so that

9
fly) <{l,y) + AL for ye B,
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Contradiction in the proof of Lemma B For
0 € (0,1) there exists n = n(#) > 0 such that
for 5 large enough that

0
7)) < (Ly) + S for y € By,.
Since £ (y) = sup{h : (y,0;h) € d{u; > 0}}

(17)
ui(X) = 0 for X € B(0,n)
with z,41 > o;{l,z) + Ono;.

1
Let 7 = (1 + a§|1|2)—§(—ajz,1), (17) implies
that

(18)
u;i(X) = 0 for X € B(0,n)
Ono ;

with (X;7) >

> Ono;
- 1 = 7
2(1 + o2]12)2

for j§ large enough. (18) states that for every
0 € (0,1) there is n > 0 so that u; € F(0o;,1)
in B(0,n) in the direction 7, which contradicts
(16).

63



6. Weiss monotonicity formula

Assume that:

1. Q c R*t1 is an unbounded chord arc
domain
2.

Au=0 1in

u>0 in Q2

u=2~0 on 0S2,

3. h=1, H"™a.e. in 0L2 i.e

A :/ dH" Vo € CO(R" 1
/Qu il p € C( )
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For Q € 0L2 and r > O the quantity

P(Q,r) = nt1 /B(Q,'r‘) [Vul® - rn+2 ./GB(Q,T)U

HTLH QN B(Q,r))
+ rn+1

2

IS monotone and

(Q,r) — 9(Q,s) =

r 1 P— Q u 2
2| t " : — — | dH"dt
/s /83(@7«) (Vu 1P — Q)| r) "

T his monotonicity formula yields that the blow
up limits of v are homogeneous functions of
degree 1.
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Theorem. [W] Assume that:

1. Q c R**1 is an unbounded chord arc
domain
2. h=1, H"™a.e. in 0L2 i.e

0*Q is C°. X = 900Q\0*2 the singular set of
0€2, satisfies:

oelfn=1 >X=1
e If n = 2, > consists of isolated points.

e > S a closed set of Hausdorff dimension at
most n — 2.

Question: Does there exist a characterization
of > in terms ¢(Q) = IirnO o(Q,r)7?
T—
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