Geometric measure theory as a tool in free boundary regularity problems by TATIANA TORO

(University of Washington, Seattle, WA)

Ninth New Mexico Analysis Seminar University of New Mexico Albuquerque, April 6-8, 2006

Geometric measure theory as a tool in free boundary regularity problems

- Introduction Motivation
- Basic facts about harmonic and subharmonic functions
- Non-negative harmonic functions on NTA domains
- Sets of locally finite perimeter
- Free boundary regularity problem for the Poisson kernel: results and open questions

1. Introduction

Let $\Omega \subset \mathbb{R}^{n+1}$ be an open connected domain such that $\inf \Omega^c \neq \emptyset$.

Dirichlet problem in Ω : given a bounded continuous function f on $\partial \Omega$ ($f \in C_b(\partial \Omega)$) does there exist a solution $u_f \in C_b(\overline{\Omega}) \cap C^2(\Omega)$ to

(1)
$$\begin{cases} \Delta u = 0 \text{ in } \Omega\\ u = f \text{ on } \partial \Omega \end{cases}$$
?

Definition. Ω is *regular* if $\forall f \in C_b(\partial \Omega)$ there exists $u_f \in C_b(\overline{\Omega}) \cap C^2(\Omega)$ satisfying (1).

Remark. If Ω is bounded and regular by the maximum principle

(2) $|u_f(X)| \leq \max_{\partial \Omega} (f) \quad \forall X \in \Omega.$ Thus for $X \in \Omega$ the linear operator

 $L_X: C(\partial \Omega) \to \mathbb{R}$ where $L_X f = u_f(X)$

is bounded.

By the Riesz Representation theorem for $X\in \Omega$ there exists a Radon measure ω^X satisfying

(3)
$$u_f(X) = \int_{\partial \Omega} f(Q) d\omega^X(Q)$$

 $\forall f \in C_b(\partial \Omega)$. Since $u_1(X) = 1$, (2) implies that ω^X is a probability measure.

 ω^X is the harmonic measure of Ω with pole X

Let

$$F(X) = \begin{cases} -\frac{1}{2\pi} \log |X| & \text{if } n = 1\\ \frac{1}{(n-1)\sigma_n |X|^{n-1}} & \text{if } n \ge 2, \end{cases}$$

where $\sigma_n = |\mathbb{S}^n|$. Then

$$u(X) = \int_{\mathbb{R}^{n+1}} F(X - Y)\varphi(Y)dY$$

satisfies

$$-\Delta u = \varphi \text{ in } \mathbb{R}^{n+1},$$

i.e $\Delta F = -\delta_{X=0}$ where δ is the Dirac delta function.

Green's formula: let $u, v \in C^1(\overline{\Omega}) \cap C^2(\Omega)$, where Ω is a C^1 domain then

(4)
$$\int_{\Omega} u \Delta v - \int_{\Omega} v \Delta u = \int_{\partial \Omega} \left(u \frac{\partial v}{\partial \nu} - -v \frac{\partial u}{\partial \nu} \right) d\sigma.$$

Here σ denotes the surface measure to $\partial \Omega$, and ν the outward pointing unit normal to $\partial \Omega$.

If Ω is regular then for $X \in \Omega$ solve

$$\begin{cases} \Delta u_X = 0 & \text{in } \Omega \\ u_X(Q) = F(Q - X) & \text{for } Q \in \partial \Omega \end{cases}$$

Then $G(X, Y) = F(Y - X) - u_X(Y)$ satisfies

$$\begin{cases} \Delta G(X, \cdot) = -\delta_X & \text{in } \Omega \\ G(X, Q) = 0 & \text{for } Q \in \partial \Omega \end{cases}$$

 $G(X, \cdot)$ is the Green function of Ω with pole X

Applying (4) in $\Omega \setminus B(X, \epsilon)$ to $u \in C^1(\overline{\Omega}) \cap C^2(\Omega)$ and v(Y) = G(X, Y), and letting $\epsilon \to 0$ we have

(5)
$$u(X) = -\int_{\partial\Omega} u(Q) \frac{\partial G(X,Q)}{\partial\nu} d\sigma(Q) - \int_{\Omega} G(X,Y) \Delta u(Y) dY.$$

If u satisfies (1) then (5) becomes

(6)
$$u(X) = -\int_{\partial\Omega} f(Q) \frac{\partial G(X,Q)}{\partial\nu} d\sigma(Q).$$

The maximum principle, (3) and (6) ensure that

(7)
$$k_X(Q) = d\omega^X(Q) = -\frac{\partial G(X,Q)}{\partial \nu} d\sigma(Q).$$

 k_X is the Poisson kernel of Ω with pole X.

Using (7) and applying (4) in $\Omega \cap B(Q, R)$ where $Q \in \partial \Omega$ and 2R < |X - Q| to $G(X, \cdot)$ and $\varphi \in C_c^{\infty}(B(Q, R))$ we have

(8)
$$\int_{\Omega} G(X,Y) \Delta \varphi(Y) \, dY = \int_{\partial \Omega} \varphi(Q) d \, \omega^X(Q).$$

Example: Let $\Omega = B(0, r)$ for $X \in B(0, r)$ and $Q \in \partial B(0, r)$,

$$k_X(Q) = \frac{r^2 - |X|^2}{\sigma_n r |X - Q|^{n+1}}.$$

In particular $k_0(Q) = \frac{1}{\sigma_n r^n}$.

Classical boundary regularity results

If Ω is C^{∞} , $\overrightarrow{n} \in C^{\infty}$	\Longrightarrow	$\log k_X \in C^\infty$
If Ω is $C^{k+1, \alpha}$, $\overrightarrow{n} \in C^{k, \alpha}$	\Longrightarrow	$\log k_X \in C^{k,\alpha}$
If Ω is $C^{1,\alpha}$, $\overrightarrow{n} \in C^{0,\alpha}$	\Longrightarrow	$\log k_X \in C^{0,\alpha}$
	Kellogg	

Question: What happens as $\alpha \rightarrow 0$?

If Ω is C^1 , $\Longrightarrow \log k_X \in VMO(\partial \Omega)$ $\overrightarrow{n} \in C^0$ Jerison-Kenig The free boundary regularity problem for the Poisson kernel addresses the question of whether, under the appropriate hypothesis the previous implications are equivalences Theorem [AC]. Assume that:

1. " Ω satisfies the divergence theorem, and that the surface measure of $\partial \Omega$ has Euclidean growth,"

2. " $\partial \Omega$ is flat enough,"

3. 'log
$$k_X \in C^{0,\beta}$$
 for some $\beta \in (0,1)$,'

then Ω is a $C^{1,\alpha}$ domain for some $\alpha \in (0,1)$ which depends on β .

2. Harmonic and subharmonic functions

Definition. Let $Q_0 \in \partial \Omega$, we say that Ω satisfies the interior sphere condition at Q_0 if there $\operatorname{is}_{\overline{\Omega}}$ an open ball $B \subset \Omega$ so that $\partial \Omega \cap \overline{B} = \{Q_0\}$.

Examples.

Theorem. (Hopf boundary point lemma) Assume that u is harmonic in Ω , $Q_0 \in \partial \Omega$ and

- u is continuous at Q_0 .
- $u(Q_0) < u(X)$ for all $x \in \Omega$.
- Ω satisfies the interior sphere condition at Q_0 .

If the outward unit normal to $\partial \Omega$ at Q_0 exists,

$$-\frac{\partial u}{\partial \nu}(Q_0) = -\nabla u \cdot \nu(Q_0) > 0.$$

Otherwise, if the outward unit normal does not exist then

$$\liminf_{\substack{X \to Q_0 \\ (\text{non-tangentially})}} \frac{u(X) - u(Q_0)}{|X - Q_0|} > 0.$$

Let $D \subset \mathbb{R}^n$ be an open connected domain.

Definition. A function $f \in C(D)$ is said to be subharmonic if $\forall \phi \in C_c^{\infty}(D)$, with $\phi \ge 0$

$$\int_D f \Delta \phi \ge 0.$$

If $f \in C^2(D)$, f is subharmonic if and only if $\Delta f \ge 0$.

Remark. If f is subharmonic the operator L: $C_c^{\infty}(D) \to \mathbb{R}$ defined by

$$L(\phi) = \int_D \Delta \phi f$$

is a non-negative bounded linear operator. By the Riesz Representation Theorem there exists a non-negative Radon measure λ such that

$$L(\phi) = \int_D \phi d\lambda \qquad \forall \phi \in C_c^\infty(D).$$

For f is subharmonic and $\phi \in C_c^{\infty}(D)$ we have

$$\int \phi \Delta f = \int_D f \Delta \phi$$

where

 $d\lambda = \Delta f \ge 0$ as a Radon measure.

Representation formula for subharmonic functions

Let $f \in C(D) \cap W^{1,2}_{\text{loc}}(D)$ be subharmonic in *D*. Let $\overline{B(y,r)} \subset D$ and let $G_r(x,-)$ denote the Green's function of B(y,r) with pole at $x \in B(y,r)$ then

$$f(x) = -\int_{\partial B(y,r)} f(q) \frac{\partial G_r(x,q)}{\partial \nu} d\sigma(q)$$
$$-\int_{B(y,r)} G_r(x,z) \Delta f(z).$$

In particular

$$f(y) = \int_{\partial B(y,r)} f(q) d\sigma(q) - \int_{B(y,r)} G_r(y,z) \Delta f(z)$$

Mean value inequality for subharmonic functions

Let $f \in C(D) \cap W^{1,2}_{\text{loc}}(D)$ be subharmonic in D. If $\overline{B(y,r)} \subset D$ then

$$f(y) \leq \int_{\partial B(y,r)} f(q) d\sigma(q),$$

and for $x \in B(y,r)$

$$\begin{split} f(x) &\leq -\int_{\partial B(y,r)} f(q) \frac{\partial G_r(x,Q)}{\partial \nu} d\sigma(q) \\ &\leq \frac{r^2 - |x-y|^2}{\sigma_{n-1}r} \int_{\partial B(y,r)} \frac{f(z)}{|z-x|^n} d\sigma(z). \end{split}$$

Recall the following equivalent definition of subharmonicity.

Theorem. Let $f \in C(D)$, f is subharmonic in D if and only if for every ball B such that $\overline{B} \subset D$, and every harmonic function $h \in C(\overline{B})$ satisfying $f \leq h$ on ∂B then $f \leq h$ in B.

3. Non-tangentially accessible domains - NTA

Definition. A domain Ω is non-tangentially accessible (NTA) if there exists constants M >2 and R > 0 ($R = \infty$ if Ω is unbounded) such that $\forall Q \in \partial \Omega, \forall r \in (0, R)$

1. Ω satisfies the corkscrew condition:

there exists $A = A(Q, r) \in \Omega$ such that

$$\frac{r}{M} \le |A - Q| \le r \text{ and } d(A, \partial \Omega) \ge \frac{r}{M}$$

- 2. Ω^C satisfies the corkscrew condition.
- 3. Ω satisfies the Harnack Chain Condition;

if $\epsilon > 0$, and $X_1, X_2 \in B(Q, \frac{r}{4}) \cap \Omega$ with $|X_1 - X_2| \leq 2^k \epsilon$ and $d(X_i, \partial \Omega) \geq \epsilon$ for i = 1, 2, there exists a chain of Mk balls B_1, \ldots, B_{Mk} in Ω connecting $X_1 \in B_1$ to $X_2 \in B_{Mk}$ so that diam $B_j \sim d(B_j, \partial \Omega)$ and diam $B_j \geq C^{-1} \min\{d(X_1, B_j), d(X_2, B_j)\}$ for C > 1.

ag replacements

Corkscrew condition:

g replacements Chain Condition

Condition 3 guarantees that the Harnack principle for non-negative harmonic functions holds in Ω . If

 $\Delta u = 0$ in Ω , and $u \ge 0$

then for $X_1, X_2 \in B(Q, \frac{r}{4}) \cap \Omega$,

$$M^{-k}u(X_1) \le u(X_2) \le M^k u(X_1)$$
 for .

Theorem.[JK] NTA domains are regular.

Examples.

1. A domain with a cusp is not an NTA domain, it does not satisfy the corkscrew condition at the cusp point.

PSfrag replacements

 Ω is not an NTA domain because X_1 and X_2 cannot be joined by a Harnack Chain.

3. $\Omega = \mathbb{R}^{n+1}_+ = \{(x, x_{n+1}) : x \in \mathbb{R}^n, x_{n+1} > 0\}$ is an NTA domain.

4. $\Omega = \{(x,t) \in \mathbb{R}^{n+1} : x \in \mathbb{R}^n, t > \varphi(x)\}$ with φ Lipschitz (i.e. $\|\nabla \varphi\|_{\infty} < \infty$), is an NTA domain. g replacements

22

Recall that for $A, B \subset \mathbb{R}^{n+1}$,

$$D[A,B] = \sup\{d(a,B) : a \in A\}$$

$$+ \sup\{d(b, A) : b \in B\}.$$

denotes the Hausdorff distance between A and B.

For $Q \in \partial \Omega$ we denote by

$$\theta(Q,r) = \inf_{L} \left\{ \frac{1}{r} D[\partial \Omega \cap B(Q,r), L \cap B(Q,r)] \right\},$$

where the infimum is taken over all n-planes containing Q.

If $\theta(Q,r) \leq \delta$ there exists an *n*-plane L(Q,r) containing $Q \in \partial \Omega$ and such that

1. $\partial \Omega \cap B(Q,r) \subset \underbrace{(L(Q,r) \cap B(Q,r), \delta r)}_{\delta r \text{ neighborhood of } L(Q,r) \cap B(Q,r)}$

ag replacements

and

2. $L(Q,r) \cap B(Q,r) \subset (\partial \Omega \cap B(Q,r); \delta r)$

Definition. Let $\delta \in (0, 1/8)$. $\Omega \subset \mathbb{R}^{n+1}$ is a δ -Reifenberg flat domain if for each compact set $K \subset \mathbb{R}^{n+1}$, there exists $R_K > 0$ such that

- 1. $\sup_{0 < r < R_K} \sup_{Q \in K \cap \partial \Omega} \theta(Q, r) \le \delta$
- 2. $\sup_{r>0} \sup_{Q \in \partial \Omega} \theta(Q, r) \leq 1/8$ (if Ω is unbounded)

Examples.

1. C^1 domains

2.
$$\Omega = \{(x,t) \in \mathbb{R}^2 : x \in \mathbb{R}^n, t > \varphi(x)\}$$
 with
 $\varphi(x) = \sum_{k \ge 1} \frac{\cos(2^k x)}{2^k \sqrt{k}}.$

In both cases $\lim_{r \to 0} \theta(Q, r) = 0.$

25

Remark. If for each compact set $K \subset \mathbb{R}^{n+1}$ there is $R_K > 0$ such that for $r \in (0, R_K)$

$$\sup_{Q \in K \cap \partial \Omega} \theta(Q, r) \le C_K \left(\frac{r}{R_K}\right)^{\beta},$$

then Ω is a $C^{1,\beta}$ domain.

Theorem.[R] δ -Reifenberg flat domains are have Hölder continuous boundaries, provided δ is small enough.

Theorem.[KT] δ -Reifenberg flat domains are NTA, provided δ is small enough.

Boundary behavior of harmonic functions on NTA domains.

Let Ω be an NTA domain with constants M > 2 and R > 0, and let K be a compact set. The constant C below only depends on the NTA constant and on K.

Lemma.[JK] For $Q \in \partial \Omega \cap K$, 0 < 2r < R, and $X \in \Omega \setminus B(Q, 2Mr)$. Then for $s \in [0, r]$ (9) $\omega^X(B(Q, 2s)) \leq C\omega^X(B(Q, s))$ i.e. ω^X is a doubling measure.

Lemma.[JK] There exists $\beta > 0$ such that for all $Q \in \partial \Omega \cap K$, 0 < 4r < R, and every harmonic function u in $\Omega \cap B(Q, 4r)$, if u vanishes continuously on $B(Q, 4r) \cap \partial \Omega$, then for $X \in \Omega \cap B(r, Q)$,

$$|u(X)| \le C\left(\frac{|X-Q|}{r}\right)^{\beta} \sup_{Y \in B(Q,2r) \cap \Omega} |u(Y)|.$$

27

Corollary. Let $Q \in \partial \Omega \cap K$, 0 < 2r < R then $\omega^{A(Q,r)}(B(Q,r)) \ge C.$

Lemma.[JK] Let $Q \in \partial \Omega \cap K$, and 0 < 4r < R. If $u \ge 0$, $\Delta u = 0$ in Ω , and u = 0 in on $B(Q, 2r) \cap \partial \Omega$, then

(10)
$$\sup_{Y \in B(Q,r) \cap \Omega} u(Y) \le Cu(A(Q,r)).$$

Lemma.[JK] Let $Q \in \partial \Omega \cap K$, 0 < 2r < R, and $X \in \Omega \setminus B(Q, Mr)$. Then

(11)
$$C^{-1} < \frac{\omega^X(B(Q,r))}{r^{n-1}G(A(Q,r),X)} < C,$$

where G(A(Q, r), -) is the Green's function of Ω with pole A(Q, r).

Lemma.[JK] (Comparison Principle)

Let r < R/M. Let $u, v \ge 0$, $\Delta u = \Delta v = 0$ in Ω u = v = 0 on $B(Q, Mr) \cap \partial \Omega$ for $Q \in \partial \Omega$. Then for all $X \in B(Q, r) \cap \Omega$,

$$C^{-1}\frac{u(A(Q,r))}{v(A(Q,r))} \le \frac{u(X)}{v(X)} \le C\frac{u(A(Q,r))}{v(A(Q,r))}.$$

Theorem.[JK] There exists $\alpha > 0$, such that for r < R/M, if $u, v \ge 0$, $\Delta u = \Delta v = 0$ in Ω u = v = 0 on $B(Q, Mr) \cap \partial \Omega$ for $Q \in \partial \Omega$ then for $X, Y \in \Omega \cap B(Q, r)$,

(12)
$$\left|\frac{u(X)}{v(X)} - \frac{u(Y)}{v(Y)}\right| \le C \frac{u(A(Q,r))}{v(A(Q,r))} \left(\frac{|X-Y|}{r}\right)^{\alpha}$$

In particular, $\lim_{X \to Q} \frac{u(X)}{v(X)}$ exists.

29

Lemma. Let Ω be an unbounded NTA domain and $Q_0 \in \partial \Omega$. There exists a unique function u such that

(13)
$$\begin{cases} \Delta u = 0 & \text{in } \Omega \\ u > 0 & \text{in } \Omega \\ u = 0 & \text{on } \partial \Omega, \end{cases}$$

and

$$u(A(Q_0, 1)) = 1.$$

u is the Green function with pole ∞

Proof. Assume that $Q_0 = 0$. Let A(0, 1) = A.

<u>Uniqueness</u>: Let u, v be as above. By the comparison principle for $\rho > 1$ and $X \in B(0, \rho) \cap \Omega$

$$C^{-1}\frac{u(A(0,\rho))}{v(A(0,\rho))} \le \frac{u(X)}{v(X)} \le C\frac{u(A(0,\rho))}{v(A(0,\rho))}$$

Since $A \in B(0,\rho)$, and u(A) = v(A) then for $X \in B(0,\rho) \cap \Omega$

(14)
$$C^{-1} \leq \frac{u(X)}{v(X)} \leq C.$$

By (12) and (14) for $X \in B(0,\rho) \cap \Omega$

$$\left|\frac{u(X)}{v(X)} - 1\right| \le C \frac{u(A(0,\rho))}{v(A(0,\rho))} \left(\frac{|X-A|}{\rho}\right)^{\alpha} \le C \left(\frac{|X-A|}{\rho}\right)^{\alpha}$$

Letting $\rho \to \infty$ we conclude that u = v in Ω .

30

<u>Existence</u>: For $Y \in \Omega$ let

$$u_Y(X) = \frac{G(Y, X)}{G(Y, A)},$$

 u_Y is a nonnegative harmonic function on $B(0, |Y|) \cap \Omega$. Let $K \subset \mathbb{R}^{n+1}$ be a fixed compact set. Fix $\rho > 0$ such that $K \cap \Omega \subset B(0, \rho) \cap \Omega$, and let $|Y| \ge 2\rho$. Let $X \in K \cap \Omega$. (10) and the Harnack Principle yield

 $G(Y,X) \leq CG(Y,A(0,\rho)) \leq C_{K,n}G(Y,A).$

Thus for $|Y| \ge 2\rho$

$$\sup_{X\in K\cap\Omega} u_Y(X) \leq C_{K,n}.$$

Moreover by (9) and (11) the Radon measures $\frac{\omega^Y}{G(Y,A)}$ are uniformly bounded on $B(0,\rho)$. Let $\{Y_j\}_j \subset \Omega$ be such that $|Y_j| \to \infty$ as $j \to \infty$. There exists a subsequence $\{Y_{j'}\}$ such that $u_{j'}$ converges uniformly to a nonnegative harmonic function u in $B(0,\rho) \cap \Omega$ (Arzela-Ascoli) and

$$\int \phi \frac{d\omega^{Y_{j'}}}{G(Y_{j'},A)} \to \int \phi d\mu,$$

where μ is a Radon measure and $\phi \in C_c^{\infty}(B(0,\rho))$.

Letting $\rho \to \infty$ and taking a diagonal subsequence we conclude that there is a subsequence u_{j_k} which converges to the nonnegative harmonic function u, uniformly on compact sets of Ω . Moreover

$$rac{\omega^{Y_{j_k}}}{G(Y_{j_k},A)} \rightharpoonup \mu.$$

Since u(A) = 1 and u = 0 on $\partial\Omega$, u > 0 in Ω , u satisfies (13). By the uniqueness proved above we conclude that $u_{|Y|} \rightarrow u$ as $|Y| \rightarrow \infty$.

By (8)

$$\int_{\Omega} \frac{G(Y_{j_k}, X)}{G(Y_{j_k}, A)} \Delta \varphi(X) \, dX = \int_{\partial \Omega} \varphi(Q) \frac{d \, \omega^{Y_{j_k}}(Q)}{G(Y_{j_k}, A)}.$$

Hence

$$\int_{\partial\Omega} \varphi \, d\mu = \int_{\Omega} u \Delta \varphi \, dX \quad \forall \varphi \in C_c^{\infty}(\mathbb{R}^{n+1}).$$

$$\omega^{\infty} = \frac{\mu}{\mu(B(0,1))} \text{ and } v = \frac{u}{\mu(B(0,1))} \text{ satisfy } \omega^{\infty}(B(0,1)) = 1,$$
and
$$\int_{\Omega} u \Delta \varphi \, dX \quad \forall \varphi \in C_c^{\infty}(\mathbb{R}^{n+1}).$$

$$\int_{\partial\Omega} \varphi d\,\omega^{\infty} = \int_{\Omega} v \Delta \varphi \quad \forall \varphi \in C_c^{\infty}(\mathbb{R}^{n+1}).$$

Properties:

- If u = 0 and v = 0 in Ω^c , u add v are the subharmonic on \mathbb{R}^{n+1} .
- For $Q \in \partial \Omega$ by (11)

$$C^{-1} < \frac{\omega^{\infty}(B(Q,r))}{r^{n-1}v(A(Q,r))} < C,$$

Corollary. Let Ω be an unbounded NTA domain, and $Q_0 \in \partial \Omega$. There exists a unique doubling Radon measure ω^{∞} , supported on $\partial \Omega$ satisfying:

$$\int_{\partial\Omega}\varphi d\,\omega^{\infty} = \int_{\Omega} v\Delta\varphi \quad \forall\varphi \in C_c^{\infty}(\mathbb{R}^{n+1})$$

where

$$\begin{cases} \Delta v = 0 & \text{in } \Omega \\ v > 0 & \text{in } \Omega \\ v = 0 & \text{on } \partial \Omega, \end{cases}$$

and

$$\omega^{\infty}(B(Q_0,1))=1.$$

 ω^∞ is the harmonic measure of Ω with pole ∞

Proof. ω^{∞} is doubling. Let $K \subset \mathbb{R}^{n+1}$ be compact, $Q \in K \cap \partial \Omega$. Given r > 0, for j_k large, $Y_{j_k} \in \Omega \setminus B(2Mr, Q)$. Then for $s \in [0, r]$ by (9)

$$\omega^{Y_{j_k}}(B(Q,2s)) \leq C \omega^{Y_{j_k}}(B(Q,s)).$$

Hence

$$egin{aligned} &\omega^\infty(B(Q,2s)) &\leq \liminf_{j_k o\infty} rac{\omega^{Y_{j_k}}(B(Q,2s))}{\mu(B(0,1))G(Y_{j_k},A)} \ &\leq C\liminf_{j_k o\infty} rac{\omega^{Y_{j_k}}(\overline{B}(Q,rac{s}{2}))}{\mu(B(0,1))G(Y_{j_k},A)} \ &\leq C\omega^\infty(\overline{B}(Q,rac{s}{2})) \ &\leq C\omega^\infty(B(Q,s)). \end{aligned}$$

Theorem [AC]. Assume that:

1. " Ω satisfies the divergence theorem, and that the surface measure of its boundary has Euclidean growth,"

2. Ω is a unbounded δ -Reifenberg flat domain for some $\delta > 0$ small enough,

3. 'log $h \in C^{0,\beta}$ for some $\beta \in (0,1)$ ',

then Ω is a $C^{1,\alpha}$ domain for some $\alpha \in (0,1)$ which depends on β .

Here *h* denotes the Poisson kernel with pole at infinity (i.e. the Radon Nikodym derivative of the harmonic measure with pole at ∞ w.r.t. to the surface measure of $\partial \Omega$).

4. Sets of locally finite perimeter

Definition. A measurable set $\Omega \subset \mathbb{R}^{n+1}$ has locally finite perimeter if $X_{\Omega} \in BV_{\text{loc}}(\mathbb{R}^{n+1})$, i.e.

$$\sup\left\{\int_{\Omega}\operatorname{div}\varphi\,dx\ \Big|\,\varphi\in C^1_c(\mathbb{R}^{n+1},\mathbb{R}^{n+1})\right\}<\infty$$

Theorem. Let Ω be a set of locally finite perimeter. There exist a Radon measure $\|\partial \Omega\|$ on \mathbb{R}^{n+1} and a $\|\partial \Omega\|$ measurable function ν_{Ω} : $\mathbb{R}^{n+1} \to \mathbb{R}^{n+1}$ s.t.

1. $|\nu_{\Omega}| = 1$ $\|\partial \Omega\|$ a.e.

2.
$$\int_{\Omega} \operatorname{div} \varphi = \int_{\mathbb{R}^{n+1}} \varphi \cdot \nu_{\Omega} \, d \| \partial \Omega \|$$
$$\forall \varphi \in C_c^1(\mathbb{R}^{n+1}, \mathbb{R}^{n+1}).$$

Example. Let $\Omega \subset \mathbb{R}^{n+1}$ be a smooth domain such that for each compact set $K \subset \mathbb{R}^{n+1}$ $\mathcal{H}^n(\partial \Omega \cap K) < \infty$. By divergence theorem if $\varphi \in C_c^1(\mathbb{R}^{n+1}, \mathbb{R}^{n+1})$ then

$$\int_{\Omega} \operatorname{div} \varphi dx = \int_{\partial \Omega} \varphi \cdot \nu \, d\mathcal{H}^n,$$

where ν is the outward unit normal to $\partial \Omega$.

If
$$|\varphi| \leq 1$$
 and support $\varphi = K$
 $|\int_{\Omega} \operatorname{div} \varphi \, dx| \leq \int_{\partial \Omega} |\varphi \cdot \nu| \, d\mathcal{H}^n$
 $\leq \mathcal{H}^n(\partial \Omega \cap K) < \infty.$

Thus Ω has locally finite perimeter and

 $\|\partial\Omega\|=\mathcal{H}^n \sqcup \partial\Omega \text{ and } \nu_\Omega=\nu \ \mathcal{H}^n \text{ a.e.} \partial\Omega$ i.e. E Borel

$$\|\partial \Omega\|(E) = H^n(E \cap \partial \Omega).$$

Let Ω be set of locally finite perimeter.

Definition. $X \in \partial^* \Omega$, the **reduced boundary** of Ω if

i) $\|\partial \Omega\|(B(X,r)) > 0 \qquad \forall r > 0.$

ii)
$$\lim_{r\to 0} f_{B(X,r)} \nu_{\Omega} d \|\partial \Omega\| = \nu_{\Omega}(X) \text{ and }$$

iii)
$$|\nu_{\Omega}(X)| = 1$$

In particular

$$\|\partial\Omega\|(\mathbb{R}^{n+1}\setminus\partial^*\Omega)=0.$$

Lemma. Let
$$\varphi \in C_c^1(\mathbb{R}^{n+1}, \mathbb{R}^{n+1})$$
 then

$$\int_{\Omega \cap B(X,r)} \operatorname{div} \varphi \, dY = \int_{B(X,r)} \varphi \cdot \nu_\Omega \, d \| \partial \Omega \| + \int_{\Omega \cap \partial B(X,r)} \varphi \cdot \nu \, d\mathcal{H}^n$$

for a.e. r > 0, ν is the outward unit normal to B(X, r).

Lemma. There exist $A_1, A_2 > 0$ such that for $X \in \partial^* \Omega$

i)
$$\liminf_{r \to 0} \frac{\mathcal{H}^{n+1}(B(X,r) \cap \Omega)}{r^{n+1}} \ge A_1$$

ii)
$$\liminf_{r \to 0} \frac{\mathcal{H}^{n+1}(B(X,r) \setminus \Omega)}{r^{n+1}} \ge A_2$$

Definition. $X \in \partial_*\Omega$ the measure theoretic boundary of Ω if

$$\limsup_{r \to 0} \frac{\mathcal{H}^{n+1}(B(X,r) \cap \Omega)}{r^{n+1}} > 0$$
$$\limsup_{r \to 0} \frac{\mathcal{H}^{n+1}(B(X,r) \setminus \Omega)}{r^{n+1}} > 0$$

Lemma. 1)
$$\partial^* \Omega \subset \partial_* \Omega$$

2) $\mathcal{H}^n(\partial_* \Omega \setminus \partial^* \Omega) = 0$

Remark. Let Ω be set of locally finite perimeter and NTA domain: Ω and Ω^c satisfy the corkscrew condition. Thus for r > 0 $Q \in \partial \Omega$

$$\mathcal{H}^{n+1}(\Omega \cap B(Q,r)) \ge c_n r^{n+1}$$

and

$$\mathcal{H}^{n+1}(B(r,Q)\setminus\Omega)\geq c_nr^{n+1}.$$

Thus $Q \in \partial_*\Omega$, and $\partial_*\Omega = \partial\Omega$,

 $\mathcal{H}^n(\partial \Omega \setminus \partial^* \Omega) = 0.$

41

Theorem. [Isoperimetric inequality] $\min \left\{ \mathcal{H}^{n+1}(B(X,r) \cap \Omega), \mathcal{H}^{n+1}(B(X,r) \setminus \Omega) \right\}^{\frac{n}{n+1}} \leq C \|\partial \Omega\|(B(X,r))$

For $Q \in \partial^* \Omega$ let

$$H(Q) = \{Y \in \mathbb{R}^{n+1} : \nu_{\Omega}(Q) \cdot (Y - Q) = 0\}$$

$$H^{+}(Q) = \{Y \in \mathbb{R}^{n+1} : \nu_{\Omega}(Q) \cdot (Y - Q) \ge 0\}$$

$$H^{-}(Q) = \{Y \in \mathbb{R}^{n+1} : \nu_{\Omega}(Q) \cdot (Y - Q) \le 0\}$$

Picture

Theorem. [Blow up of the reduced boundary] If $Q \in \partial^* \Omega$ then

$$\chi_{\eta_{Q,r}}(\Omega) \xrightarrow[r \to 0]{} \chi_{H^-(Q)} \text{ in } L^1_{\mathsf{loc}}(\mathbb{R}^{n+1}),$$

where $\eta_{Q,r}(\Omega) = \frac{1}{r}(\Omega - Q)$

Corollary. If $Q \in \partial^* \Omega$ then

1.
$$\lim_{r \to 0} \frac{\mathcal{H}^{n+1}(B(Q,r) \cap \Omega \cap H^+(Q))}{r^{n+1}} = 0$$

2.
$$\lim_{r \to 0} \frac{\mathcal{H}^{n+1}(B(Q,r) \setminus \Omega) \cap H^{-}(Q))}{r^{n+1}} = 0$$

3.
$$\lim_{r \to 0} \frac{\|\partial \Omega\|(B(Q,r))}{\omega_n r^n} = 1$$

Theorem. [Structure theorem for sets of locally finite perimeter] Let Ω be set of locally finite perimeter then

1.
$$\partial^* \Omega \in \bigcup_{k=1}^{\infty} \Sigma_k \cup \Sigma_0$$
 where
 $\|\partial \Omega\|(\Sigma_0) = 0$
 Σ_k is a C^1 hypersurface

2. $\nu \Big|_{\partial^*\Omega\cap\Sigma_k}$ is the outer unit normal to Σ_k .

iii)
$$\|\partial \Omega\| = \mathcal{H}^n \sqcup \partial^* \Omega$$

Corollary. If Ω is NTA and a set of locally finite perimeter

$$\|\partial\Omega\| = \mathcal{H}^n \sqcup \partial\Omega$$

Theorem.[Generalized Gauss-Green theorem] Let Ω be an NTA domain and a set of locally finite perimeter then

$$\int_{\Omega} \operatorname{div} \varphi \, dx = \int_{\partial \Omega} \varphi \cdot \nu_{\Omega} \, d\mathcal{H}^{n}$$
$$\forall \, \varphi \in C_{c}^{1}(\mathbb{R}^{n+1}, \mathbb{R}^{n+1}),$$

 ν_{Ω} is the unique measure theoretic outer unit normal.

Proof.

$$\int_{\Omega} \operatorname{div} \varphi \, dx = \int \varphi \cdot \nu_{\Omega} \, d\|\partial\Omega\|$$
$$= \int \varphi \cdot \nu_{\Omega} \, d\mathcal{H}^{n} \sqcup \partial\Omega$$
$$= \int_{\partial\Omega} \varphi \cdot \nu_{\Omega} \, d\mathcal{H}^{n}$$

5. Free boundary regularity problem for the Poisson kernel

Definition. An domain Ω is a chord arc domain if:

- Ω is NTA
- Ω is a set of locally finite perimeter
- the surface measure of $\partial \Omega \ \sigma = \mathcal{H}^n \sqcup \partial \Omega$ is Ahlfors regular, i.e.

$$\exists C > 1 \qquad C^{-1} \le \frac{\sigma(B(r,Q))}{r^n} \le C,$$

for $r < \operatorname{diam} \Omega$.

Theorem [AC]. Assume that:

1. $\boldsymbol{\Omega}$ is an unbounded chord arc domain

2. Ω is a δ -Reifenberg flat domain for some $\delta > 0$ small enough,

3. log $h \in C^{0,\beta}$ for some $\beta \in (0,1)$,

then Ω is a $C^{1,\alpha}$ domain for some $\alpha \in (0,1)$ which depends on β . Moreover if h is identically equal to 1 then Ω is a half-space.

Here

$$\int_{\Omega} u \Delta \varphi \, dx = \int_{\partial \Omega} \varphi h \, d\mathcal{H}^n, \text{ for } \varphi \in C_c^{\infty}(\mathbb{R}^{n+1})$$

and

$$\begin{cases} \Delta u = 0 & \text{in } \Omega \\ u > 0 & \text{in } \Omega \\ u = 0 & \text{on } \partial \Omega, \end{cases}$$

h is the Poisson kernel with pole at ∞

Let $Q_j \in \partial \Omega$, and $r_j > 0$, consider $\Omega_j = \frac{1}{r_j} (\Omega - Q_j)$ $\partial \Omega_j = \frac{1}{r_j} (\partial \Omega - Q_j)$ $u_j(X) = \frac{u(r_j X + Q_j)}{r_j f_{B(Q_i, r_i)} h \, d\sigma_j}$ $\omega_j(E) = \frac{\omega(r_j E + Q_j)}{r_j^n f_{B(Q_j, r_j)} h \, d\sigma_j}$ $d\omega_i = h_i d\sigma_i \mathcal{H}^n - a.e.$ in $\partial \Omega_i$ $h_j(Q) = \frac{h(r_j Q + Q_j)}{f_{B(Q_i, r_i)} h \, d\sigma_j}$

Theorem. Let Ω be a chord arc domain as above. Then

$$egin{array}{rcl} \Omega_j & o & \Omega_\infty \ \partial\Omega_j & o & \partial\Omega_\infty \end{array}$$

where Ω_{∞} is an unbounded chord arc domain. Moreover there exists u_{∞} such that

 $u_j \rightarrow u_\infty$ uniformly on compact sets

$$\begin{cases} \Delta u_{\infty} = 0 \quad \text{in} \quad \Omega_{\infty} \\ u_{\infty} = 0 \quad \text{on} \quad \partial \Omega_{\infty} \\ u_{\infty} > 0 \quad \text{in} \quad \Omega_{\infty}. \end{cases}$$

Furthermore

$$\omega_j \rightharpoonup \omega_\infty$$
 and $\sigma_j \rightharpoonup \sigma_\infty$

weakly on Radon measures. ω_{∞} is the harmonic measure of Ω_{∞} with pole at infinity, and σ_{∞} is the surface measure of $\partial\Omega_{\infty}$. The Poisson kernel of Ω_{∞} with pole at infinity h_{∞} satisfies

$$h_{\infty} = \frac{d\omega_{\infty}}{d\sigma_{\infty}} = 1 \quad \mathcal{H}^n - a.e \text{ in } \partial\Omega_{\infty}.$$

49

Theorem [AC], [KT]. Assume that:

Ω is an unbounded chord arc domain
 Ω is a δ-Reifenberg flat domain for some
 δ > 0 small enough,
 h = 1, Hⁿ-a.e. in ∂Ω

Then Ω is a half-space.

Theorem [LV] Assume that:

1. Ω be a bounded chord arc domain

2. $0 \in \Omega$, and $k_0 = 1$, \mathcal{H}^n -a.e. in $\partial \Omega$.

Then $\Omega = B(0, R)$ with $\sigma_n R^n = 1$.

Question: Is the flatness assumption necessary in the unbounded case?

Examples.

•
$$\Omega = \mathbb{R}^{n+1}_+$$
, $u(x, x_{n+1}) = x_{n+1}$ and $h = 1$.

• Keldysh-Lavrentiev constructed a set of locally finite perimeter $\Omega \subset \mathbb{R}^2$ whose boundary is not Ahlfors regular, whose Poisson kernel is identically equal to 1 and Ω is not C^1 .

• Kowalski-Preiss cone:

$$\Omega = \left\{ (x_1, ..., x_4) \in \mathbb{R}^4 : |x_4| < \sqrt{x_1^2 + x_2^2 + x_3^2} \right\}.$$
Let $r^2 = x_1^2 + x_2^2 + x_3^2 + x_4^2$, $\theta \in [\frac{\pi}{4}, \frac{3\pi}{4}]$, and
 $x_4 = r\cos\theta$, then $X = (x_1, x_2, x_3, x_4) \in \overline{\Omega}.$
 $u(X) = -\frac{r}{2\sqrt{2}} \frac{\cos 2\theta}{\sin \theta}.$

satisfies $\Delta u = 0$ in Ω , u > 0 in Ω and u = 0on $\partial \Omega$. $\omega^{\infty} = \mathcal{H}^n \sqcup \partial \Omega$, i.e h = 1, \mathcal{H}^n -a.e in $\partial \Omega$.

51

Main Theorem [KT]. Assume that:

1. $\boldsymbol{\Omega}$ is an unbounded chord arc domain

2. Ω is a δ -Reifenberg flat domain for some $\delta > 0$ small enough,

3. $\sup_{\Omega} |\nabla u| \leq 1$ and $h \geq 1$, \mathcal{H}^n -a.e. in $\partial \Omega$

Then modulo translation and rotation $\Omega = \mathbb{R}^{n+1}_+$ and $u(x, x_{n+1}) = x_{n+1}$.

Here

$$\int_{\Omega} u \Delta \varphi \, dx = \int_{\partial \Omega} \varphi h \, d\mathcal{H}^n, \text{ for } \varphi \in C^{\infty}_c(\mathbb{R}^{n+1}),$$
 and

$$\begin{cases} \Delta u = 0 & \text{in } \Omega \\ u > 0 & \text{in } \Omega \\ u = 0 & \text{on } \partial \Omega, \end{cases}$$

Definition. For $0 < \sigma_+, \sigma_< 1$, $Q_0 \in \partial \Omega$, $\rho > 0$. $u \in F(\sigma_+; \sigma_-)$ in $B(Q_0, \rho)$ in the direction ν if u(X) = 0 for $\langle X - Q_0, \nu \rangle \ge \sigma_+ \rho$ and

$$u(X) \geq -[\langle X - Q_0, \nu \rangle + \sigma_{-}\rho]$$

for $\langle X - Q_0, \nu \rangle \leq -\sigma_{-}\rho.$

Lemma A. If $u \in F(\sigma; 1)$ in $B(Q_0, \rho)$ in the direction ν then $u \in F(2\sigma; C\sigma)$ in $B(Q_0, \frac{\rho}{2})$ in the direction ν .

 $u \in F(\sigma; 1)$ in $B(Q_0, \rho)$ then $u \in F(2\sigma; C\sigma)$ in $B(Q_0, \frac{\rho}{2})$

Lemma B. Given $\theta \in (0, 1)$ there exist $\sigma_{n,\theta} > 0$ and $\eta_{\theta} = \eta \in (0, 1)$ so that if $\sigma \leq \sigma_{n,\theta}$ and $u \in F(\sigma; \sigma)$ in $B(Q_0, \rho)$ in the direction $\nu_{Q_0,\rho}$ for $Q_0 \in \partial \Omega$, then $u \in F(\theta\sigma; 1)$ in $B(Q_0; \eta\rho)$ in the direction $\nu_{Q_0,\eta\rho}$ and

 $|\nu_{Q_0,\rho} - \nu_{Q_0,\eta\rho}| \le C\sigma.$

 $u \in F(\sigma; \sigma)$ in $B(Q_0, \rho)$ then $u \in F(\theta\sigma; 1)$ in $B(Q_0, \eta\rho)$ **Proof of the Main Theorem.** Since Ω is a δ -Reifenberg flat chord arc domain, $u \in F(\delta; 1)$ in B(Q, 2r) for r > 0 and $Q \in \partial \Omega$. If Q = 0, B(0, r) = B(r)

(A) $u \in F(\delta; 1)$ in B(2r) then $u \in F(2\delta, C\delta)$ in B(r)

Choosing δ so that max $\{2\delta, C\delta\} \leq \sigma$ we have

(B) $u \in F(\sigma; \sigma)$ in B(r) then $u \in F(\theta'\sigma, 1)$ in $B(2\eta r)$

(A) $u \in F(\theta'\sigma; 1)$ in $B(2\eta r)$ then $u \in F(2\theta'\sigma, C\theta'\sigma)$ in $B(\eta r)$ Choosing θ' so that $\max\{2\theta', C\theta'\} \leq \theta$ we have

(B + A) $u \in F(\sigma; \sigma)$ in B(r) then $u \in F(\theta\sigma, \theta\sigma)$ in $B(\eta r)$

By iteration

$$u \in F(\theta^m \sigma; \theta^m \sigma)$$
 in $B(\eta^m r)$ for $r > 0$.

Moreover if $\nu_m = \nu_{0,\eta^m r}$ then

$$|\nu_m - \nu_{m+1}| \le C\theta^m \sigma.$$

Let $\nu_r = \lim_{m \to \infty} \nu_m$, and $\Lambda(r)$ is the *n*-plane orthogonal to ν_r then for $s \in (0, r)$ we have

$$rac{1}{s}D[B(s)\cap\partial\Omega;\Lambda(r)\cap B(s)]\leq C\left(rac{s}{r}
ight)^{eta},$$

for some $\beta > 0$. Since \mathbb{S}^n is compact there exists an increasing sequence $r_i \to \infty$ and an *n*-plane Λ_{∞} such that for s > 0

$$D[B(s) \cap \partial \Omega; \Lambda_{\infty} \cap B(s)] = 0.$$

Thus $\partial \Omega = \Lambda_{\infty}$ w.l.o.g $\Omega = \mathbb{R}^{n+1}_+$, $0 \le u \le x_{n+1}$ and $\frac{\partial u}{\partial x_{n+1}} = 1$ on Λ_{∞} . Moreover by (12)

$$\left|\frac{u(X)}{x_{n+1}} - 1\right| \le C \frac{u(A(0,r))}{r} \left(\frac{|X|}{r}\right)^{\alpha} \le C \left(\frac{|X|}{r}\right)^{\alpha},$$

letting $r \to \infty$ we conclude that $u(x, x_{n+1}) = x_{n+1}$.

Non-homogeneous blow-up

Lemma B is proved by contradiction. Assume that there exist $\theta \in (0, 1)$ such that for every $\eta > 0$ and every non-negative decreasing sequence $\{\sigma_j\}$,

 $u\in F(\sigma_j;\sigma_j)$ in $B(Q_j,\rho_j)$ in the direction ν_j but

$$u \notin F(\theta \sigma_j; 1)$$
 in $B(Q_j, \eta \rho_j)$.

Assume that $h(Q_j) \ge 1$, and $\nu_j = e_{n+1}$. For $X \in B(0,1)$ let

$$u_j(X) = \frac{1}{\rho_j} u(\rho_j X + Q_j).$$

Note that $\Delta u_j = 0$ in $\Omega_j = \frac{1}{\rho_j}(\Omega - Q_j)$, $u_j > 0$ in Ω_j , $u_j = 0$ on $\partial \Omega_j = \frac{1}{\rho_j}(\partial \Omega - Q_j)$, and

$$\int_{\Omega_j} u_j \Delta \varphi dX = \int_{\partial \Omega_j} \varphi h_j \, d\mathcal{H}^n \text{ for all } \varphi \in C_c^\infty(\mathbb{R}^{n+1})$$

where

$$h_j(Q) = h(\rho_j Q + Q_j).$$

57

Moreover
$$(15)$$
 $\sup_{\Omega_j} |
abla u_j| \leq 1$ and $h_j \geq 1$ \mathcal{H}^n a.e. in $\partial\Omega_j.$

The hypothesis yields

$$u_j \in F(\sigma_j, \sigma_j)$$
 in $B(0, 1)$
in the direction e_{n+1}

(16) $u_j \notin F(\theta \sigma_j; 1)$ in $B(0, \eta)$,

with $\sigma_j \to 0$ as $j \to \infty$.

Idea [AC]:

- Define sequences of scaled height functions corresponding to $\partial \Omega_j$.
- Prove that these sequences converge to a subharmonic Lipschitz function.
- Use this information to contradict the fact that $u_j \not\in F(\theta \sigma_j; 1)$ in $B(\eta, 0)$ for j large enough.

For
$$y \in B(0,1) \cap \mathbb{R}^n \times \{0\} = B'$$
 define
 $f_j^+(y) = \sup\{h : (y,\sigma_j h) \in \partial\{u_j > 0\}\} \le 1$
and

$$f_j^-(y) = \inf\{h; (y, \sigma_j h) \in \partial\{u_j > 0\}\} \ge -1$$

Lemma. There exists a subsequence k_j such that for $y \in B'$

$$f(y) = \limsup_{\substack{k_j \to \infty \\ z \to y}} f_{k_j}^+(z) = \liminf_{\substack{k_j \to \infty \\ z \to y}} f_{k_j}^-(z).$$

Corollary. f is a continuous function in B', f(0) = 0; and $f_{k_j}^+$ and $f_{k_j}^-$ converge uniformly to f on compact sets of B'.

Lemma.^{*} f is subharmonic in B'.

Lemma. There is a constant C > 0 such that for $y \in B'_{\frac{1}{2}}$

$$0 \le \int_0^{\frac{1}{4}} \frac{1}{r^2} (f_{y,r} - f(y)) dr \le C$$

where

$$f_{y,r} = \oint_{\partial B'(y,r)} f \, d\mathcal{H}^{n-1}$$

61

Lemma.^{*} f is Lipschitz in $B'_{\frac{1}{16}}$.

Lemma. There exists C > 0 such that for any given $\theta \in (0, 1)$ there exist $\eta = \eta(\theta) > 0$ and $l \in \mathbb{R}^n \times \{0\}$ with $|l| \leq C$ so that

$$f(y) \leq \langle l, y \rangle + \frac{\theta}{4} \eta$$
 for $y \in B'_{\eta}$.

Contradiction in the proof of Lemma B For $\theta \in (0, 1)$ there exists $\eta = \eta(\theta) > 0$ such that for *j* large enough that

$$f_j^+(y) \leq \langle l, y \rangle + \frac{\theta}{2}\eta \quad \text{for} \quad y \in B'_{\eta}.$$

Since $f_j^+(y) = \sup\{h : (y, \sigma_j h) \in \partial\{u_j > 0\}\}$
(17)
 $u_j(X) = 0 \text{ for } X \in B(0, \eta)$
with $x_{n+1} \geq \sigma_j \langle l, x \rangle + \theta \eta \sigma_j.$
Let $\overline{\nu} = (1 + \sigma_j^2 |l|^2)^{-\frac{1}{2}} (-\sigma_j l, 1), \quad (17) \text{ implies}$
that

(18)

$$u_j(X) = 0 \text{ for } X \in B(0,\eta)$$

with $\langle X; \overline{\nu} \rangle \ge \frac{\theta \eta \sigma_j}{2(1+\sigma_j^2 |l|^2)^{\frac{1}{2}}} \ge \theta \eta \sigma_j,$

for *j* large enough. (18) states that for every $\theta \in (0, 1)$ there is $\eta > 0$ so that $u_j \in F(\theta \sigma_j, 1)$ in $B(0, \eta)$ in the direction $\overline{\nu}$, which contradicts (16).

6. Weiss monotonicity formula

Assume that:

1. $\Omega \subset \mathbb{R}^{n+1}$ is an unbounded chord arc domain

2.

$$\begin{cases} \Delta u = 0 & \text{in } \Omega \\ u > 0 & \text{in } \Omega \\ u = 0 & \text{on } \partial \Omega, \end{cases}$$

3. $h = 1, \mathcal{H}^n$ -a.e. in $\partial \Omega$ i.e

$$\int_{\Omega} u \Delta \varphi = \int_{\partial \Omega} \varphi d \mathcal{H}^n \quad \forall \varphi \in C_c^{\infty}(\mathbb{R}^{n+1})$$

For $Q \in \partial \Omega$ and r > 0 the quantity

$$\phi(Q,r) = \frac{1}{r^{n+1}} \int_{B(Q,r)} |\nabla u|^2 - \frac{1}{r^{n+2}} \int_{\partial B(Q,r)} u^2 + \frac{\mathcal{H}^{n+1}(\Omega \cap B(Q,r))}{r^{n+1}}$$

is monotone and

$$\phi(Q,r) - \phi(Q,s) = 2\int_{s}^{r} t^{-n-1} \int_{\partial B(Q,r)} \left(\nabla u \cdot \frac{P-Q}{|P-Q|} - \frac{u}{r}\right)^{2} d\mathcal{H}^{n} dt$$

This monotonicity formula yields that the blow up limits of u are homogeneous functions of degree 1.

Theorem. [W] Assume that:

1. $\Omega \subset \mathbb{R}^{n+1}$ is an unbounded chord arc domain

2. $h = 1, \mathcal{H}^n$ -a.e. in $\partial \Omega$ i.e

 $\partial^* \Omega$ is C^{∞} . $\Sigma = \partial \Omega \setminus \partial^* \Omega$ the singular set of $\partial \Omega$, satisfies:

- If n = 1, $\Sigma = \emptyset$
- If n = 2, Σ consists of isolated points.

• Σ is a closed set of Hausdorff dimension at most n-2.

Question: Does there exist a characterization of Σ in terms $\phi(Q) = \lim_{r \to 0} \phi(Q, r)$?

References

[AC] Alt & Caffarelli, Existence and Regularity for a minimum problem with free boundary, J. Reine Angew. Math. **325** (1981), 105–144

[EG] Evans & Gariepy, Measure Theory and Fine Properties of Functions, Studies in Advanced Mathematics, CRC Press, 1992.

[JK] Jerison & Kenig, Boundary Behavior of Harmonic Functions in Nontangentially Accessible Domains, Adv. in Math. **46** (1982), 80–147.

[JK] Jerison & Kenig, The logarithm of the Poisson Kernel of a C^1 Domain has Vanishing Mean Oscillation, Trans. Amer. Math. Soc., **273** (1982), 781-794.

[KL] Keldysh & Lavrentiev, Sur la représentation conforme des domaines limités par des courbes rectifiables, Ann. Sci. Ecole. Norm. Sup., **54** (1937), 1-38.

[K] Kenig, Harmonic Analysis Techniques for Second Order Elliptic Boundary Value Problems, CBMS, 83, 1994. **[KT]** Kenig & Toro, Free Boundary Regularity for harmonic measures and Poisson kernels, Ann. of Math., **150** (1999), 369–454.

[KT] Kenig & Toro, Poisson Kernel Characterization of Reifenberg Flat Chord Arc Domains, Ann. Scient. Ec. Norm. Sup. 36, 2003, 323-401.

[KT] Kenig & Toro, On the free boundary regularity theorem of Alt and Caffarelli, Discrete and Continuous Dynamical Systems **10**, 2004, 397-422.

[KT] Kenig & Toro, On the free boundary regularity theorem of Alt and Caffarelli, Errata, Discrete and Continuous Dynamical Systems **14**, 2006, 857-859.

[W] Weiss, Partial regularity for the minimum problem with free boundary, Journal of Geom. Anal. 9,(1999), 317–326.

[W] Weiss, Partial regularity for weak solutions of an elliptic free boundary problem, Comm. Partial Diff. Equations. **23**,(1998), 439–455.