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A toy example

Consider

T (f, g) = f · g

• bilinear...T (af1 + bf2, g) = aT (f1, g) + bT (f2, g)

• translation invariant...T (τhf, τhg)(x) = τhT (f, g)(x),
where τhf(x) = f(x− h)

By Hölder’s inequality

‖f · g‖Lr ≤ ‖f‖Lp‖g‖Lq

with 1/r = 1/p+ 1/q, 1 ≤ p, q <∞So...T : Lp × Lq → Lr
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Write now the product f · g in multiplier form

(f · g)(x) = (2π)−2n
∫
Rn
f̂(ξ)eix·ξ dξ ·

∫
Rn
ĝ(η)eix·η dη

= (2π)−2n
∫
R2n

f̂(ξ)ĝ(η)eix·(ξ+η) dξdη

=
∫
R2n

m(ξ, η)f̂(ξ)ĝ(η)eix·(ξ+η) dξdη,

where m(ξ, η)= (2π)−2n is independent of x
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Bilinear multipliers

In general, any translation invariant operator T can be represented as

T (f, g)(x) =
∫
m(ξ, η)f̂(ξ)ĝ(η)eix·(ξ+η) dξdη,

where m = m(ξ, η) is its multiplier...T = Tm

Equivalently, if its kernel K(u, v) = F−1
2n (m(·, ·))(u, v),

T (f, g)(x) =
∫
K(x− y, x− z)f(y)g(z) dydz

Question: What conditions are needed for Tm : Lp × Lq → Lr?
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Simple remarks

• Scaling/HomogeneityAssume Tm also commutes with simultaneous di-
lations,equivalently, m is homogenous of degree 0,

m(λξ, λη) = m(ξ, η), λ > 0

Then (p, q, r) satisfies the Hölder condition

1/p+ 1/q = 1/r, p, q > 1
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• Necessary condition (Coifman-Meyer?):

|m(ξ, η)| ≤ C, for all ξ, η

• But not sufficient! Form(ξ, η) = sgn (ξ+η), ξ, η ∈ R,we easily compute

Tm(f, g) = H(f · g),

where H(f) = p.v.(x−1 ∗ f) is the Hilbert transform

It is known that H : L1 6→ L1

...so Tm : L2 × L2 6→ L1
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Coifman-Meyer bilinear multipliers

Let m be bounded such that

|∂αξ ∂
β
ηm(ξ, η)| ≤ Cαβ(|ξ|+ |η|)−|α|−|β|

We have

‖Tm(f, g)‖Lr ≤ C‖f‖Lp‖g‖Lq

for 1/p + 1/q = 1/r,1 < p, q < ∞ and 1/2 < r < ∞ (as well as
appropriate end-point results)

• Coifman-Meyer (1978): r > 1

• Grafakos-Torres, Kenig-Stein (1999): r > 1/2 (optimal)

7



Application to fractional differentiation

Define

|̂∇|sf(ξ) = |ξ|sf̂(ξ), s > 0

|∇|s(f · g)(x) = cn

∫
|ξ+ η|sf̂(ξ)ĝ(η)eix·(ξ+η) dξdη

= cn

∫
|ξ|>|η|

|ξ+ η|s

|ξ|s
|ξ|sf̂(ξ)ĝ(η)eix·(ξ+η) dξdη

+cn

∫
|ξ|<|η|

|ξ+ η|s

|η|s
f̂(ξ)|η|sĝ(η)eix·(ξ+η) dξdη
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If we do the split in a smooth way, we actually get

|∇|s(f · g)(x) = Tm1(|∇|
sf, g) + Tm2(f, |∇|

sg)

with m1 and m2 Coifman-Meyer bilinear multipliers.

Then Leibniz’s rule for fractional derivatives follows:

‖|∇|s(f · g)‖Lr . ‖|∇|sf‖Lp‖g‖Lq + ‖f‖Lp‖|∇|sg‖Lq
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Another example

The Riesz transforms in R2 can be seen as bilinear multipliers on R × R,
e.g.

R1(f, g)(x) = p.v.
∫
R2
K1(x− y, x− z)f(y)g(z) dydz,

where

K1(y, z) =
y

|(y, z)|3

Note that K1 is a Calderón-Zygmund kernel

|∂αy ∂
β
zK1(y, z)| ≤ Cαβ(|y|+ |z|)−2−|α|−|β|

R1 corresponds to a Coifman-Meyer bilinear multiplier; R1 : Lp×Lq → Lr
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Variable coefficient bilinear operator

...or non-translation invariant bilinear operator ...associated to an x-dependent
symbol σ(x, ξ, η), or a kernel K̃(x, u, v) = F−1

2n (σ(x, ·, ·))(u, v)

Tσ(f, g)(x) =
∫
R2n

σ(x, ξ, η)f̂(ξ)ĝ(η)eix·(ξ+η) dξdη

=
∫
R2n

K̃(x, x− y, x− z)f(y)g(z) dydz

=
∫
R2n

K(x, y, z)f(y)g(z) dydz
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Bilinear T (1) theorem

Consider a bilinear Calderón-Zygmund operator

T : S × S → S ′

〈T (f1, f2), f3〉 = 〈K, f1 ⊗ f2 ⊗ f3〉

|∂αK(y0, y1, y2)| . (
∑

|yj − yk|)−2n−|α|, |α| ≤ 1

• Christ-Journé (1987): T : L2 × L2 → L1⇐⇒ K satisfies a bilinear
WBP and the distributions T ∗j(1,1) are in BMO; here T = T ∗0 and
T ∗1, T ∗2 are the transposes of T .

• Grafakos-Torres (2002): T : Lp × Lq → Lr,1/p+ 1/q = 1/r < 2⇐⇒
supξ,η ‖T ∗j(eix·ξ, eix·η)‖BMO ≤ C
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Application: the Coifman-Meyer class

Tσ(f, g)(x) =
∫
R2n

σ(x, ξ, η)f̂(ξ)ĝ(η)eix·(ξ+η) dξdη,

where σ ∈ BS0
1,0 (the Coifman-Meyer class), i.e.,

|∂αx∂
β
ξ ∂

γ
ησ(x, ξ, η)| ≤ Cαβγ(1 + |ξ|+ |η|)−|β|−|γ|

Then Tσ has a Calderón-Zygmund kernel

|∂αK(x, y, z)| ≤ Cα(|x− y|+ |x− z|)−(2n+|α|)

and
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T (eiξ·, eiη·)(x) = σ(x, ξ, η)eix·(ξ+η)

which is (uniformly in all ξ, η) in L∞.

The same observations apply to the transposes of T : T ∗j, j = 1,2, have
Calderón-Zygmund kernels, and they behave well on the elementary ob-
jects eiξ·, eiη·...this follows from a symbolic calculus for the transposes...

By the bilinear T (1) theorem

Tσ : Lp × Lq → Lr,1/p+ 1/q = 1/r < 2

Coifman-Meyer essentially proved the same for r > 1 (and multipliers), but
they used Littlewood-Payley theory...1978 result.
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More general bilinear pseudodifferential operators

Tσ(f, g)(x) =
∫
R2n

σ(x, ξ, η)f̂(ξ)ĝ(η)eix·(ξ+η) dξdη

For 0 ≤ δ ≤ ρ ≤ 1 and m ∈ R, we say that σ ∈ BSmρ,δ if

|∂αx∂
β
ξ ∂

γ
ησ(x, ξ, η)| ≤

Cαβγ(1 + |ξ|+ |η|)m+δ|α|−ρ(|β|+|γ|)

These are the bilinear analog of the classical Hörmander classes in the
linear case.
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Symbolic calculus for the transposes

• Interest: most Lp results depend on symmetric properties on the trans-
poses!

If σ(x, ξ, η) = σ(ξ, η) (multiplier), then the transposes of Tσ are easy to
compute

T ∗1σ = Tσ∗1 and T ∗2σ = Tσ∗2

σ∗1(ξ, η) = σ(−ξ − η, η), σ∗2(ξ, η) = σ(ξ,−ξ − η)

Question: How about x-dependent symbols σ(x, ξ, η)?

The situation is more complicated...but the following calculus holds.
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If 0 ≤ δ < ρ ≤ 1 and σ ∈ BSmρ,δ, then σ∗1, σ∗2 ∈ BSmρ,δ and

σ∗1(x, ξ, η) =
∑
α

iα

α!
∂αx∂

α
ξ σ(x,−ξ − η, η)

in the sense that for every N > 0

σ∗1(x, ξ, η)−
∑

|α|<N

iα

α!
∂αx∂

α
ξ σ(x,−ξ − η, η) ∈ BSm+(δ−ρ)N

ρ,δ

and similarly for σ∗2.

• B.-Torres (2003): δ = 0, ρ = 1,m = 0

• B.-Maldonado-Naibo-Okoudjou-Torres (2008): the general case

Question: What about BSm1,1?
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Relevance of transposition calculus

The classBS0
1,1 is the largest that produces operators with bilinear Calderón-

Zygmund kernels. But...this class (or BSm1,1 in general) does not produce
bounded operators on Lp spaces because it is not closed by transposition.

Nevertheless, these classes are bounded on Sobolev spaces of positive
smoothness, and there is a pseudodifferential Leibniz rule.

If σ ∈ BSm1,1, m ≥ 0, s > 0, then Tσ has a bounded extension from
L
p
m+s × L

q
m+s into Lrs. Moreover,

‖Tσ(f, g)‖Lrs . ‖f‖Lpm+s
‖g‖Lq + ‖f‖Lp‖g‖Lqm+s

for all 1/p+ 1/q = 1/r, 1 < p, q, r <∞.

• B.-Torres (2003): m = 0; B.-Nahmod-Torres (2006): general case

• B. (2003): m = 0; boundedness on Lipschitz and Besov spaces
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Bilinear paraproducts and pseudodifferential operators

All of the above results can essentially be recast in terms of bilinear para-
products. For example,

T (f, g)(x) =
∑
Q

σQ|Q|−1/2〈f, φ1
Q〉〈g, φ

2
Q〉φ

3
Q(x),

where the sum runs over all dyadic cubes in Rn, {σQ} ∈ l∞ and the
functions φiQ are families of wavelets,

φiQ(x) = |Q|−1/2φi(|Q|−1(x− cQ))

• B.-Maldonado-Nahmod-Torres (2007): paraproducts as bilinear
Calderón-Zygmund operators

• Maldonado-Naibo (2008-09): nice connections to more general opera-
tors...Don’t miss Diego’s talk!!!
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Linear vs bilinear pseudodifferential operators

The above results are analogous to the linear ones...

Question: Does everything hold the same in the bilinear setting?

NO! For example, Calderón-Vaillancourt’s theorem fails!

In the linear case, σ ∈ S0
0,0 ⇒ Tσ : L2 → L2, but

σ ∈ BS0
0,0 6⇒ Tσ : L2 × L2 → L1

(or any Lp × Lq → Lr,1 ≤ p, q, r <∞)

σ ∈ BS0
0,0 ⇔ |∂αx∂

β
ξ ∂

γ
ησ(x, ξ, η)| ≤ Cαβγ
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A substitute result

If σ ∈ BS0
0,0 and ∂γησ ∈ L2

ξL
1
ηL

∞
x , ∂βξ σ ∈ L

2
ηL

1
ξL

∞
x , then

Tσ : L2 × L2 → L1

• B.-Torres (2004): the proof uses a bilinear version of Cotlar’s lemma

Let H be a Hilbert space and V a normed space of functions closed under
conjugation. If Tj : V ×H → H, j ∈ Z, is a sequence of bounded bilinear
operators and {a(j)}j∈Z is a sequence of positive real numbers such that

‖Ti(f, T ∗2j (f̄ , g))‖H + ‖T ∗2i (f̄ , Tj(f, g))‖H ≤ a(i− j),

for all f ∈ V, g ∈ H, ‖f‖V = ‖g‖H = 1, and for all i, j ∈ Z, then

‖
m∑
j=n

Tj‖ ≤
∞∑

i=−∞

√
a(i), n,m ∈ Z, n ≤ m.
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...And a surprising connection

The correct setting for the study of this class is provided by the so-called
modulation spaces Mp,q

f ∈Mp,q ⇔ ‖Vφf(x, ω)‖LpxLqω <∞

Instructive statement: f ∈Mp,q ∼ f ∈ Lp and f̂ ∈ Lq.

Question: Why these spaces???

1. BS0
0,0 ⊆M∞,1(R3n) and

2. Symbols in M∞,1 should yield operators that behave like pointwise
multiplication both in time and frequency!
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The following general result holds (and this applies to symbols that lie in a
modulation space...hence can be quite rough!)

If σ ∈M∞,1(R3n), then Tσ extends to a bounded operator from Mp1,q1×
Mp2,q2 intoMp0,q0, where 1/p1+1/p2 = 1/p0, 1/q1+1/q2 = 1+1/q0.

Consequently

If σ ∈ BS0
0,0, then Tσ : L2 × L2 →M1,∞ ⊇ L1.

• B.-Gröchenig-Heil-Okoudjou (2005): time-frequency analysis proof

• B.-Okoudjou (2006): more general estimates on modulation spaces
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What have we learned so far?

In terms of multipliers or symbols, the change made from linear to bilinear
is, formally, to replace

|ξ| ; |ξ|+ |η|

Many linear results have bilinear (multilinear) counterparts...but not all...

A more dramatic change occurs if one replaces

|ξ| ; |ξ − η| !
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Composition of pseudodifferential operators

• Interest: boundedness on Sobolev spaces and (pseudodifferential) Leib-
nitz rules!

Let Jm = (I −∆)m/2 and σ ∈ BSm1,0, m ≥ 0. Then,

Tσ(f, g) = Tσ1(J
mf, g) + Tσ2(f, J

mg).

for some σ1 and σ2 in BS0
1,0.

In particular, Tσ : Lpm × L
q
m → Lr, 1/p+ 1/q = 1/r, 1 < p, q <∞.

However, if σ ∈ BS0
1,0 and a ∈ Sm1,0, then in general LaTσ /∈ OpBSm1,0

LaTσ has a symbol that satisfies estimates in terms of |ξ+ η|...

This provides another motivation to look at more general symbols!
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The classes BSmρ,δ;θ

|∂αx∂
β
ξ ∂

γ
ησ(x, ξ, η)| ≤

Cαβγ(1 + |η − ξ tan θ|)m+δ|α|−ρ(|β|+|γ|)

for θ ∈ (−π/2, π/2] (with the convention that θ = π/2 corresponds to
estimates in terms of 1 + |ξ| only)

In the one-dimensional case

|∂αx∂
β
ξ ∂

γ
ησ(x, ξ, η)| ≤

Cαβγ(1 + dist((ξ, η); Γθ))
m+δ|α|−ρ(|β|+|γ|)

where Γθ is the line at angle θ with respect to the axis η = 0

Note that θ = −π/4,0, π/2 are the degenerate directions of the BHT.
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Symbolic calculus

There exists a calculus for the composition with linear operators and for the
transposes.

1. If Tσ ∈ OpBS0
1,0 and La ∈ OpSm1,0, then LaTσ ∈ OpBSm1,0;−π/4.

2. {BS0
1,0; θ}θ is closed under transposition.

• B.-Nahmod-Torres (2006)

• Bernicot (2008): extension of the calculus to other classes of symbols

Note also that, in general, the classes BSmρ,δ and BSmρ,δ;−π/4 are not com-
parable. The calculus for the transposes is crucial for boundedness on Lp

spaces...later we will see a nice connection with the T (1,1)-theorem!!!
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The symbols of the transposes can be computed explicitly, and it holds that

σθ ; σθ∗1, σθ∗2

where, for θ 6= 0, π/2,−π/4,

cot θ+ cot θ∗1 = −1

tan θ+ tan θ∗2 = −1

In the degenerate directions

{0, π/2,−π/4}∗1 = {0,−π/4, π/2}

{0, π/2,−π/4}∗2 = {−π/4, π/2,0}
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Modulation invariant multiplier operators in 1-dimension

BHT (f, g)(x) =
∫

sign(ξ−η)f̂(ξ)ĝ(η)eix·(ξ+η)dξdη

BHT : Lp × Lq → Lr, 1/p+ 1/q = 1/r, r > 2/3

• Lacey-Thiele (1997-1999); Grafakos-Li (2004, uniform estimates)

Tm(f, g)(x) =
∫
m(ξ − η)f̂(ξ)ĝ(η)eix·(ξ+η)dξdη

|dαm(z)| ≤ Cα|z|−α.

Tm : Lp × Lq → Lr, 1/p+ 1/q = 1/r, r > 2/3

• Gilbert-Nahmod (2000); Muscalu-Tao-Thiele (2002, multilinear case)
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Modulation invariant variable coefficient operators

Let now

T (f1, f2)(x) =
∫
R2
σ(x, ξ − η)f̂1(ξ)f̂2(η)e

ix(ξ+η)dξdη

where σ(x, u) ∈ S0
1,0, i.e.,

|∂αx∂
β
ξ,ησ(x, ξ − η)| ≤ Cαβ(1 + |ξ − η|)−|β|

These operators satisfy the modulation invariance

〈T (f1, f2), f3〉 = 〈T (eiz·f1, e
iz·f2), e

−i2z·f3〉

Question: What do we know about the kernel of such an operator?
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Undoing the Fourier transforms,

=
∫
R2
k(x, x− y)δ(z − 2x+ y)f1(y)f2(z) dydz

=
∫
R
k(x, t)f1(x− t)f2(x+ t) dt

(valid at least for functions with disjoint support)

k(x, x− y) = (F−1
2 σ)(x, x− y)

Such a k is a (linear) Calderón-Zygmund kernel, but the Schwartz kernel
of T is

K(x, y, z) = k(x, x− y)δ(z − 2x+ y)

which is too singular to fall under the scope of the previous multilinear T(1)-
Theorems.

Note that the BHT is obtained with k(x, t) = 1/t.
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The linear to bilinear evolution of symbols

Linear Calderón-Zygmund theory
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The linear to bilinear evolution of symbols

Linear Calderón-Zygmund theory

Hilbert Transform

sign(ξ)

Hörmander-Mihlin Multipliers

|∂αm(ξ)| ≤ Cα|ξ|−|α|

Classical PDOs

|∂βx∂αξ σ(x,ξ)| ≤ Cα,β(1+|ξ|)−|α|



Bilinear Calderón-Zygmund theory: |ξ| ; |ξ|+ |η|
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Bilinear Calderón-Zygmund theory: |ξ| ; |ξ|+ |η|

Bilinear Coifman-Meyer multipliers

|∂αξ σ(ξ)| ≤ Cα(|ξ|)−|α|
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Bilinear Calderón-Zygmund theory: |ξ| ; |ξ|+ |η|

Bilinear Coifman-Meyer multipliers

|∂αξ,ησ(ξ, η)| ≤ Cα(|ξ|+ |η|)−|α|

Bilinear Coifman-Meyer PDOs

|∂βx∂αξ,ησ(x, ξ, η)| ≤ Cαβ(1 + |ξ|)−|α|



Bilinear Calderón-Zygmund theory: |ξ| ; |ξ|+ |η|

Bilinear Coifman-Meyer multipliers

|∂αξ,ησ(ξ, η)| ≤ Cα(|ξ|+ |η|)−|α|

Bilinear Coifman-Meyer PDOs

|∂βx∂αξ,ησ(x, ξ, η)| ≤ Cαβ(1 + |ξ|+ |η|)−|α|



Modulation invariant bilinear singular integrals: ξ ; ξ − η
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Modulation invariant bilinear singular integrals: ξ ; ξ − η

Bilinear Hilbert Transform

sign(ξ − η)

Bilinear modulation invariant multipliers

|∂αm(ξ − η)| ≤ Cα|ξ − η|−α
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Modulation invariant bilinear singular integrals: ξ ; ξ − η

Bilinear Hilbert Transform

sign(ξ − η)

Bilinear modulation invariant multipliers

|∂αm(ξ − η)| ≤ Cα|ξ − η|−α

Bilinear modulation invariant PDOs

|∂βx∂αξ,ησ(x, ξ − η)| ≤ Cαβ(1 + |ξ − η|)−|α|

Question: Why are these multipliers so much different than the Coifman-
Meyer ones?



Resolving the singularities in the frequency plane

The Coifman-Meyer multipliers just blow up at the origin, i.e., they are sin-
gular only at a point in the ξη frequency plane.

• Littlewood-Paley theory

The latter symbols are singular along a line in the frequency ξη-plane.

• Phase-space analysis (Whitney decomposition)
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Trilinear forms

For symmetry purposes, we will look from now on at the trilinear form

Λ(f1, f2, f3) = 〈T (f1, f2), f3〉

= 〈T ∗1(f3, f2), f1〉 = 〈T ∗2(f1, f3), f2〉

For the rest of this talk we will assume that all Calderón-Zygmund kernels
considered satisfy

|∂αk(x, t)| ≤ C|t|−|α|−1 t 6= 0, |α| ≤ 1

Λ is said to be associated with a Calderón-Zygmund kernel k if

Λ(f1, f2, f3) =
∫
R2

3∏
j=1

fj(x+ βjt)k(x, t) dxdt (1)

for some β = (β1, β2, β3) and all f1, f2, f3 in S(R), ∩j supp fj = ∅
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Modulation symmetry

We assume that β1, β2, β3 are different. Otherwise Λ reduces to a combi-
nation of a pointwise product and a bilinear form...This follows by a simple
change of variables, and appropriately modifying the constants involved in
the definition of a Calderón-Zygmund kernel.

We also assume β to be of unit length and perpendicular to α = (1,1,1).
Let γ = (γ1, γ2, γ3) be a unit vector perpendicular to α and β; note that
γj 6= 0.

We impose the modulation symmetry along the direction γ:

Λ(f1, f2, f3) = Λ(Mγ1ξf1,Mγ2ξf2,Mγ3ξf3)

for all ξ ∈ R, where Mηf(x) = eiηxf(x).
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From (1), the modulation symmetry holds for functions with disjoint support:

Λ(eiγ1·f1, e
iγ2·f2, e

iγ3·f3)

=
∫
R2

3∏
j=1

fj(x+ βjt)e
i(α·γx+β·γt)k(x, t) dxdt

=
∫
R2

3∏
j=1

fj(x+ βjt)k(x, t) dx dt

= Λ(f1, f2, f3)

However...we want the modulation symmetry to hold for all Schwartz func-
tions, even when the representation formula (1) is not valid as an absolutely
convergent integral!
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Modulation invariant T (1,1)-theorem

Assume Λ is a trilinear form associated with a kernel k as in (1) and with
modulation symmetry in the direction γ. Then,

|Λ(f1, f2, f3)| .
3∏

j=1

‖fj‖Lpj

for all exponents 2 ≤ p1, p2, p3 ≤ ∞ with

1

p1
+

1

p2
+

1

p3
= 1

if and only if for all intervals I, all L2-normalized bump functions φI and ψI
supported in I, and all f in S we have the following restricted boundedness
conditions
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|Λ(φI , ψI , f)| . |I|−1/2‖f‖L2,

|Λ(φI , f, ψI)| . |I|−1/2‖f‖L2,

|Λ(f, φI , ψI)| . |I|−1/2‖f‖L2.

Moreover, in such a case T satisfies

‖T (f1, f2)‖Lr . ‖f1‖Lp‖f1‖Lq,

for 1/p+ 1/q = 1/r,1 < p, q ≤ ∞,2/3 < r <∞.

...This is the same range as for the BHT.

• B.-Demeter-Nahmod-Thiele-Torres-Villarroya (2008)
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Reformulation of the T (1,1)-theorem

The Calderón-Zygmund trilinear form Λ with modulation
symmetry in the direction γ is bounded if and only if T (1,1), T ∗1(1,1), T ∗2(1,1) ∈ BMO

Λ ∈WBP

WBP:
|Λ(φ)| . |I|−1/2, for φ(x, y, z) any L2-normalized adapted to I × I × I

L2-normalized bump of order N adapted to interval I:

|∂αϕ(x)| ≤ C|I|−1/2−α
1 +

∣∣∣∣∣x− c(I)

|I|

∣∣∣∣∣
2
−N/2,0 ≤ α ≤ N
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The T (1,1) theorem: sketch of proof

The boundedness of Λ immediately implies the restricted boundedness
conditions. In fact, T, T ∗1, T ∗2 : L4 × L4 → L2 are enough to obtain
these conditions.

Conversely, the restricted boundedness conditions are used to show that T (1,1), T ∗1(1,1), T ∗2(1,1) ∈ BMO

|Λ(φ)| . |I|−1/2

for φ(x, y, z) any L2-normalized and adapted to I × I × I

These conditions imply the boundedness of the form Λ and so they are
also necessary and sufficient.
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The theorem is then reduced to the case T (1,1) = T ∗1(1,1) = T ∗2(1,1) = 0

|Λ(φ)| . |I|−1/2

using some modulation invariant paraproducts. These conditions are used
then to discretize the operator.

The proof of the theorem in the reduced case uses a phase-space analysis
similar to the one used for the BHT... The difference: we use a Whitney de-
composition in frequency in terms of tubes (rectangular boxes with square
cross sections) not in terms of cubes as in the case of the BHT.
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An application

Consider again the variable operator

T (f, g)(x) =
∫
R2
σ(x, ξ − η)f̂(ξ)ĝ(η)eix(ξ+η)dξdη

with σ ∈ S0
1,0 The associated trilinear form is

Λ(f1, f2, f3) = 〈T (f1, f2), f3〉

Note that this form has modulation symmetry in the direction γ = (1,1,−2)/
√

6

for all triples f1, f2, f3, not just the ones with disjoint supports.
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Consider

φI = |I|−1/2φ0((x− x0)/|I|),

where φ0 is adapted to and supported in the unit interval centered at the
origin... so that φI is an L2-normalized bump adapted to IThen φ̂I is an
L2-normalized bump adapted to an interval of length |I|−1, and

‖φ̂I‖L1 = |I|−1/2‖φ̂0‖L1 ≤ c|I|−1/2,

where c depends only on finitely many derivatives of φ0.

Let then φI , ψI be two L2-normalized bumps adapted to I and f be sup-
ported in CI. The estimate above applied to φ̂I and ψ̂I provides the fol-
lowing information:
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|Λ(φI , ψI , f)| . ‖φ̂I‖L1ψ̂I‖L1‖f‖L1

. ‖φ̂I‖L1‖ψ̂I‖L1|I|1/2‖f‖L2

. |I|−1/2‖f‖L2

This gives the restricted boundedness condition for T !To obtain the other
restricted boundedness conditions, write

Λ(f, φI , ψI) = 〈T ∗1(ψI , φI), f〉

Using the symbolic calculus (B.-Nahmod-Torres, 2006) one gets that T ∗1

is a bilinear pseudodifferential operator

T ∗1(g, h)(x) =
∫
R2
σ1(x, ξ, η)ĝ(ξ)ĥ(η)e

ix·(ξ+η)dξdη
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σ1 satisfies the estimates

|∂µx∂αξ,ησ1(x, ξ, η)| . (1 + |ξ+ 2η|)−|α|

The computations done with T can be repeated for T ∗1 and T ∗2...Therefore,
the modulation invariant T (1,1) theorem implies that for our Tσ ∈ OpBS0

1,0;π/4,
in which the symbol is assumed to have the form σ(x, ξ − η) we have

T : Lp × Lq → Lr,1/p+ 1/q = 1/r < 3/2

The same argument will work for a Tσ ∈ OpBS0
1,0;θ, with σ(x, ξ−η tan θ)

• Bernicot (2008): In general, OpBS0
1,0;θ : Lp × Lq → Lr; i.e., without

dependence ξ − θ tan θ in the symbol...like in the work of Gilbert-Nahmod
on multipliers generalizing the BHT!

48



A crucial difference

The operators we consider in the modulation invariant T (1,1) theorem
have kernels that satisfy minimal regularity requirements, therefore they
cannot be expressed as smooth bilinear pseudodifferential operators in
OpBS0

1,0;θ

On the other hand, the operators in OpBS0
1,0;θ are not modulation invari-

ant, so they do not have the kernel representation assumed by the T (1,1)

theorem. Nevertheless, the symbols are smooth, so it is not surprising that
their boundedness can be achieved without appealing to a T (1,1) theo-
rem (this is the case also for many results on classical linear pseudodif-
ferential operators!!!) Recall also that this boundedness was “predicted” to
hold by the existence of a transposition symbolic calculus for these classes
(B.-Nahmod- Torres, 2006)
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Further application: “antisymmetric” forms

Consider k(x, t) a Calderón-Zygmund kernel that satisfies the “antisym-
metric” property

k(x+ t,−t) = −k(x, t)

This unconventionally looking symmetry is due to the fact that we chose
the kernel to be singular at t = 0 and not at x = t, i.e., we work with the
condition

|∂αk(x, t)| . |t|−|α|−1

instead of the standard (and equivalent after a change of variable) condi-
tion

|∂αk(x, t)| . |x− t|−|α|−1
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We can always define

Λ(f1, f2, f3) = p.v.
∫
f1(x+ t)f2(x− t)f3(x)k(x, t) dxdt

=
1

2

∫
(f1(x+t)f2(x−t)f3(x)−f1(x)f2(x+2t)f3(x+t))k(x, t) dxdt

since the integral is absolutely convergent.

It is straightforward to check that Λ is a well-defined modulation invariant
form (even for functions without disjoint support) that satisfies the WBP !

Now compute

Λ(f1,1, f3) = p.v.
∫
f1(y)f3(x)k1(x, y) dx dy,

where k1(x, y) = k(x, y − x) is antisymmetric in the usual way, i.e.
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k1(y, x) = k(y, x− y) =x−y:=−t k(x+ t,−t)

= −k(x, t) = −k(x, y − x) = −k1(x, y)

If the bilinear form with this kernel is bounded, we immediately get that

Λ(1,1, ·) = −Λ(·,1,1) ∈ BMO

Similarly,

Λ(1, f2, f3) = p.v.
∫
f2(y)f3(x)k2(x, y) dx dy,

where k2(x, y) = k(x, x − y), and the boundedness of the bilinear form
with this kernel would give us also

Λ(1, ·,1) ∈ BMO

...thus T (1,1) ⇒ boundedness of “antisymmetric” forms!
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Why are “antisymmetric” forms relevant?

Bilinear Calderón commutators

BCm(f, g, h) =

p.v.
∫
f(x+ t)g(x− t)h(x)

(A(x+ t)−A(x))m

tm+1
dtdx

with ‖A′‖L∞ < C. Note that

k(x, t) =
(A(x+ t)−A(x))m

tm+1

satisfies

k(x+ t,−t) =
(A(x)−A(x+ t))m

(−t)m+1
= −k(x, t)!
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The bilinear form associated to the kernel k1(x, y) is the usual Calderón
commutator:

k1(x, y) = k(x, y − x) =
(A(y)−A(x))m

(y − x)m+1

A similar operator is obtained for the other kernel

k2(x, y) = k(x, x− y) =
(A(2x− y)−A(x))m

(x− y)m+1

Hence the previous scheme works and we get the boundedness of BCm

through the T (1,1) theorem!
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Keeping track of the constants involved and expanding in the usual way in
terms of commutators we also obtain the boundedness of the

Bilinear Cauchy integral

BC(f, g)(x) = p.v.
∫

f(x+ t)g(x− t)

t+ i(A(x+ t)−A(x))
dt

at least for ‖A′‖L∞ << 1.

Thank you for attending this talk!!!
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