Bilinear pseudodifferential operators:

 the Coifman-Meyer class and beyond
Árpád Bényi

Department of Mathematics Western Washington University Bellingham, WA 98225

12th New Mexico Analysis Seminar April 23-25, 2009

A toy example

Consider

$$
T(f, g)=f \cdot g
$$

- bilinear...T $\left(a f_{1}+b f_{2}, g\right)=a T\left(f_{1}, g\right)+b T\left(f_{2}, g\right)$
- translation invariant... $T\left(\tau_{h} f, \tau_{h} g\right)(x)=\tau_{h} T(f, g)(x)$, where $\tau_{h} f(x)=f(x-h)$

By Hölder's inequality

$$
\|f \cdot g\|_{L^{r}} \leq\|f\|_{L^{p}}\|g\|_{L^{q}}
$$

with $1 / r=1 / p+1 / q, 1 \leq p, q<\infty$ So $\ldots T: L^{p} \times L^{q} \rightarrow L^{r}$

Write now the product $f \cdot g$ in multiplier form

$$
\begin{gathered}
(f \cdot g)(x)=(2 \pi)^{-2 n} \int_{\mathbb{R}^{n}} \widehat{f}(\xi) e^{i x \cdot \xi} d \xi \cdot \int_{\mathbb{R}^{n}} \widehat{g}(\eta) e^{i x \cdot \eta} d \eta \\
=(2 \pi)^{-2 n} \int_{\mathbb{R}^{2 n}} \widehat{f}(\xi) \widehat{g}(\eta) e^{i x \cdot(\xi+\eta)} d \xi d \eta \\
=\int_{\mathbb{R}^{2 n}} m(\xi, \eta) \widehat{f}(\xi) \widehat{g}(\eta) e^{i x \cdot(\xi+\eta)} d \xi d \eta
\end{gathered}
$$

where $m(\xi, \eta)=(2 \pi)^{-2 n}$ is independent of x

Bilinear multipliers

In general, any translation invariant operator T can be represented as

$$
T(f, g)(x)=\int m(\xi, \eta) \widehat{f}(\xi) \widehat{g}(\eta) e^{i x \cdot(\xi+\eta)} d \xi d \eta
$$

where $m=m(\xi, \eta)$ is its multiplier... $T=T_{m}$
Equivalently, if its kernel $K(u, v)=\mathcal{F}_{2 n}^{-1}(m(\cdot, \cdot))(u, v)$,

$$
T(f, g)(x)=\int K(x-y, x-z) f(y) g(z) d y d z
$$

Question: What conditions are needed for $T_{m}: L^{p} \times L^{q} \rightarrow L^{r}$?

Simple remarks

- Scaling/HomogeneityAssume T_{m} also commutes with simultaneous dilations, equivalently, m is homogenous of degree 0 ,

$$
m(\lambda \xi, \lambda \eta)=m(\xi, \eta), \lambda>0
$$

Then (p, q, r) satisfies the Hölder condition

$$
1 / p+1 / q=1 / r, p, q>1
$$

- Necessary condition (Coifman-Meyer?):

$$
|m(\xi, \eta)| \leq C, \text { for all } \xi, \eta
$$

- But not sufficient! For $m(\xi, \eta)=\operatorname{sgn}(\xi+\eta), \xi, \eta \in \mathbb{R}$, we easily compute

$$
T_{m}(f, g)=H(f \cdot g)
$$

where $H(f)=p \cdot v .\left(x^{-1} * f\right)$ is the Hilbert transform
It is known that $H: L^{1} \nrightarrow L^{1}$

$$
\ldots \text { so } T_{m}: L^{2} \times L^{2} \nrightarrow L^{1}
$$

Coifman-Meyer bilinear multipliers

Let m be bounded such that

$$
\left|\partial_{\xi}^{\alpha} \partial_{\eta}^{\beta} m(\xi, \eta)\right| \leq C_{\alpha \beta}(|\xi|+|\eta|)^{-|\alpha|-|\beta|}
$$

We have

$$
\left\|T_{m}(f, g)\right\|_{L^{r}} \leq C\|f\|_{L^{p}}\|g\|_{L^{q}}
$$

for $1 / p+1 / q=1 / r, 1<p, q<\infty$ and $1 / 2<r<\infty$ (as well as appropriate end-point results)

- Coifman-Meyer (1978): $r>1$
- Grafakos-Torres, Kenig-Stein (1999): $r>1 / 2$ (optimal)

Application to fractional differentiation

Define

$$
\begin{gathered}
\widehat{|\nabla|^{s} f}(\xi)=|\xi|^{s} \widehat{f}(\xi), s>0 \\
|\nabla|^{s}(f \cdot g)(x)=c_{n} \int|\xi+\eta|^{s} \widehat{f}(\xi) \widehat{g}(\eta) e^{i x \cdot(\xi+\eta)} d \xi d \eta \\
=c_{n} \int_{|\xi|>|\eta|} \frac{|\xi+\eta|^{s}}{|\xi|^{s}}|\xi|^{\widehat{f}} \widehat{f}(\xi) \widehat{g}(\eta) e^{i x \cdot(\xi+\eta)} d \xi d \eta \\
+c_{n} \int_{|\xi|<|\eta|} \frac{|\xi+\eta|^{s}}{|\eta|^{s}} \widehat{f}(\xi)|\eta|^{s} \widehat{g}(\eta) e^{i x \cdot(\xi+\eta)} d \xi d \eta
\end{gathered}
$$

If we do the split in a smooth way, we actually get

$$
|\nabla|^{s}(f \cdot g)(x)=T_{m_{1}}\left(|\nabla|^{s} f, g\right)+T_{m_{2}}\left(f,|\nabla|^{s} g\right)
$$

with m_{1} and m_{2} Coifman-Meyer bilinear multipliers.

Then Leibniz's rule for fractional derivatives follows:

$$
\left\||\nabla|^{s}(f \cdot g)\right\|_{L^{r}} \lesssim\left\||\nabla|^{s} f\right\|_{L^{p}}\|g\|_{L^{q}}+\|f\|_{L^{p}}\left\||\nabla|^{s} g\right\|_{L^{q}}
$$

Another example

The Riesz transforms in \mathbb{R}^{2} can be seen as bilinear multipliers on $\mathbb{R} \times \mathbb{R}$, e.g.

$$
R_{1}(f, g)(x)=\text { p.v. } \int_{\mathbb{R}^{2}} K_{1}(x-y, x-z) f(y) g(z) d y d z
$$

where

$$
K_{1}(y, z)=\frac{y}{|(y, z)|^{3}}
$$

Note that K_{1} is a Calderón-Zygmund kernel

$$
\left|\partial_{y}^{\alpha} \partial_{z}^{\beta} K_{1}(y, z)\right| \leq C_{\alpha \beta}(|y|+|z|)^{-2-|\alpha|-|\beta|}
$$

R_{1} corresponds to a Coifman-Meyer bilinear multiplier; $R_{1}: L^{p} \times L^{q} \rightarrow L^{r}$

Variable coefficient bilinear operator

...or non-translation invariant bilinear operator ...associated to an x-dependent symbol $\sigma(x, \xi, \eta)$, or a kernel $\widetilde{K}(x, u, v)=\mathcal{F}_{2 n}^{-1}(\sigma(x, \cdot, \cdot))(u, v)$

$$
T_{\sigma}(f, g)(x)=\int_{\mathbb{R}^{2} n} \sigma(x, \xi, \eta) \hat{f}(\xi) \hat{g}(\eta) e^{i x \cdot(\xi+\eta)} d \xi d \eta
$$

$$
=\int_{\mathbb{R}^{2 n}} \tilde{K}(x, x-y, x-z) f(y) g(z) d y d z
$$

$$
=\int_{\mathbb{R}^{2 n}} K(x, y, z) f(y) g(z) d y d z
$$

Bilinear $T(1)$ theorem

Consider a bilinear Calderón-Zygmund operator

$$
\begin{gathered}
T: \mathcal{S} \times S \rightarrow \mathcal{S}^{\prime} \\
\left\langle T\left(f_{1}, f_{2}\right), f_{3}\right\rangle=\left\langle K, f_{1} \otimes f_{2} \otimes f_{3}\right\rangle \\
\left|\partial^{\alpha} K\left(y_{0}, y_{1}, y_{2}\right)\right| \lesssim\left(\sum\left|y_{j}-y_{k}\right|\right)^{-2 n-|\alpha|},|\alpha| \leq 1
\end{gathered}
$$

- Christ-Journé (1987): $T: L^{2} \times L^{2} \rightarrow L^{1} \Longleftrightarrow K$ satisfies a bilinear $W B P$ and the distributions $T^{* j}(1,1)$ are in $B M O$; here $T=T^{* 0}$ and $T^{* 1}, T^{* 2}$ are the transposes of T.
- Grafakos-Torres (2002): $T: L^{p} \times L^{q} \rightarrow L^{r}, 1 / p+1 / q=1 / r<2 \Longleftrightarrow$ $\sup _{\xi, \eta}\left\|T^{* j}\left(e^{i x \cdot \xi}, e^{i x \cdot \eta}\right)\right\|_{B M O} \leq C$

Application: the Coifman-Meyer class

$$
T_{\sigma}(f, g)(x)=\int_{\mathbb{R}^{2 n}} \sigma(x, \xi, \eta) \widehat{f}(\xi) \widehat{g}(\eta) e^{i x \cdot(\xi+\eta)} d \xi d \eta
$$

where $\sigma \in B S_{1,0}^{0}$ (the Coifman-Meyer class), i.e.,

$$
\left|\partial_{x}^{\alpha} \partial_{\xi}^{\beta} \partial_{\eta}^{\gamma} \sigma(x, \xi, \eta)\right| \leq C_{\alpha \beta \gamma}(1+|\xi|+|\eta|)^{-|\beta|-|\gamma|}
$$

Then T_{σ} has a Calderón-Zygmund kernel

$$
\left|\partial^{\alpha} K(x, y, z)\right| \leq C_{\alpha}(|x-y|+|x-z|)^{-(2 n+|\alpha|)}
$$

and

$$
T\left(e^{i \xi \cdot}, e^{i \eta \cdot}\right)(x)=\sigma(x, \xi, \eta) e^{i x \cdot(\xi+\eta)}
$$

which is (uniformly in all ξ, η) in L^{∞}.

The same observations apply to the transposes of $T: T^{* j}, j=1,2$, have Calderón-Zygmund kernels, and they behave well on the elementary objects $e^{i \xi \cdot}, e^{i \eta \cdot} \cdot$. this follows from a symbolic calculus for the transposes...

By the bilinear $T(1)$ theorem

$$
T_{\sigma}: L^{p} \times L^{q} \rightarrow L^{r}, 1 / p+1 / q=1 / r<2
$$

Coifman-Meyer essentially proved the same for $r>1$ (and multipliers), but they used Littlewood-Payley theory... 1978 result.

More general bilinear pseudodifferential operators

$$
T_{\sigma}(f, g)(x)=\int_{\mathbb{R}^{2 n}} \sigma(x, \xi, \eta) \widehat{f}(\xi) \widehat{g}(\eta) e^{i x \cdot(\xi+\eta)} d \xi d \eta
$$

For $0 \leq \delta \leq \rho \leq 1$ and $m \in \mathbb{R}$, we say that $\sigma \in B S_{\rho, \delta}^{m}$ if

$$
\left|\partial_{x}^{\alpha} \partial_{\xi}^{\beta} \partial_{\eta}^{\gamma} \sigma(x, \xi, \eta)\right| \leq
$$

$$
C_{\alpha \beta \gamma}(1+|\xi|+|\eta|)^{m+\delta|\alpha|-\rho(|\beta|+|\gamma|)}
$$

These are the bilinear analog of the classical Hörmander classes in the linear case.

Symbolic calculus for the transposes

- Interest: most L^{p} results depend on symmetric properties on the transposes!

If $\sigma(x, \xi, \eta)=\sigma(\xi, \eta)$ (multiplier), then the transposes of T_{σ} are easy to compute

$$
\begin{gathered}
T_{\sigma}^{* 1}=T_{\sigma^{* 1}} \text { and } T_{\sigma}^{* 2}=T_{\sigma^{* 2}} \\
\sigma^{* 1}(\xi, \eta)=\sigma(-\xi-\eta, \eta), \sigma^{* 2}(\xi, \eta)=\sigma(\xi,-\xi-\eta)
\end{gathered}
$$

Question: How about x-dependent symbols $\sigma(x, \xi, \eta)$?

The situation is more complicated...but the following calculus holds.

$$
\begin{aligned}
& \text { If } 0 \leq \delta<\rho \leq 1 \text { and } \sigma \in B S_{\rho, \delta}^{m} \text {, then } \sigma^{* 1}, \sigma^{* 2} \in B S_{\rho, \delta}^{m} \text { and } \\
& \qquad \sigma^{* 1}(x, \xi, \eta)=\sum_{\alpha} \frac{i^{\alpha}}{\alpha!} \partial_{x}^{\alpha} \partial_{\xi}^{\alpha} \sigma(x,-\xi-\eta, \eta)
\end{aligned}
$$

in the sense that for every $N>0$

$$
\sigma^{* 1}(x, \xi, \eta)-\sum_{|\alpha|<N} \frac{i^{\alpha}}{\alpha!} \partial_{x}^{\alpha} \partial_{\xi}^{\alpha} \sigma(x,-\xi-\eta, \eta) \in B S_{\rho, \delta}^{m+(\delta-\rho) N}
$$

and similarly for $\sigma^{* 2}$.

- B.-Torres (2003): $\delta=0, \rho=1, m=0$
- B.-Maldonado-Naibo-Okoudjou-Torres (2008): the general case

Question: What about $B S_{1,1}^{m}$?

Relevance of transposition calculus

The class $B S_{1,1}^{0}$ is the largest that produces operators with bilinear CalderónZygmund kernels. But...this class (or $B S_{1,1}^{m}$ in general) does not produce bounded operators on L^{p} spaces because it is not closed by transposition.

Nevertheless, these classes are bounded on Sobolev spaces of positive smoothness, and there is a pseudodifferential Leibniz rule.

$$
\begin{aligned}
& \text { If } \sigma \in B S_{1,1}^{m}, m \geq 0, s>0 \text {, then } T_{\sigma} \text { has a bounded extension from } \\
& L_{m+s}^{p} \times L_{m+s}^{q} \text { into } L_{s}^{r} \text {. Moreover, } \\
& \qquad\left\|T_{\sigma}(f, g)\right\|_{L_{s}^{r}} \lesssim\|f\|_{L_{m+s}^{p}}\|g\|_{L^{q}}+\|f\|_{L^{p}}\|g\|_{L_{m+s}^{q}}
\end{aligned}
$$

for all $1 / p+1 / q=1 / r, 1<p, q, r<\infty$.

- B.-Torres (2003): $m=0$; B.-Nahmod-Torres (2006): general case
- B. (2003): $m=0$; boundedness on Lipschitz and Besov spaces

Bilinear paraproducts and pseudodifferential operators

All of the above results can essentially be recast in terms of bilinear paraproducts. For example,

$$
T(f, g)(x)=\sum_{Q} \sigma_{Q}|Q|^{-1 / 2}\left\langle f, \phi_{Q}^{1}\right\rangle\left\langle g, \phi_{Q}^{2}\right\rangle \phi_{Q}^{3}(x)
$$

where the sum runs over all dyadic cubes in $\mathbb{R}^{n},\left\{\sigma_{Q}\right\} \in l^{\infty}$ and the functions ϕ_{Q}^{i} are families of wavelets,

$$
\phi_{Q}^{i}(x)=|Q|^{-1 / 2} \phi^{i}\left(|Q|^{-1}\left(x-c_{Q}\right)\right)
$$

- B.-Maldonado-Nahmod-Torres (2007): paraproducts as bilinear Calderón-Zygmund operators
- Maldonado-Naibo (2008-09): nice connections to more general operators...Don’t miss Diego's talk!!!

Linear vs bilinear pseudodifferential operators

The above results are analogous to the linear ones...

Question: Does everything hold the same in the bilinear setting?

NO! For example, Calderón-Vaillancourt's theorem fails!

In the linear case, $\sigma \in S_{0,0}^{0} \Rightarrow T_{\sigma}: L^{2} \rightarrow L^{2}$, but

$$
\sigma \in B S_{0,0}^{0} \nRightarrow T_{\sigma}: L^{2} \times L^{2} \rightarrow L^{1}
$$

(or any $L^{p} \times L^{q} \rightarrow L^{r}, 1 \leq p, q, r<\infty$)

$$
\sigma \in B S_{0,0}^{0} \Leftrightarrow\left|\partial_{x}^{\alpha} \partial_{\xi}^{\beta} \partial_{\eta}^{\gamma} \sigma(x, \xi, \eta)\right| \leq C_{\alpha \beta \gamma}
$$

A substitute result

If $\sigma \in B S_{0,0}^{0}$ and $\partial_{\eta}^{\gamma} \sigma \in L_{\xi}^{2} L_{\eta}^{1} L_{x}^{\infty}, \partial_{\xi}^{\beta} \sigma \in L_{\eta}^{2} L_{\xi}^{1} L_{x}^{\infty}$, then

$$
T_{\sigma}: L^{2} \times L^{2} \rightarrow L^{1}
$$

- B.-Torres (2004): the proof uses a bilinear version of Cotlar's lemma

Let H be a Hilbert space and V a normed space of functions closed under conjugation. If $T_{j}: V \times H \rightarrow H, j \in \mathbf{Z}$, is a sequence of bounded bilinear operators and $\{a(j)\}_{j \in \mathrm{Z}}$ is a sequence of positive real numbers such that

$$
\left\|T_{i}\left(f, T_{j}^{* 2}(\bar{f}, g)\right)\right\|_{H}+\left\|T_{i}^{* 2}\left(\bar{f}, T_{j}(f, g)\right)\right\|_{H} \leq a(i-j)
$$

for all $f \in V, g \in H,\|f\|_{V}=\|g\|_{H}=1$, and for all $i, j \in \mathbb{Z}$, then

$$
\left\|\sum_{j=n}^{m} T_{j}\right\| \leq \sum_{i=-\infty}^{\infty} \sqrt{a(i)}, n, m \in \mathbb{Z}, n \leq m
$$

...And a surprising connection

The correct setting for the study of this class is provided by the so-called modulation spaces $M^{p, q}$

$$
f \in M^{p, q} \Leftrightarrow\left\|V_{\phi} f(x, \omega)\right\|_{L_{x}^{p} L_{\omega}^{q}}<\infty
$$

Instructive statement: $f \in M^{p, q} \sim f \in L^{p}$ and $\hat{f} \in L^{q}$.

Question: Why these spaces???

1. $B S_{0,0}^{0} \subseteq M^{\infty, 1}\left(\mathbb{R}^{3 n}\right)$ and
2. Symbols in $M^{\infty, 1}$ should yield operators that behave like pointwise multiplication both in time and frequency!

The following general result holds (and this applies to symbols that lie in a modulation space...hence can be quite rough!)

If $\sigma \in M^{\infty, 1}\left(\mathbf{R}^{3 n}\right)$, then T_{σ} extends to a bounded operator from $M^{p_{1}, q_{1}} \times$ $M^{p_{2}, q_{2}}$ into $M^{p_{0}, q_{0}}$, where $1 / p_{1}+1 / p_{2}=1 / p_{0}, 1 / q_{1}+1 / q_{2}=1+1 / q_{0}$.

Consequently
If $\sigma \in B S_{0,0}^{0}$, then $T_{\sigma}: L^{2} \times L^{2} \rightarrow M^{1, \infty} \supseteq L^{1}$.

- B.-Gröchenig-Heil-Okoudjou (2005): time-frequency analysis proof
- B.-Okoudjou (2006): more general estimates on modulation spaces

What have we learned so far?

In terms of multipliers or symbols, the change made from linear to bilinear is, formally, to replace

$$
|\xi| \leadsto|\xi|+|\eta|
$$

Many linear results have bilinear (multilinear) counterparts...but not all...

A more dramatic change occurs if one replaces

$$
|\xi| \leadsto|\xi-\eta|!
$$

Composition of pseudodifferential operators

- Interest: boundedness on Sobolev spaces and (pseudodifferential) Leibnitz rules!

$$
\begin{aligned}
& \text { Let } J^{m}=(I-\Delta)^{m / 2} \text { and } \sigma \in B S_{1,0}^{m}, m \geq 0 \text {. Then, } \\
& \qquad T_{\sigma}(f, g)=T_{\sigma_{1}}\left(J^{m} f, g\right)+T_{\sigma_{2}}\left(f, J^{m} g\right) .
\end{aligned}
$$

for some σ_{1} and σ_{2} in $B S_{1,0}^{0}$.
In particular, $T_{\sigma}: L_{m}^{p} \times L_{m}^{q} \rightarrow L^{r}, 1 / p+1 / q=1 / r, 1<p, q<\infty$.
However, if $\sigma \in B S_{1,0}^{0}$ and $a \in S_{1,0}^{m}$, then in general $L_{a} T_{\sigma} \notin \mathrm{Op} B S_{1,0}^{m}$
$L_{a} T_{\sigma}$ has a symbol that satisfies estimates in terms of $|\xi+\eta| \ldots$
This provides another motivation to look at more general symbols!

The classes $B S_{\rho, \delta ; \theta}^{m}$

$$
\begin{gathered}
\left|\partial_{x}^{\alpha} \partial_{\xi}^{\beta} \partial_{\eta}^{\gamma} \sigma(x, \xi, \eta)\right| \leq \\
C_{\alpha \beta \gamma}(1+|\eta-\xi \tan \theta|)^{m+\delta|\alpha|-\rho(|\beta|+|\gamma|)}
\end{gathered}
$$

for $\theta \in(-\pi / 2, \pi / 2$] (with the convention that $\theta=\pi / 2$ corresponds to estimates in terms of $1+|\xi|$ only)

In the one-dimensional case

$$
\begin{gathered}
\left|\partial_{x}^{\alpha} \partial_{\xi}^{\beta} \partial_{\eta}^{\gamma} \sigma(x, \xi, \eta)\right| \leq \\
C_{\alpha \beta \gamma}\left(1+\operatorname{dist}\left((\xi, \eta) ; \Gamma_{\theta}\right)\right)^{m+\delta|\alpha|-\rho(|\beta|+|\gamma|)}
\end{gathered}
$$

where Γ_{θ} is the line at angle θ with respect to the axis $\eta=0$

Note that $\theta=-\pi / 4,0, \pi / 2$ are the degenerate directions of the BHT.

Symbolic calculus

There exists a calculus for the composition with linear operators and for the transposes.

1. If $T_{\sigma} \in O p B S_{1,0}^{0}$ and $L_{a} \in O p S_{1,0}^{m}$, then $L_{a} T_{\sigma} \in O p B S_{1,0 ;-\pi / 4}^{m}$.
2. $\left\{B S_{1,0 ; \theta}^{0}\right\}_{\theta}$ is closed under transposition.

- B.-Nahmod-Torres (2006)
- Bernicot (2008): extension of the calculus to other classes of symbols

Note also that, in general, the classes $B S_{\rho, \delta}^{m}$ and $B S_{\rho, \delta ;-\pi / 4}^{m}$ are not comparable. The calculus for the transposes is crucial for boundedness on L^{p} spaces...later we will see a nice connection with the $T(1,1)$-theorem!!!

The symbols of the transposes can be computed explicitly, and it holds that

$$
\sigma_{\theta} \leadsto \sigma_{\theta^{* 1}}, \sigma_{\theta^{* 2}}
$$

where, for $\theta \neq 0, \pi / 2,-\pi / 4$,

$$
\begin{aligned}
& \cot \theta+\cot \theta^{* 1}=-1 \\
& \tan \theta+\tan \theta^{* 2}=-1
\end{aligned}
$$

In the degenerate directions

$$
\begin{aligned}
& \{0, \pi / 2,-\pi / 4\}^{* 1}=\{0,-\pi / 4, \pi / 2\} \\
& \{0, \pi / 2,-\pi / 4\}^{* 2}=\{-\pi / 4, \pi / 2,0\}
\end{aligned}
$$

Modulation invariant multiplier operators in 1-dimension

$$
\begin{gathered}
B H T(f, g)(x)=\int \operatorname{sign}(\xi-\eta) \widehat{f}(\xi) \widehat{g}(\eta) e^{i x \cdot(\xi+\eta)} d \xi d \eta \\
B H T: L^{p} \times L^{q} \rightarrow L^{r}, \quad 1 / p+1 / q=1 / r, \quad r>2 / 3
\end{gathered}
$$

- Lacey-Thiele (1997-1999); Grafakos-Li (2004, uniform estimates)

$$
\begin{aligned}
& T_{m}(f, g)(x)= \int m(\xi-\eta) \hat{f}(\xi) \widehat{g}(\eta) e^{i x \cdot(\xi+\eta)} d \xi d \eta \\
&\left|d^{\alpha} m(z)\right| \leq C_{\alpha}|z|^{-\alpha} . \\
& T_{m}: L^{p} \times L^{q} \rightarrow L^{r}, \quad 1 / p+1 / q=1 / r, \quad r>2 / 3
\end{aligned}
$$

- Gilbert-Nahmod (2000); Muscalu-Tao-Thiele (2002, multilinear case)

Modulation invariant variable coefficient operators

Let now

$$
T\left(f_{1}, f_{2}\right)(x)=\int_{\mathbb{R}^{2}} \sigma(x, \xi-\eta) \widehat{f}_{1}(\xi) \widehat{f}_{2}(\eta) e^{i x(\xi+\eta)} d \xi d \eta
$$

where $\sigma(x, u) \in S_{1,0}^{0}$, i.e.,

$$
\left|\partial_{x}^{\alpha} \partial_{\xi, \eta}^{\beta} \sigma(x, \xi-\eta)\right| \leq C_{\alpha \beta}(1+|\xi-\eta|)^{-|\beta|}
$$

These operators satisfy the modulation invariance

$$
\left\langle T\left(f_{1}, f_{2}\right), f_{3}\right\rangle=\left\langle T\left(e^{i z \cdot} f_{1}, e^{i z \cdot} f_{2}\right), e^{-i 2 z \cdot} f_{3}\right\rangle
$$

Question: What do we know about the kernel of such an operator?

Undoing the Fourier transforms,

$$
\begin{gathered}
=\int_{\mathbb{R}^{2}} k(x, x-y) \delta(z-2 x+y) f_{1}(y) f_{2}(z) d y d z \\
=\int_{\mathbb{R}} k(x, t) f_{1}(x-t) f_{2}(x+t) d t
\end{gathered}
$$

(valid at least for functions with disjoint support)

$$
k(x, x-y)=\left(\mathcal{F}_{2}^{-1} \sigma\right)(x, x-y)
$$

Such a k is a (linear) Calderón-Zygmund kernel, but the Schwartz kernel of T is

$$
K(x, y, z)=k(x, x-y) \delta(z-2 x+y)
$$

which is too singular to fall under the scope of the previous multilinear $\mathrm{T}(1)$ Theorems.

Note that the BHT is obtained with $k(x, t)=1 / t$.

The linear to bilinear evolution of symbols

Linear Calderón-Zygmund theory

The linear to bilinear evolution of symbols

Linear Calderón-Zygmund theory

Hilbert Transform

$$
\operatorname{sign}(\xi)
$$

The linear to bilinear evolution of symbols

Linear Calderón-Zygmund theory

Hilbert Transform

$$
\operatorname{sign}(\xi)
$$

Hörmander-Mihlin Multipliers

$$
\left|\partial^{\alpha} m(\xi)\right| \leq C_{\alpha}|\xi|^{-|\alpha|}
$$

The linear to bilinear evolution of symbols
Linear Calderón-Zygmund theory

Hilbert Transform

$$
\operatorname{sign}(\xi)
$$

Hörmander-Mihlin Multipliers

$$
\left|\partial^{\alpha} m(\xi)\right| \leq C_{\alpha}|\xi|^{-|\alpha|}
$$

Classical PDOs

$$
\left|\partial_{x}^{\beta} \partial_{\xi}^{\alpha} \sigma(x, \xi)\right| \leq C_{\alpha, \beta}(1+|\xi|)^{-|\alpha|}
$$

Bilinear Calderón-Zygmund theory: $|\xi| \sim|\xi|+|\eta|$

Bilinear Calderón-Zygmund theory: $|\xi| \leadsto|\xi|+|\eta|$

Bilinear Coifman-Meyer multipliers

$$
\left|\partial_{\xi}^{\alpha} \sigma(\xi)\right| \leq C_{\alpha}(|\xi|)^{-|\alpha|}
$$

Bilinear Calderón-Zygmund theory: $|\xi| \leadsto|\xi|+|\eta|$

Bilinear Coifman-Meyer multipliers

$$
\left|\partial_{\xi, \eta}^{\alpha} \sigma(\xi)\right| \leq C_{\alpha}(|\xi|)^{-|\alpha|}
$$

Bilinear Calderón-Zygmund theory: $|\xi| \leadsto|\xi|+|\eta|$

Bilinear Coifman-Meyer multipliers

$$
\left|\partial_{\xi, \eta}^{\alpha} \sigma(\xi, \eta)\right| \leq C_{\alpha}(|\xi|)^{-|\alpha|}
$$

Bilinear Calderón-Zygmund theory: $|\xi| \leadsto|\xi|+|\eta|$

Bilinear Coifman-Meyer multipliers

$$
\left|\partial_{\xi, \eta}^{\alpha} \sigma(\xi, \eta)\right| \leq C_{\alpha}(|\xi|+|\eta|)^{-|\alpha|}
$$

Bilinear Calderón-Zygmund theory: $|\xi| \leadsto|\xi|+|\eta|$

Bilinear Coifman-Meyer multipliers

$$
\left|\partial_{\xi, \eta}^{\alpha} \sigma(\xi, \eta)\right| \leq C_{\alpha}(|\xi|+|\eta|)^{-|\alpha|}
$$

Bilinear Coifman-Meyer PDOs

$$
\left|\partial_{x}^{\beta} \partial_{\xi}^{\alpha} \sigma(x, \xi)\right| \leq C_{\alpha \beta}(1+|\xi|)^{-|\alpha|}
$$

Bilinear Calderón-Zygmund theory: $|\xi| \leadsto|\xi|+|\eta|$

Bilinear Coifman-Meyer multipliers

$$
\left|\partial_{\xi, \eta}^{\alpha} \sigma(\xi, \eta)\right| \leq C_{\alpha}(|\xi|+|\eta|)^{-|\alpha|}
$$

Bilinear Coifman-Meyer PDOs

$$
\left|\partial_{x}^{\beta} \partial_{\xi, \eta}^{\alpha} \sigma(x, \xi)\right| \leq C_{\alpha \beta}(1+|\xi|)^{-|\alpha|}
$$

Bilinear Calderón-Zygmund theory: $|\xi| \leadsto|\xi|+|\eta|$

Bilinear Coifman-Meyer multipliers

$$
\left|\partial_{\xi, \eta}^{\alpha} \sigma(\xi, \eta)\right| \leq C_{\alpha}(|\xi|+|\eta|)^{-|\alpha|}
$$

Bilinear Coifman-Meyer PDOs

$$
\left|\partial_{x}^{\beta} \partial_{\xi, \eta}^{\alpha} \sigma(x, \xi, \eta)\right| \leq C_{\alpha \beta}(1+|\xi|)^{-|\alpha|}
$$

Bilinear Calderón-Zygmund theory: $|\xi| \leadsto|\xi|+|\eta|$

Bilinear Coifman-Meyer multipliers

$$
\left|\partial_{\xi, \eta}^{\alpha} \sigma(\xi, \eta)\right| \leq C_{\alpha}(|\xi|+|\eta|)^{-|\alpha|}
$$

Bilinear Coifman-Meyer PDOs

$$
\left|\partial_{x}^{\beta} \partial_{\xi, \eta}^{\alpha} \sigma(x, \xi, \eta)\right| \leq C_{\alpha \beta}(1+|\xi|+|\eta|)^{-|\alpha|}
$$

Modulation invariant bilinear singular integrals: $\xi \sim \xi-\eta$

Modulation invariant bilinear singular integrals: $\xi \sim \xi-\eta$

Bilinear Hilbert Transform

$$
\operatorname{sign}(\xi)
$$

Modulation invariant bilinear singular integrals: $\xi \sim \xi-\eta$

Bilinear Hilbert Transform

$$
\operatorname{sign}(\xi-\eta)
$$

Modulation invariant bilinear singular integrals: $\xi \sim \xi-\eta$

Bilinear Hilbert Transform

$$
\operatorname{sign}(\xi-\eta)
$$

Bilinear modulation invariant multipliers

$$
\left|\partial^{\alpha} m(\xi-\eta)\right| \leq C_{\alpha}|\xi-\eta|^{-\alpha}
$$

Modulation invariant bilinear singular integrals: $\xi \sim \xi-\eta$

Bilinear Hilbert Transform

$$
\operatorname{sign}(\xi-\eta)
$$

Bilinear modulation invariant multipliers

$$
\left|\partial^{\alpha} m(\xi-\eta)\right| \leq C_{\alpha}|\xi-\eta|^{-\alpha}
$$

Bilinear modulation invariant PDOs

Modulation invariant bilinear singular integrals: $\xi \sim \xi-\eta$

Bilinear Hilbert Transform

$$
\operatorname{sign}(\xi-\eta)
$$

Bilinear modulation invariant multipliers

$$
\left|\partial^{\alpha} m(\xi-\eta)\right| \leq C_{\alpha}|\xi-\eta|^{-\alpha}
$$

Bilinear modulation invariant PDOs

$$
\left|\partial_{x}^{\beta} \partial_{\xi}^{\alpha} \sigma(x, \xi)\right| \leq C_{\alpha \beta}(1+|\xi|)^{-|\alpha|}
$$

Modulation invariant bilinear singular integrals: $\xi \sim \xi-\eta$

Bilinear Hilbert Transform

$$
\operatorname{sign}(\xi-\eta)
$$

Bilinear modulation invariant multipliers

$$
\left|\partial^{\alpha} m(\xi-\eta)\right| \leq C_{\alpha}|\xi-\eta|^{-\alpha}
$$

Bilinear modulation invariant PDOs

$$
\left|\partial_{x}^{\beta} \partial_{\xi, \eta}^{\alpha} \sigma(x, \xi)\right| \leq C_{\alpha \beta}(1+|\xi|)^{-|\alpha|}
$$

Modulation invariant bilinear singular integrals: $\xi \sim \xi-\eta$

Bilinear Hilbert Transform

$$
\operatorname{sign}(\xi-\eta)
$$

Bilinear modulation invariant multipliers

$$
\left|\partial^{\alpha} m(\xi-\eta)\right| \leq C_{\alpha}|\xi-\eta|^{-\alpha}
$$

Bilinear modulation invariant PDOs

$$
\left|\partial_{x}^{\beta} \partial_{\xi, \eta}^{\alpha} \sigma(x, \xi-\eta)\right| \leq C_{\alpha \beta}(1+|\xi|)^{-|\alpha|}
$$

Modulation invariant bilinear singular integrals: $\xi \sim \xi-\eta$

Bilinear Hilbert Transform

$$
\operatorname{sign}(\xi-\eta)
$$

Bilinear modulation invariant multipliers

$$
\left|\partial^{\alpha} m(\xi-\eta)\right| \leq C_{\alpha}|\xi-\eta|^{-\alpha}
$$

Bilinear modulation invariant PDOs

$$
\left|\partial_{x}^{\beta} \partial_{\xi, \eta}^{\alpha} \sigma(x, \xi-\eta)\right| \leq C_{\alpha \beta}(1+|\xi-\eta|)^{-|\alpha|}
$$

Question: Why are these multipliers so much different than the CoifmanMeyer ones?

Resolving the singularities in the frequency plane

The Coifman-Meyer multipliers just blow up at the origin, i.e., they are singular only at a point in the $\xi \eta$ frequency plane.

- Littlewood-Paley theory

The latter symbols are singular along a line in the frequency $\xi \eta$-plane.

- Phase-space analysis (Whitney decomposition)

Trilinear forms

For symmetry purposes, we will look from now on at the trilinear form

$$
\begin{gathered}
\wedge\left(f_{1}, f_{2}, f_{3}\right)=\left\langle T\left(f_{1}, f_{2}\right), f_{3}\right\rangle \\
=\left\langle T^{* 1}\left(f_{3}, f_{2}\right), f_{1}\right\rangle=\left\langle T^{* 2}\left(f_{1}, f_{3}\right), f_{2}\right\rangle
\end{gathered}
$$

For the rest of this talk we will assume that all Calderón-Zygmund kernels considered satisfy

$$
\left|\partial^{\alpha} k(x, t)\right| \leq C|t|^{-|\alpha|-1} \quad t \neq 0,|\alpha| \leq 1
$$

\wedge is said to be associated with a Calderón-Zygmund kernel k if

$$
\begin{equation*}
\wedge\left(f_{1}, f_{2}, f_{3}\right)=\int_{\mathbb{R}^{2}} \prod_{j=1}^{3} f_{j}\left(x+\beta_{j} t\right) k(x, t) d x d t \tag{1}
\end{equation*}
$$

for some $\beta=\left(\beta_{1}, \beta_{2}, \beta_{3}\right)$ and all f_{1}, f_{2}, f_{3} in $\mathcal{S}(\mathbf{R}), \cap_{j} \operatorname{supp} f_{j}=\emptyset$

Modulation symmetry

We assume that $\beta_{1}, \beta_{2}, \beta_{3}$ are different. Otherwise \wedge reduces to a combination of a pointwise product and a bilinear form...This follows by a simple change of variables, and appropriately modifying the constants involved in the definition of a Calderón-Zygmund kernel.

We also assume β to be of unit length and perpendicular to $\alpha=(1,1,1)$. Let $\gamma=\left(\gamma_{1}, \gamma_{2}, \gamma_{3}\right)$ be a unit vector perpendicular to α and β; note that $\gamma_{j} \neq 0$.

We impose the modulation symmetry along the direction γ :

$$
\wedge\left(f_{1}, f_{2}, f_{3}\right)=\wedge\left(M_{\gamma_{1} \xi} f_{1}, M_{\gamma_{2} \xi} f_{2}, M_{\gamma_{3} \xi} f_{3}\right)
$$

for all $\xi \in \mathbb{R}$, where $M_{\eta} f(x)=e^{i \eta x} f(x)$.

From (1), the modulation symmetry holds for functions with disjoint support:

$$
\begin{gathered}
\wedge\left(e^{i \gamma_{1} \cdot} f_{1}, e^{\left.i \gamma_{2} \cdot f_{2}, e^{i \gamma_{3} \cdot} \cdot f_{3}\right)}\right. \\
=\int_{\mathbb{R}^{2}} \prod_{j=1}^{3} f_{j}\left(x+\beta_{j} t\right) e^{i(\alpha \cdot \gamma x+\beta \cdot \gamma t)} k(x, t) d x d t \\
=\int_{\mathbb{R}^{2}} \prod_{j=1}^{3} f_{j}\left(x+\beta_{j} t\right) k(x, t) d x d t \\
=\wedge\left(f_{1}, f_{2}, f_{3}\right)
\end{gathered}
$$

However...we want the modulation symmetry to hold for all Schwartz functions, even when the representation formula (1) is not valid as an absolutely convergent integral!

Modulation invariant $T(1,1)$-theorem

Assume \wedge is a trilinear form associated with a kernel k as in (1) and with modulation symmetry in the direction γ. Then,

$$
\left|\wedge\left(f_{1}, f_{2}, f_{3}\right)\right| \lesssim \prod_{j=1}^{3}\left\|f_{j}\right\|_{L^{p_{j}}}
$$

for all exponents $2 \leq p_{1}, p_{2}, p_{3} \leq \infty$ with

$$
\frac{1}{p_{1}}+\frac{1}{p_{2}}+\frac{1}{p_{3}}=1
$$

if and only if for all intervals I, all L^{2}-normalized bump functions ϕ_{I} and ψ_{I} supported in I, and all f in \mathcal{S} we have the following restricted boundedness conditions

$$
\begin{aligned}
& \left|\wedge\left(\phi_{I}, \psi_{I}, f\right)\right| \lesssim|I|^{-1 / 2}\|f\|_{L^{2}}, \\
& \left|\wedge\left(\phi_{I}, f, \psi_{I}\right)\right| \lesssim|I|^{-1 / 2}\|f\|_{L^{2}}, \\
& \left|\wedge\left(f, \phi_{I}, \psi_{I}\right)\right| \lesssim|I|^{-1 / 2}\|f\|_{L^{2}} .
\end{aligned}
$$

Moreover, in such a case T satisfies

$$
\begin{gathered}
\left\|T\left(f_{1}, f_{2}\right)\right\|_{L^{r}} \lesssim\left\|f_{1}\right\|_{L^{p}}\left\|f_{1}\right\|_{L^{q}}, \\
\text { for } 1 / p+1 / q=1 / r, 1<p, q \leq \infty, 2 / 3<r<\infty .
\end{gathered}
$$

...This is the same range as for the BHT.

- B.-Demeter-Nahmod-Thiele-Torres-Villarroya (2008)

Reformulation of the $T(1,1)$-theorem

The Calderón-Zygmund trilinear form \wedge with modulation symmetry in the direction γ is bounded if and only if

$$
\left\{\begin{array}{l}
T(1,1), T^{* 1}(1,1), T^{* 2}(1,1) \in B M O \\
\wedge \in W B P
\end{array}\right.
$$

WBP:

$|\wedge(\phi)| \lesssim|I|^{-1 / 2}$, for $\phi(x, y, z)$ any L^{2}-normalized adapted to $I \times I \times I$
L^{2}-normalized bump of order N adapted to interval I :

$$
\left|\partial^{\alpha} \varphi(x)\right| \leq C|I|^{-1 / 2-\alpha}\left(1+\left|\frac{x-c(I)}{|I|}\right|^{2}\right)^{-N / 2}, 0 \leq \alpha \leq N
$$

The $T(1,1)$ theorem: sketch of proof

The boundedness of \wedge immediately implies the restricted boundedness conditions. In fact, $T, T^{* 1}, T^{* 2}: L^{4} \times L^{4} \rightarrow L^{2}$ are enough to obtain these conditions.

Conversely, the restricted boundedness conditions are used to show that

$$
\left\{\begin{array}{l}
T(1,1), T^{* 1}(1,1), T^{* 2}(1,1) \in B M O \\
|\wedge(\phi)| \lesssim|I|^{-1 / 2}
\end{array}\right.
$$

for $\phi(x, y, z)$ any L^{2}-normalized and adapted to $I \times I \times I$
These conditions imply the boundedness of the form \wedge and so they are also necessary and sufficient.

The theorem is then reduced to the case

$$
\left\{\begin{array}{l}
T(1,1)=T^{* 1}(1,1)=T^{* 2}(1,1)=0 \\
|\wedge(\phi)| \lesssim|I|^{-1 / 2}
\end{array}\right.
$$

using some modulation invariant paraproducts. These conditions are used then to discretize the operator.

The proof of the theorem in the reduced case uses a phase-space analysis similar to the one used for the BHT... The difference: we use a Whitney decomposition in frequency in terms of tubes (rectangular boxes with square cross sections) not in terms of cubes as in the case of the BHT.

An application

Consider again the variable operator

$$
T(f, g)(x)=\int_{\mathbb{R}^{2}} \sigma(x, \xi-\eta) \widehat{f}(\xi) \widehat{g}(\eta) e^{i x(\xi+\eta)} d \xi d \eta
$$

with $\sigma \in S_{1,0}^{0}$ The associated trilinear form is

$$
\wedge\left(f_{1}, f_{2}, f_{3}\right)=\left\langle T\left(f_{1}, f_{2}\right), f_{3}\right\rangle
$$

Note that this form has modulation symmetry in the direction $\gamma=(1,1,-2) / \sqrt{6}$ for all triples f_{1}, f_{2}, f_{3}, not just the ones with disjoint supports.

Consider

$$
\phi_{I}=|I|^{-1 / 2} \phi_{0}\left(\left(x-x_{0}\right) /|I|\right)
$$

where ϕ_{0} is adapted to and supported in the unit interval centered at the origin... so that ϕ_{I} is an L^{2}-normalized bump adapted to I Then $\widehat{\phi}_{I}$ is an L^{2}-normalized bump adapted to an interval of length $|I|^{-1}$, and

$$
\left\|\widehat{\phi}_{I}\right\|_{L^{1}}=|I|^{-1 / 2}\left\|\widehat{\phi}_{0}\right\|_{L^{1}} \leq c|I|^{-1 / 2}
$$

where c depends only on finitely many derivatives of ϕ_{0}.

Let then ϕ_{I}, ψ_{I} be two L^{2}-normalized bumps adapted to I and f be supported in $C I$. The estimate above applied to $\widehat{\phi}_{I}$ and $\widehat{\psi}_{I}$ provides the following information:

$$
\begin{gathered}
\left|\wedge\left(\phi_{I}, \psi_{I}, f\right)\right| \lesssim\|\widehat{\widehat{S}}\|_{L^{1}} \widehat{\psi}_{I}\left\|_{L^{1}}\right\| f \|_{L^{1}} \\
\lesssim\left\|\hat{\Phi}_{I}\right\|_{L^{1}}\left\|\widehat{\psi}_{I}\right\|_{L^{1}}|I|^{1 / 2}\|f\|_{L^{2}} \\
\lesssim|I|^{-1 / 2}\|f\|_{L^{2}}
\end{gathered}
$$

This gives the restricted boundedness condition for T !To obtain the other restricted boundedness conditions, write

$$
\wedge\left(f, \phi_{I}, \psi_{I}\right)=\left\langle T^{* 1}\left(\psi_{I}, \phi_{I}\right), f\right\rangle
$$

Using the symbolic calculus (B.-Nahmod-Torres, 2006) one gets that $T^{* 1}$ is a bilinear pseudodifferential operator

$$
T^{* 1}(g, h)(x)=\int_{\mathbb{R}^{2}} \sigma_{1}(x, \xi, \eta) \widehat{g}(\xi) \widehat{h}(\eta) e^{i x \cdot(\xi+\eta)} d \xi d \eta
$$

σ_{1} satisfies the estimates

$$
\left|\partial_{x}^{\mu} \partial_{\xi, \eta}^{\alpha} \sigma_{1}(x, \xi, \eta)\right| \lesssim(1+|\xi+2 \eta|)^{-|\alpha|}
$$

The computations done with T can be repeated for $T^{* 1}$ and $T^{* 2} \ldots$ Therefore, the modulation invariant $T(1,1)$ theorem implies that for our $T_{\sigma} \in \operatorname{Op} B S_{1,0 ; \pi / 4}^{0}$, in which the symbol is assumed to have the form $\sigma(x, \xi-\eta)$ we have

$$
T: L^{p} \times L^{q} \rightarrow L^{r}, 1 / p+1 / q=1 / r<3 / 2
$$

The same argument will work for a $T_{\sigma} \in \operatorname{Op} B S_{1,0 ; \theta}^{0}$, with $\sigma(x, \xi-\eta \tan \theta)$

- Bernicot (2008): In general, $O p B S_{1,0 ; \theta}^{0}: L^{p} \times L^{q} \rightarrow L^{r}$; i.e., without dependence $\xi-\theta \tan \theta$ in the symbol...like in the work of Gilbert-Nahmod on multipliers generalizing the BHT!

A crucial difference

The operators we consider in the modulation invariant $T(1,1)$ theorem have kernels that satisfy minimal regularity requirements, therefore they cannot be expressed as smooth bilinear pseudodifferential operators in $O p B S_{1,0 ; \theta}^{0}$

On the other hand, the operators in $O p B S_{1,0 ; \theta}^{0}$ are not modulation invariant, so they do not have the kernel representation assumed by the $T(1,1)$ theorem. Nevertheless, the symbols are smooth, so it is not surprising that their boundedness can be achieved without appealing to a $T(1,1)$ theorem (this is the case also for many results on classical linear pseudodifferential operators!!!) Recall also that this boundedness was "predicted" to hold by the existence of a transposition symbolic calculus for these classes (B.-Nahmod- Torres, 2006)

Further application: "antisymmetric" forms

Consider $k(x, t)$ a Calderón-Zygmund kernel that satisfies the "antisymmetric" property

$$
k(x+t,-t)=-k(x, t)
$$

This unconventionally looking symmetry is due to the fact that we chose the kernel to be singular at $t=0$ and not at $x=t$, i.e., we work with the condition

$$
\left|\partial^{\alpha} k(x, t)\right| \lesssim|t|^{-|\alpha|-1}
$$

instead of the standard (and equivalent after a change of variable) condition

$$
\left|\partial^{\alpha} k(x, t)\right| \lesssim|x-t|^{-|\alpha|-1}
$$

We can always define

$$
\begin{aligned}
& \qquad \wedge\left(f_{1}, f_{2}, f_{3}\right)=p \cdot v \cdot \int f_{1}(x+t) f_{2}(x-t) f_{3}(x) k(x, t) d x d t \\
& =\frac{1}{2} \int\left(f_{1}(x+t) f_{2}(x-t) f_{3}(x)-f_{1}(x) f_{2}(x+2 t) f_{3}(x+t)\right) k(x, t) d x d t \\
& \text { since the integral is absolutely convergent. }
\end{aligned}
$$

It is straightforward to check that \wedge is a well-defined modulation invariant form (even for functions without disjoint support) that satisfies the WBP!

Now compute

$$
\wedge\left(f_{1}, 1, f_{3}\right)=p . v . \int f_{1}(y) f_{3}(x) k_{1}(x, y) d x d y
$$

where $k_{1}(x, y)=k(x, y-x)$ is antisymmetric in the usual way, i.e.

$$
\begin{gathered}
\underline{k_{1}(y, x)}=k(y, x-y)={ }_{x-y:=-t} k(x+t,-t) \\
\quad=-k(x, t)=-k(x, y-x)=-k_{1}(x, y)
\end{gathered}
$$

If the bilinear form with this kernel is bounded, we immediately get that

$$
\wedge(1,1, \cdot)=-\wedge(\cdot, 1,1) \in B M O
$$

Similarly,

$$
\wedge\left(1, f_{2}, f_{3}\right)=p \cdot v \cdot \int f_{2}(y) f_{3}(x) k_{2}(x, y) d x d y
$$

where $k_{2}(x, y)=k(x, x-y)$, and the boundedness of the bilinear form with this kernel would give us also

$$
\wedge(1, \cdot, 1) \in B M O
$$

...thus $T(1,1) \Rightarrow$ boundedness of "antisymmetric" forms!

Why are "antisymmetric" forms relevant?

Bilinear Calderón commutators

$$
\begin{gathered}
B C^{m}(f, g, h)= \\
\text { p.v. } \int f(x+t) g(x-t) h(x) \frac{(A(x+t)-A(x))^{m}}{t^{m+1}} d t d x
\end{gathered}
$$

with $\left\|A^{\prime}\right\|_{L^{\infty}}<C$. Note that

$$
k(x, t)=\frac{(A(x+t)-A(x))^{m}}{t^{m+1}}
$$

satisfies

$$
k(x+t,-t)=\frac{(A(x)-A(x+t))^{m}}{(-t)^{m+1}}=-k(x, t)!
$$

The bilinear form associated to the kernel $k_{1}(x, y)$ is the usual Calderón commutator:

$$
k_{1}(x, y)=k(x, y-x)=\frac{(A(y)-A(x))^{m}}{(y-x)^{m+1}}
$$

A similar operator is obtained for the other kernel

$$
k_{2}(x, y)=k(x, x-y)=\frac{(A(2 x-y)-A(x))^{m}}{(x-y)^{m+1}}
$$

Hence the previous scheme works and we get the boundedness of $B C^{m}$ through the $T(1,1)$ theorem!

Keeping track of the constants involved and expanding in the usual way in terms of commutators we also obtain the boundedness of the

Bilinear Cauchy integral

$$
B C(f, g)(x)=p \cdot v \cdot \int \frac{f(x+t) g(x-t)}{t+i(A(x+t)-A(x))} d t
$$

at least for $\left\|A^{\prime}\right\|_{L^{\infty}} \ll 1$.

