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In the late seventies, Mischa and I began

a systematic study of algebraic scattering

systems and the invariant forms acting on

them.

In the late eighties we started working in

multidimensional scattering–although many

did not consider such approach as relevant.

In the late nineties our outlook was finally

vindicated. Multidimensional abstract scat-

tering systems appeared as counterparts

of the input-output conservative linear sys-

tems in engineering.

It all started with the study of the Hilbert

transform in terms of scattering...
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The Hilbert transform operator

H : f 7→ Hf = f ∗ k

is given by convolution with the singular

kernel

k(x) = p.v.
1

x

for x ∈ R.

The basic result of Marcel Riesz (1927) is

H is bounded on Lp, 1 < p < ∞.

Objective: Similar boundedness properties

in the “weighted” cases, for H and iterated

H = H1H2...Hn,

H : Lp(µ) → Lp(ν), 1 < p < ∞

where µ, ν are general measures.
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Scattering property of analytic projector P

in L2

Given f ∈ L2, f = f1+f2, where f1 is analytic

and f2 is antianalytic.

Under this decomposition the Hilbert trans-

form can be written as

Hf = −i f1 + i f2.

The analytic projector P , associated with

the Hilbert tranform operator H, is defined

as

Pf = P (f1 + f2) = f1, P =
1

2
(I + iH).

The crucial observation is that P supports

the SHIFT OPERATOR S : f(x) 7→ eix f(x).

Then, the RANGE of P is the set W1 of

analytic functions, and its KERNEL is the

set W2 of antianalytic functions:

S W1 ⊂ W1 and S−1 W2 ⊂ W2.
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The scattering property of the 1-dimensional

Hilbert transform provides the framework

for a theory of invariant forms in scat-

tering systems, leading to two-weight L2-

boundedness results for H.

The scattering properties are also essential

for providing the two-weight L2- bounded-

ness of the product Hilbert transform in

product spaces, where the analytic projec-

tors supporting the n-dimensional shifts are

at the basis of the lifting theorems in ab-

stract scattering structures.

Notice that this fact, valid for the prod-

uct Hilbert transforms, is not valid for the

n-dimensional Calderón–Zygmund singular

integrals which do not share the scattering

property.
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H IS BOUNDED ON L2

In fact, H is an ISOMETRY on L2:

‖Hf ‖2 = ‖f‖2

and this follows easily from the Plancherel

Theorem for the Fourier transform.

The boundedness of H in L2 can be ob-

tained also through Cotlar’s Lemma on

Almost Orthogonality, which extends to

Hilbert transforms in ergodic systems.

These are two different ways to deal with

the boundedness of H in L2. The same

happens for p 6= 2.
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TWO WAYS FOR H : L2 TO Lp, 1 < p < 2

Checking that H is weakly bounded in L1,

and applying the Marcinkiewicz INTER-

POLATION Theorem between p = 1 and

p = 2, and then, from p = 2 to p = ∞ by

duality.

By the “MAGIC IDENTITY”:

(Hf)2 = f2 + 2H (f.Hf) (∗)

valid for all “good” functions (f smooth

with good decay at infinity).

Use first EXTRAPOLATION, since for f ∈
L2, (∗) implies Hf ∈ L2, then f ∈ L4 implies

Hf ∈ L4, and f ∈ L2k
implies Hf ∈ L2k

, ∀ k ≥
1.

The boundedness of H in Lp′, 1/p + 1/p′ =
1, p = 2k, follows by duality, and interpola-

tion gives the boundedness of H in Lp, 1 <

p < ∞.
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By polarization, the “Magic Identity” for

an operator T becomes

T (f.Tg + Tf.g) = Tf.Tg − f.g.

Rubio de Francia, and Cotlar and Sadosky,

used the Identity in dealing with the weighted

Hilbert transform in Banach lattices. The

same identity, and similar ones, were used

extensively by Coifman-Meyer in harmonic

analysis. Gohberg and Krein showed that

the polarized identity holds for the Schat-

ten class S2, and deduced the theorem of

Krein and Macaev in a way similar to the

passage from L2 to Lp described above.

Gian-Carlo Rota used different “magic in-

dentities” in his work in combinatorics, and

his school encompased all particular cases

in a general inequality. The indentities also

hold in non-commutative situations, as in

the non-commutative Hilbert transforms in

von Neumann algebras.
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H IS BOUNDED IN L2(ω), 0 ≤ ω ∈ L1

HELSON-SZEGŐ (1960)

⇐⇒ ω = eu+H v, u, v real-valued bounded

functions, ‖v‖∞ < π/2

⇐⇒ log ω ∈ BMO (with a special BMO norm)

HUNT-MUCKENHOUPT-WHEEDEN (1973)

⇐⇒ ω ∈ A2 :

(
1

|I|

∫
I

ω )(
1

|I|

∫
I

1

ω
) ≤ C , ∀ I interval

Although both conditions are necessary and

sufficient, the first is good to produce such

weights, while the second is good at check-

ing them.
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DEFINITION OF u-BOUNDEDNESS

(Cotlar-Sadosky, 1981; Rubio de Francia,

1982)

An operator T acting in a Banach lattice

X, T : X → L0(Ω) is u-bounded if ∀ f ∈
X, ‖f‖ ≤ 1, ∃g ∈ X, g ≥ |f |, ‖g‖+ ‖Tg‖ ≤ C.

u-boundedness of operators is considerably

weaker than boundedness. For example,

T is u-bounded in L∞ iff T 1 ∈ L∞.

Now we can translate another equivalence

for the Helson-Szegő theorem (p=2):

⇐⇒ ∃w ∼ ω, real-valued function, such that

|H w(x)| ≤ C w(x) a.e.

(here w ∼ ω means c ω(t) ≤ w(t) ≤ C ω(t), ∀ t)

⇐⇒ Tω : f 7→ ω−1 H(ω f) is u-bounded in L∞.
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H IS BOUNDED IN Lp(T;ω), 1 < p < ∞

HUNT-MUCKENHOUPT-WHEEDEN (1973)

⇐⇒ ω ∈ Ap :

(
1

|I|

∫
I

ω)(
1

|I|

∫
I

ω−1/(p−1))p−1 ≤ C , ∀ I interval

COTLAR-SADOSKY (1982)

⇐⇒ Tω, defined by

Tω = ω−2/p H(ω2/p f), p ≥ 2,

Tω = ω2/p H(ω−2/p f), p < 2,

is u-bounded in Lp∗ where 1/p∗ = |1− 2/p |.
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H IS BOUNDED IN WEIGHTED L2(T2;ω)

The following are equivalent:

(1) The double Hilbert transform H = H1 H2

is bounded in L2(T2;ω)

(2) ω = eu1+H1 v1 = eu2+H2 v2, u1, u2, v1, v2,

real-valued bounded functions, ‖vi‖∞ < π/2,

i = 1,2

(3) log ω ∈ bmo (with a special bmo norm)

(4) ∃w1, w2, w1 ∼ ω ∼ w2, such that

|H1 w1(x)| ≤ C w1(x), |H2 w2(x)| ≤ C w2(x) a.e.

(5) T1 : f 7→ ω−1 H1(ω f) and T2 : f 7→ ω−1 H2(ω f)

are simultaneously u-bounded in L∞(T2)

(6) ω ∈ A∗2
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H BDD. IN WEIGHTED Lp(T2;ω), 1 < p < ∞
(Cotlar-Sadosky, 1990)

The following are equivalent:

(1) The double Hilbert transform H = H1 H2

is bounded in Lp(T2;ω)

(5) T1 and T2 are simultaneously u-bounded

in Lp∗, where for i = 1,2,

Ti : f 7→ ω−2/p Hi(ω
2/p f), if2 ≤ p <

and

Ti : f 7→ ω2/p Hi(ω
−2/p f), if2 ≤ p <

are simultaneously u-bounded in Lp∗(T2).

(6) ω ∈ A∗p
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LIFTING THEOREM FOR INVARIANT
FORMS IN ALGEBRAIC SCATTERING
STRUCTURES (Cotlar-Sadosky, 1979)

V vector space, σ linear isomorphism in V

W+, W−: linear subspaces satisfying

σ W+ ⊂ W+, σ−1 W− ⊂ W−

B1, B2 : V×V → C, positive σ-invariant forms

∀B0 : W+ ×W− → C 3 ∀ (x, y) ∈ W+ ×W−

B0(σ x, y) = B0(x, σ−1 y),

|B0(x, y)| ≤ B1(x, x)1/2 B2(y, y)1/2

∃B′ : V × V → C 3 ∀ (x, y) ∈ V × V

B′(σ x, σ y) = B′(x, y),

|B′(x, y)| ≤ B1(x, x)1/2 B2(y, y)1/2

such that

B′(x, y) = B0(x, y), ∀(x, y) ∈ W+ ×W−.

14



Let V = P be the set of trigonometric poly-
nomials on T, P1, P2, the sets of analytic
and antianalytic polynomials in P, σ = S,
the shift operator. The Herglotz-Bochner
theorem translates to: B is positive and
S-invariant in P × P iff ∃µ ≥ 0 such that

B(f, g) =
∫

f ḡ dµ ∀f, g ∈ P.

Since P = P1+̇P2, the domain of B splits in
four pieces Pi × Pj for i, j = 1,2. A weaker
concept of S-invariance is

B(Sf, Sg) = B(f, g)

for all (f, g) in each quarter Pi × Pj, i, j =
1,2. Then the Lifting theorem asserts that
B is positive in P × P and S-invariant in
each quarter iff ∃µ = (µij) ≥ 0 3 ∀ f1, g1 ∈
P1, f2, g2 ∈ P2

B(f1 + f2, g1 + g2) =
∑

i,j=1,2

∫
fi ḡj dµij.

Here (µij) ≥ 0 means that the (complex)
measures satisfy µ11 ≥ 0, µ22 ≥ 0, µ21 = µ12
and

|µ12(D)|2 ≤ µ11(D)µ22(D), ∀D ⊂ T.
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THE LIFTING THEOREM IN P × P

If B is S-invariant in P × P, then

B ≥ 0 ⇐⇒ µ ≥ 0

but when B is S-invariant in each Pi × Pj,

B ≥ 0 ⇐⇒
∑
i,j

∫
fif̄j dµij ≥ 0

ONLY for f1 ∈ P1, f2 ∈ P2, which is far less

than

µ ≥ 0 ⇐⇒
∑
i,j

∫
fif̄j dµij ≥ 0

for ALL f1, f2 ∈ P.

Let B1 = B|P1 × P1, B2 = B|P2 × P2, B0 =

B|P1×P2. Then B1, B2 ≥ 0, while B0 is not

positive but is bounded,

|B0(f1, f2)| ≤ B1(f1, f1)
1/2 B2(f2, f2)

1/2.
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Since µ11 ≥ 0, µ22 ≥ 0,

|B0(f1, f2)| ≤ ‖f1‖L2(µ11)
‖f2‖L2(µ22)

.

By the definition of B0 it follows

B0(f1, f2) =
∫

f1 f̄2 dµ12

only for f1 ∈ P1, f2 ∈ P2.

And since

|µ12(D)|2 ≤ µ11(D)µ22(D), ∀D ⊂ T,

defining

B′(f1, f2) :=
∫

f1 f̄2 dµ12, ∀ f1, f2 ∈ P

it is ‖B′‖ = ‖B0‖.
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H IS BOUNDED IN L2(T; ν, µ)

Let the operator H be defined in P as

H(f1 + f2) = −i f1 + i f2.

The two-weight inequality for H is∫
T
|Hf |2dµ ≤ M2

∫
T
|f |2dν

or, equivalently,

(?) =
∑

i,j=1,2

∫
T

fif̄j dρij ≥ 0, f1 ∈ P1, f2 ∈ P2

where

ρ11 = ρ22 = M2ν − µ, ρ12 = ρ21 = M2ν + µ.

Defining B(f, g) = B(f1 + f2, g1 + g2) = (?),

B is S-invariant in each quarter and non-

negative. By the Lifting Theorem, ∃(µij),

i, j = 1,2, such that ρ̂ii(n) = µ̂ii(n), ∀n ∈ Z,

while ρ̂12(n) = µ̂12(n) only for n < 0. By the

F. and M. Riesz theorem

µ11 = µ22 = M2ν−µ, µ12 = µ21 = M2ν+µ−h,

h ∈ H1(T).
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Then, the necessary and sufficient con-

dition for boundedness in L2(T; ν, µ), with

norm M, is that for all D ⊂ T Borel sets,

|(M2ν + µ)(D)−
∫
D

h dt | ≤ (M2ν − µ)(D)

where h ∈ H1(T).

In particular, µ is an absolutely continuous

measure, dµ = w dt for some 0 ≤ w ∈ L1.

In the case µ = ν = ω dt we return to the

previous case:

The Hilbert transform H is a bounded

operator in L2(ω) with norm M

⇐⇒

|(M2 + 1)ω(t)− h(t)| ≤ (M2 − 1)ω(t), a.e. T,

h ∈ H1(T), which is the source to all the

equivalences we mentioned before.
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LIFTING THEOREM FOR INVARIANT

FORMS IN HILBERTIAN SCATTERING

STRUCTURES

In 1974 Bill Helton described for the first

time the relationship between discrete time

systems theory, the theory of colligations,

and the Lax-Phillips scattering theory.

The Lax-Phillips theory considers scatter-

ing systems defined on a Hilbert space H,

where the outgoing and incoming spaces of

the system are closed subspaces of H, and

the evolution is given by a one-parameter

group of unitary operators.

An explicit formula relates the scattering

wave operators to the systems theory.
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LAX-PHILLIPS SCATTERING SYSTEM

(one evolution)

S = (K;U;W,W∗)

K: a Hilbert space, the ambient space

U: unitary on K, the evolution operator

W,W∗ ⊂ K: outgoing and incoming subspaces

1. Scattering U W ⊂ W, U∗W∗ ⊂ W∗

2.
⋂∞

n=0 U
nW = {0} =

⋂∞
n=0 U

∗nW∗

3. Causality W ⊥W∗

Orthogonal decomposition: K = W∗⊕V⊕W.

Then the internal scattering subspace of S

V := K	 [W ⊕W∗]

is semi-invariant. S is minimal if

closure (W̃ + W̃∗) = K

for W̃ :=
∨

n≥0 U∗nW and W̃∗ :=
∨

n≥0 UnW∗.
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Given two Hilbertian scattering systems

(K1;U1;W1,W∗1), (K2;U2;W2,W∗2) a form

B : K1 ×K2 → C is invariant if

B(U1f1,U2f2) = B(f1, f2), ∀ f1 ∈ K1, f2 ∈ K2.

A form B0 : W1 ×W∗2 → C is also invariant,

B0(U1f1, f2) = B0(f1,U−1
2 f2), ∀ f1 ∈ W1, f2 ∈ W∗2

since the subspaces Wi, W∗i, i = 1,2 are all

invariant subspaces.

LIFTING THEOREM FOR INVARIANT

FORMS IN SCATTERING SYSTEMS

(Cotlar-Sadosky, 1987)

Given two Hilbertian scattering systems as

above, every invariant form B0 : W1 →W∗2,

‖B0‖ ≤ 1 has an invariant lifting

B′ : K1×K2 → C, B′|W1×W∗2 = B0, ‖B′‖ = ‖B0‖.
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Since the internal scattering subspaces V1,V2

are only semi-invariant, B0 : V1 × V2 → C is

only “essentially” invariant if

B0(P1U1f1, f2) = B0(f1, P2U−1
2 f2), ∀ fi ∈ Vi,

where Pi is the orthogonal projection of Ki

onto Vi, i = 1,2.

LIFTING THEOREM FOR ESSENTIALLY

INVARIANT FORMS IN SCATTERING

SYSTEMS

(Cotlar-Sadosky, 1993)

Given two Hilbertian scattering systems as

before, for every essentially invariant form

B0 : V1 × V2 → C, ‖B0‖ ≤ 1, there is an in-

variant lifting

B′ : K1 ×K2 → C, B′|V1 × V2 = B0, ‖B′‖ ≤ 1.

Furthermore, B′ = 0 on W1×W∗2, V1×W∗2,

W1 × V2.
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A unitary operator U ∈ B(K) is a strong dilation

of a contraction operator T ∈ B(V) if V is

a closed subspace of K and Tn = PV Un|V is

the compression of Un to V for all n ∈ N. A

lemma of Sarason asserts that U ∈ B(K)

is a strong dilation of T ∈ B(V) iff T =

PV U|V and K = W ⊕ V ⊕ W∗ where U W ⊂
W, U−1W∗ ⊂ W∗.

Sz.NAGY-FOIAS LIFTING THEOREM

FOR UNITARY DILATIONS

Let, for i = 1,2, Ki be Hilbert spaces, Vi ⊂
Ki be closed subspaces of Ki, and let Ui ∈
B(Ki) be unitary operators, while Ti ∈ B(Vi)

are contraction operators, such that Ui is

a strong dilation of Ti.

If X : V1 → V2, ‖X‖ ≤ 1 is a contraction

intertwining T1, T2 : XT1 = T2X, then there

exists a contraction Y : K1 → K2, ‖Y ‖ ≤ 1

such that Y intertwines U1,U2, and

X = PV2
Y |V1

(∗∗)

where PV2
: K2 → V2 is the orthoprojector.
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PROOF. (Cotlar-Sadosky, 1993)

By Sarason’s Lemma, for both i = 1,2, Ki =

Wi ⊕ Vi ⊕ W∗i and Ti = PVi
Ui|Vi

. Defining

B0 : V1 × V2 → C by

B0(f1, f2) = 〈X f1, f2〉, ∀ f1 ∈ V1, f2 ∈ V2

the intertwining condition for X is equiva-

lent to B0 being essentially invariant with

respect to U1,U2.

If B′ : K1×K2 → C is the lifting of B0, define

Y : K1 → K2 by

〈Y f1, f2〉 := B′(f1, f2), ∀ 1 ∈ K1, f2 ∈ K2.

Then ‖B′‖ ≤ 1 is equivalent to ‖Y ‖ ≤ 1, and

its invariance is equivalent to Y U1 = U2 Y .

Finally, B′ = B0 in V1 × V2 is equivalent to

(∗∗).
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MULTIDIMENSIONAL LAX-PHILLIPS

SCATTERING SYSTEMS AND LINEAR

ISO SYSTEMS IN ENGINEERING

The one-to-one correspondence between

conservative linear input/state/output (ISO)

systems and Lax-Phillips scattering systems,

where the transfer function of the linear sys-

tem coincides with the scattering function

of the scattering system has fundamental

applications in H∞ control theory.

The operator-valued transfer and scattering

functions, analytic on the unit disk, and

with H∞ norm ≤ 1, are in the Schur class

S = S(D).

Through the Cotlar-Sadosky multi-evolution

scattering systems, J. Ball, V. Vinnikov

and C. Sadosky realized that we could deal

also with multidimensional conservative ISO

systems, and Schur-class functions in S(Dn).

26



For n ≥ 1, to an n-dimensional conser-

vative ISO system always corresponds an

n-evolution orthogonal scattering system,

with its scattering function equal to the

transfer function of the ISO system.

Yet, when n > 1, an ISO system can be

recovered from a scattering system only if

there is a suitable orthogonal decomposition

of the internal scattering subspace.

For n = 1 such a decomposition is trivial

(and unique).

For n = 2 the orthogonal decompositions

always exist; in fact we construct explicitly

two orthogonal decompositions which are

extremal in a certain sense.

For n > 2 the orthogonal decompositions

do not necessarily exist (and when they

exist, they need not be unique).
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MAIN RESULT FOR n = 2:

(Ball-Sadosky-Vinnikov, 2005)

Every (minimal) 2-evolution scattering sys-

tem admits a conservative ISO realization.

COROLLARY: Every Schur-class function

on the bidisk admits a realization as the

transfer function of a conservative 2D ISO

system.

From this follows a new simple proof of

ANDÔ’S THEOREM ON LIFTINGS

OF COMMUTING CONTRACTIONS

–via the von Neumann inequality.

28



For n = 2, a Schur-class function S ∈ S(D2)

is an operator-valued analytic function on

the unit bidisk, such that ‖S‖H∞ ≤ 1.

If S ∈ S(D2) is the transfer function of an 2-

dimensional conservative discrete time ISO

system, then the kernel I − S(z)S(w)∗

admits the

AGLER DECOMPOSITION:

I − S(z)S(w)∗ =

(1− z1 w1)K1(z, w) + (1− z2 w2)K2(z, w),

where Kk(z, w), k = 1,2, are positive kernels

on D2.

By the above, any transfer function S(z) =

S(z1, z2) satisfies the von Neumann inequal-

ity:

‖S(T1, T2)‖ ≤ 1,

for all T1, T2, commuting contractions on a

Hilbert space.
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ALL FUNCTIONS S ∈ S(D2) SATISFY THE

VON NEUMANN INEQUALITY

Sketch of our proof:

1. S ∈ S(D2)

is equivalent to

2. S is the scattering function of a scat-

tering system S with two evolutions

implies (by our 2D theorem)

3. S is the transfer function of a bidimen-

sional ISO system

implies (by the Agler decomposition)

4. S satisfies the von Neumann inequality

30



Now we can prove

5. Andô’s Theorem:

ANY PAIR OF COMMUTING CONTRAC-

TIONS HAS A JOINT UNITARY DILA-

TION

If T1, T2 is a commuting pair of contraction

operators on a Hilbert space H, then there

is a Hilbert space K ⊃ H, and a pair of

commuting unitary operators U1,U2 on K
such that, for any non-negative integers

m, n,

Tm
1 Tn

2 = PH Um
1 Un

2 |H
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Proof.

We view the commuting pair of contrac-
tions T1 and T2 as a representation π of the
bidisk algebra A(D2); the representation π

is uniquely determined by

π(z1) = T1, π(z2) = T2.

We seek a ∗-representation ρ of the C∗-
algebra C(T2) with representation space K ⊃
H which dilates π in the sense that

π(f) = PHρ(f)|H, ∀f ∈ A(D2).

This holds if and only if π is completely
contractive (Arveson, Acta Mathematica, 123,
1969).

The complete contractivity of π follows
from the validity of the von Neumann in-
equality for every S ∈ S2(C, C), which can
be realized as a transfer function. Since
ρ is a ∗-representation, U1 := ρ(z1) and
U2 := ρ(z2) are unitary operators on K. The
result now follows by restricting f to the
monomials f(z1, z2) = zm

1 zn
2.
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