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This talk will be divided into three parts

Part I.   Tomography.
-Introduction to the Radon transform 
-Some Applications of the Radon transform

Part II.  Discrete analogues of tomography
-Electrical Tomography (network of resistors)
-Internet tomography (tree model)

Part III. Network tomography
-Communication networks

-Weighted graph model
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The Radon transform of a reasonable function f(x), x∈R n is 
defined to be

Part I. Tomography.

where  α ∈ S n-1,  S n-1 is the unit sphere in R n,  p ∈ R, 

lαp = { x such that α· x = p } is an hyperplane and dx is the 
Lebesgue measure on this hyperplane.

QUESTION: How can one recover f(x) from Rf(α , p)?
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• n=3, (MRI ) Minkowski, Fritz John (1934): Relation with PDE

• n=2 , CT scanners. Original case studied by Radon, (1917)
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If Fn stands for the n-dimensional Fourier transform then a 
standard inversion formula for the Radon transform in R 2  is 
given by

Inversion Formulae
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One can introduce the operator Λ , square root of the Laplacian operator Δ, and 
we have the so called backprojection inversion formula

Definition. For g : S 1 x R→R the backprojection operator R ∗ is defined by 
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The setup consists of a detector and an X-ray beam source. A cross-section of the human body is 
scanned.
Let f(x) be the attenuation coefficient of the tissue at the point x. Let ζ be the straight line 
representing the beam, Io the initial intensity of the beam, and I1 its intensity after having 
traversed the body. It follows that 

CT Scans (X-ray transmission tomography R2 )
Source

Io

I1

l’
l

l ”

Schematic CAT scanner

MRI in R3 , ζ = plane
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Finding the conductivity inside a plate by input-output current 
map

Electrical impedance tomography EIT
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Let D be the unit disk in R2 ,   β >0 function on D, and let Ψ such that

Electrical impedance tomography EIT 

and u a solution of

(NP)
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EIT Problem: Find β from the knowledge of Λβ (inverse conductivity 
problem). 
Nachman proved injectivity of the map C: β→Λβ 

Berenstein and Casadio formulated an approximate solution of this problem 
in terms of hyperbolic geometry in the hyperbolic disk and the corresponding 
hyperbolic Radon transform RH

The input-output map Λβ :Ψ → u (the Calderon map) 
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Approximate solution to the EIT problem
(Finding small cracks)

β0 = Conductivity function of  the material in normal conditions (Assume known)

β = Actual conductivity

Problem: How much does β deviate from β0 ?

Assume β0 constant equal to 1, then the deviation δβ is governed by

β = 1+δβ , with | δβ | << 1
If no cracks on ∂D and U solution of (NP) for β =1, 
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For u solution of (NP) for β = 1+δβ, 

u=U+δ U

The perturbation δU satisfies

With the only constraint 

Simplest input is  a linear combination of dipoles              , δw  the Dirac delta 
at ω in ∂D
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The problem for the dipole (input)                 at ω now becomes

The solution Uw has level curves that are geodesics and thus the hyperbolic 
Radon transform appears naturally in this problem
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Part II. Discrete analogue of EIT
Network Tomography

Consider a finite planar square network G(V,E). The nodes of V are the integer 
lattice points p=(i,j), 0≤ i≤ n+1 and 0≤ j≤ n+1, the corner points excluded 
and E the set of edges. Let intV, interior of V, consisting of the nodes p=(i,j) 
with 1≤ i≤ n and 1≤ j≤ n.  Let     G the boundary of G. If σ∈ E then σ 

connects a pair of two adjacent nodes p and q and is denoted pq. Let p a node 
and denote N(p) the set of neighboring nodes of p 

∂
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Definition. A network of resistors Γ=Γ(V, Ε, ω) is a network G(V,E) 
together with a non-negative function ω : E→ R+. For each edge pq in 
E, the number ω(pq) is called the conductance of pq, and 1/ω(pq) is the 
resistance of pq. The function ω on E is called the conductivity.

The function f is called ω-harmonic if Lω f(p)=0 ∀ p ∈ intV

Let Φ(r) voltage applied at each boundary node r. Φ induces a voltage f(p) at
each p ∈ intV.  

Lω f(p)=0 ∀ p ∈ intV. (Kirchhoff’s law)

Definition. Let f : V → R, and let Lω f : intV → R a function defined by
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On the boundary bV of V, f determines a current IΦ by Ohm’s law.

For each conductivity ω we define the linear Dirichlet-to-Neumann map Λω 
by Λω (Φ )= IΦ

Questions: (i) Is the map Λω to ω one-to-one ? 

(ii) Is it true  that ω = β ⇔ Λω  = Λβ  ? (uniqueness)

(iii) Is there a constructive algorithm to obtain ω from Λω ?

(Curtis and Morrow)
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Interesting questions
- Is it possible to extend these results to more general 
finite graphs?. For instance, is (ii) true?.

- What type of boundary measurements and associated 
probes we need to construct Λω from the available 
boundary data and/or probes? 
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-Internet tomography
Goal: Understanding a large network like internet

Typical problems: Traffic delay, link level parameter estimation, topology,

congestion in links, attacks

Natural domain to visualize internet  H3 (Munzner).

Locally, internet can be seen as part of a tree therefore natural domain is H2

(Jonckheere E.-2004 experimentally). Hence, a way to study locally this kind 
of network can be done using the hyperbolic Radon transform on trees. C. A. 
Berenstein et al. [5, 6]

Data we need can be obtained using probes via measurements (sender-receiver)

Software: NS2 network simulator gives a number of other measurable 
quantities

Definition. A tree T is a finite or countable collection of vertices {vj j=0, 1,..} 
and a collection of edges ejk = (vj , vk) 
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Visualization in real hyperbolic space 
(Munzner)
• Radon transform in real hyperbolic spaces

trees                   H   
graphs                H     

2

3
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Figure 1: Prototype two-dimensional image depicting global connectivity among ISPs as viewed from 
skitter host. Graph layout code provided by W. Cheswick and H. Burch (Lucent/Bell Laboratories).

Taken from:http://www.nature.com/nature/webmatters/tomog/tomog.html, Authors are members of 
CAIDA organization.

NETWORK CONNECTIVITY
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Graphs with a highly connective core and long tendrils are 
hyperbolic because the sides of ΔABC are forced to go via the 
core (Jonckheere)

A

B

C
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CAIDA Monitoring Tool: graphical representation 
of the Internet in hyperbolic space

http://www.caida.org/analysis/topology/as_core_network/pics-ipv6/ascore.ipv6.core.200503.png
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Part III. Network Tomography
• Communication networks

-Weighted graph model

Networks: ATM, Internet, highways, phone,

Typical network problems:
• Failure of some nodes

(Topology configuration)
• Congestion in links

(Link-level parameter estimation)

Goal: Obtain some information of the inner structure of 
network
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Network              G(V, E) a finite planar connected graph with ∂G ≠ φ

ω : E→ R+,      G(V, E , ω)  weighted graph

weight ω (x, y) total traffic between endpoints x and y of the edge              

Definitions: The degree of a node x in G(V, E , ω) is defined by

dω x = ∑y∈ V ω (x, y).

Calculus on weighted graphs

The Laplacian operator corresponding to this weight ω is defined by

The integration of a function f : G→ R on a graph G=G(V, E) is 
defined by                                                 
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A graph S=S(V ’ , E ’ ) is a subgraph of G(E, V) if V ’ ⊂ V and E ’ ⊂ E

is the graph whose edges and nodes are in S ∪ ∂ S

the (outward) normal derivative              at z ∈ ∂ S is defined by

where d’ω x = ∑y∈ S ω (z, y).

the inner boundary of S, inn∂ S, is defined by

For a subgraph S of G, the boundary of S, ∂S, is defined by 
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Weighted graph model             two kinds of disruptions

1-Edge ceases to exist ⇒Topology changes (F. Chung)
Problem 1: Determine the topology

(F. Chung)

2-Increase of traffic ⇒ • same topology 
• weights ω remain same or increase

Problem 2: Determine ω

Weighted graph model             two kinds of disruptions
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CAN PROBLEMS 1 AND 2 BE SOLVED 
SIMULTANEOUSLY?
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Problem 1: Determine the topology

of the graph.
(F. Chung)
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Problem 2. Determine the weights ω

First, we need ω to be distinguished from any other weight
β

We appeal to the following theorem of C. Berenstein and S. 
Chung- 2003
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TEOREMA [2] ( Berenstein-Chung) ) 
Let ω 1 and ω 2 be weights with  ω1≤ ω 2  on                   and 

f1, f2  :       → R be functions satisfying that for j=1, 2,

for any given function Φ :∂ S→ R with                        and a given constant K with

K > m0,  where 
,            and

If we assume that
(i) on  ∂ S×Int (∂ S) 

(ii) , 
then we have 

f1 ≡ f2

and

for all x and y in 
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Berenstein-Chung (uniqueness theorem)

⇓

Dirichlet-to-Neumann map Λω determines ω 
uniquely

⇓

weight ω can be computed from knowledge of 
Dirichlet data for convenient choices of the 
input Neumann data in a “similar” way to the 
one for resistors networks
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EIT          Neumann-to-Dirichlet problem
continuous setting

Internet tomography         Neumann-to-
Dirichlet problem in graphs
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CURRENT WORK

Based on the EIT approach, find the conductivity 
(weight) ω (output) where

and    

inputs (given or measured).

- Code written for the case of a 9 by 9 square 
network.

ω
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END



36

References
[1] J. Baras, C. Berenstein and F. Gavilánez, Continuous and discrete inverse 

conductivity problems. AMS, Contemporary Math, Vol. 362, 2004.
[2] J. Baras, C. Berenstein and F. Gavilánez, Network tomography. To appear in 

AMS, Contemporary Math, Vol. 405, 2006.
[3] C. A. Berenstein and S-Y. Chung, ω-Harmonic functions and inverse 

conductivity problems on networks. To appear in SIAM, Applied 
Mathematics, 2004

[4] C. A. Berenstein, J. Baras, and F. Gavilánez, Local monitoring of the internet 
network. Available at 
http://techreports.isr.umd.edu/TechReports/ISR/2003/TR\_2003-7/TR%
\_2003-7.phtml

[5] C. A. Berenstein and E. Casadio Tarabusi, The inverse conductivity problem 
and the hyperbolic Radon transform, ''75 years of Radon Transform'', S. 
Gindikin and P. Michor, editors. International Press, 1994.

[6] C. A. Berenstein and E. Casadio Tarabusi, Integral geometry in hyperbolic 
spaces and electrical impedance tomography, SIAM J. Appl. Math. 56 (1996), 
755-764.

[7] C. A. Berenstein, Local tomography and related problems, AMS
Contemporary Mathematics, Vol. 278, 2001.

[8]  T. Munzner, Interactive Visualization of Large Graphs and Networks, Ph.D. 
Dissertation, Stanford University, June 2000.



37

References
[1] J. Baras, C. Berenstein and F. Gavilánez, Continuous and discrete inverse 

conductivity problems. AMS, Contemporary Math, Vol. 362, 2004.
[2] J. Baras, C. Berenstein and F. Gavilánez, Network tomography. To appear in 

AMS, Contemporary Math, Vol. 405, 2006.
[3] C. A. Berenstein and S-Y. Chung, ω-Harmonic functions and inverse 

conductivity problems on networks. To appear in SIAM, Applied 
Mathematics, 2004

[4] C. A. Berenstein, J. Baras, and F. Gavilánez, Local monitoring of the internet 
network. Available at 
http://techreports.isr.umd.edu/TechReports/ISR/2003/TR\_2003-7/TR%
\_2003-7.phtml

[5] C. A. Berenstein and E. Casadio Tarabusi, The inverse conductivity problem 
and the hyperbolic Radon transform, ''75 years of Radon Transform'', S. 
Gindikin and P. Michor, editors. International Press, 1994.

[6] C. A. Berenstein and E. Casadio Tarabusi, Integral geometry in hyperbolic 
spaces and electrical impedance tomography, SIAM J. Appl. Math. 56 (1996), 
755-764.

[7] C. A. Berenstein, Local tomography and related problems, AMS
Contemporary Mathematics, Vol. 278, 2001.

[8]  T. Munzner, Interactive Visualization of Large Graphs and Networks, Ph.D. 
Dissertation, Stanford University, June 2000.



38

[9] E. B. Curtis, T. Ingerman, and J. A. Morrow, Circular planar graphs and 
resistors networks, Linear algebra and its applications, 283 (1998), 115-150.

[10] E. B. Curtis, and J. A. Morrow, Inverse problems for electrical networks, 
Series on Applied Mathematics, Vol. 13, 2000.

[11] E. B. Curtis, and J. A. Morrow, The Dirichlet to Neumann problem for a 
resistor network, AMS, 1990.

[12] F. Chung, Spectral Graph Theory,AMS, 1997.
[13] M. Coates, A. Hero III, R. Nowak, and B. Yu, Internet tomography, IEEE 

Signal processing magazine, may 2002.
[14] J. Kleinberg, Detecting a network Failure, Internet Mathematics, Vol. 1, No. 

1, 37-56,    2003.
[15] F. Chung, M. Garrett, R. Graham, and D. Shallcross, Distance realization 

problems with applications to internet tomography, Journal of Computer and 
System Sciences 63, 432-448, 2001.

[16] K. Claffy, T. Monk, and D. McRobb, Internet tomography, Nature, available 
from WWW, http://nature.com/nature/nature/webmatters/tomog/tomog.html, 
1999.

[17] E. B. Curtis, and J. A. Morrow, Determining the Resistors in a Network, 
SIAM J. Appl. Math., Vol. 50, No. 3, pp. 918-930, June 1990



39

[9] E. B. Curtis, T. Ingerman, and J. A. Morrow, Circular planar graphs and 
resistors networks, Linear algebra and its applications, 283 (1998), 115-150.

[10] E. B. Curtis, and J. A. Morrow, Inverse problems for electrical networks, 
World Scientific, Series on Applied Mathematics, Vol. 13, 2000.

[11] E. B. Curtis, and J. A. Morrow, The Dirichlet to Neumann problem for a 
resistor network, SIAM J. Appl. Math 51 (1991), 1011-1029.

[12] F. Chung, Spectral Graph Theory,AMS, 1997.
[13] M. Coates, A. Hero III, R. Nowak, and B. Yu, Internet tomography, IEEE 

Signal processing magazine, 2002.
[14] J. Kleinberg, Detecting a network Failure, Internet Mathematics, 1 (2003), 

37-56,  2003.
[15] F. Chung, M. Garrett, R. Graham, and D. Shallcross, Distance realization 

problems with applications to internet tomography, Journal of Computer and 
System Sciences 63 (2001), 432-448.

[16] K. Claffy, T. Monk, and D. McRobb, Internet tomography, Nature, available 
from WWW, http://nature.com/nature/nature/webmatters/tomog/tomog.html, 
1999.

[17] E. B. Curtis, and J. A. Morrow, Determining the Resistors in a Network, 
SIAM J. Appl. Math. 50 (1990), 918-930.



40

[18] C. A. Berenstein et al, Integral Geometry on Trees, American Journal of Mathematics
113 (1991), 441-470.

[19] Sylvester, and G. Uhlmann, A global uniqueness theorem for an inverse boundary
value problem, Ann. of Math. (2) 125 (1987), no. 1, 153-169.

[20] A. I. Katsevich and A. G. Ramm, The Radon transform and local tomography. Boca
Raton: CRC Press, 1996.



41

[18] C. A. Berenstein et al, Integral Geometry on Trees, American Journal of Mathematics
113 (1991), 441-470.

[19] J. Sylvester, and G. Uhlmann, A global uniqueness theorem for an inverse boundary
value problem, Ann. of Math. (2) 125 (1987), 153-169.

[20] A. I. Katsevich and A. G. Ramm, The Radon transform and local tomography. Boca
Raton: CRC Press, 1996.



42


	This talk will be divided into three parts
	Inversion Formulae
	 �The setup consists of a detector and an X-ray beam source. A cross-section of the human body is scanned.�Let f(x) be the at
	 Approximate solution to the EIT problem�(Finding small cracks)
	         Part II. Discrete analogue of EIT�       Network Tomography
	-Internet tomography
	NETWORK CONNECTIVITY
	                   Part III. Network Tomography�                                      Communication networks�                
	Network              G(V, E) a finite planar connected graph with G ¹ ��w : E! R+,      G(V, E , w)  weighted graph�
	A graph S=S(V ’ , E ’ ) is a subgraph of G(E, V) if V ’ ½ V and E ’ ½ E�
	Weighted graph model             two kinds of disruptions
	CAN PROBLEMS 1 AND 2 BE SOLVED SIMULTANEOUSLY?�
	Problem 2. Determine the weights w�
	CURRENT WORK
	END
	References
	References

