

From Electrical Impedance Tomography to Network Tomography

Carlos A. Berenstein

Institute for Systems Research ISR
University of Maryland
College Park

With the collaboration of Prof. John Baras and Franklin Gavilánez

- Part I. Tomography.
 - -Introduction to the Radon transform
 - -Some Applications of the Radon transform
- Part II. Discrete analogues of tomography
 - -Electrical Tomography (network of resistors)
 - -Internet tomography (tree model)
- Part III. Network tomography
 - -Communication networks
 - -Weighted graph model

Part I. Tomography.

The Radon transform of a reasonable function f(x), $x \in \mathbb{R}^n$ is defined to be

$$Rf(\alpha, p) = \int_{l_{\alpha p}} f(x)dx,$$

where $\alpha \in S^{n-1}$, S^{n-1} is the unit sphere in \mathbb{R}^n , $p \in \mathbb{R}$,

 $l_{\alpha p} = \{ x \text{ such that } \alpha \cdot x = p \}$ is an hyperplane and dx is the Lebesgue measure on this hyperplane.

QUESTION: How can one recover f(x) from $Rf(\alpha, p)$?

• n=2, CT scanners. Original case studied by Radon, (1917)

• n=3, (MRI) Minkowski, Fritz John (1934): Relation with PDE

Inversion Formulae

If F_n stands for the *n*-dimensional Fourier transform then a standard inversion formula for the Radon transform in \mathbb{R}^2 is given by

$$f = F_2^{-1} F_1(Rf)$$

Definition. For $g: S^1 \times \mathbb{R} \to \mathbb{R}$ the backprojection operator R^* is defined by

$$R^*g(x) = \int_{S^1} g(\alpha, p) d\alpha, \quad p = \alpha \cdot x$$

One can introduce the operator Λ , square root of the Laplacian operator Δ , and we have the so called *backprojection inversion formula*

$$\Lambda(R^*Rf)(x) = f(x)$$

Scans (X-ray transmission tomography \mathbb{R}^2)

Schematic CAT scanner

The setup consists of a detector and an X-ray beam source. A cross-section of the human body is scanned.

Let f(x) be the attenuation coefficient of the tissue at the point x. Let ζ be the straight line representing the beam, I_0 the initial intensity of the beam, and I_1 its intensity after having traversed the body. It follows that

$$\frac{I_1}{I_0} = \exp\{-\int_{\zeta} f(x)dx\}$$

MRI in \mathbb{R}^3 , $\zeta = \text{plane}$

Electrical impedance tomography EIT

Finding the conductivity inside a plate by input-output current map

Electrical impedance tomography EIT

Let *D* be the unit disk in \mathbb{R}^2 , $\beta > 0$ function on D, and let Ψ such that

$$\int_{\partial D} \Psi ds = 0$$

and u a solution of

$$(\mathbf{NP}) \begin{cases} div(\beta gradu) = 0, in & D \\ \beta \frac{\partial u}{\partial n} = \Psi, on & \partial D \end{cases}$$

EIT Problem: Find β from the knowledge of Λ_{β} (inverse conductivity problem).

Nachman proved injectivity of the map $C: \beta \rightarrow \Lambda_{\beta}$

Berenstein and Casadio formulated an approximate solution of this problem in terms of hyperbolic geometry in the hyperbolic disk and the corresponding hyperbolic Radon transform R_H

The input-output map $\Lambda_{\beta} : \mathcal{Y} \to u$ (the Calderon map)

Approximate solution to the EIT problem

(Finding small cracks)

 β_0 = Conductivity function of the material in normal conditions (Assume known)

 β = Actual conductivity

Problem: How much does β deviate from β_0 ?

Assume β_0 constant equal to 1, then the deviation $\delta\beta$ is governed by

$$\beta = \mathbf{1} + \delta \beta$$
, with $|\delta \beta| << 1$

If no cracks on ∂D and U solution of (NP) for $\beta = 1$,

$$\begin{cases} div(gradU) = 0, in & D \\ \frac{\partial U}{\partial n} = \Psi, on & \partial D \end{cases}$$

For *u* solution of (NP) for $\beta = 1 + \delta \beta$,

$$u=U+\delta U$$

The perturbation δU satisfies

$$\left\{ \begin{array}{ll} \Delta(\delta U) = -\langle grad \ \delta \beta, grad \ U \rangle & in \ D \\ \\ \frac{\partial U}{\partial n} = -(\delta \beta) \Psi & on \ \partial D \end{array} \right.$$

With the only constraint

$$\int_{\partial D} \Psi ds = 0$$

Simplest input is a linear combination of dipoles $-\pi \frac{\partial}{\partial s} \delta_w$, δ_w the Dirac delta at ω in ∂D

The problem for the dipole (input) $-\pi \frac{\partial}{\partial s} \delta_w$ at ω now becomes

$$\begin{cases} \Delta U_w = 0 & in D \\ \frac{\partial U_w}{\partial n} = -\pi \frac{\partial}{\partial s} \delta_w & on \partial D \end{cases}$$

The solution U_w has level curves that are geodesics and thus the hyperbolic Radon transform appears naturally in this problem

Part II. Discrete analogue of EIT Network Tomography

Consider a finite planar square network G(V,E). The nodes of V are the integer lattice points $p=(i,j),\ 0 \le i \le n+1$ and $0 \le j \le n+1$, the corner points excluded

and E the set of edges. Let intV, interior of V, consisting of the nodes p=(i,j) with $1 \le i \le n$ and $1 \le j \le n$. Let ∂G the boundary of G. If $\sigma \in E$ then σ

connects a pair of two adjacent nodes p and q and is denoted pq. Let p a node and denote N(p) the set of neighboring nodes of p

Inition. A network of resistors $\Gamma = \Gamma(V, E, \omega)$ is a network G(V, E)

 Q_{RY} together with a non-negative function $\omega: E \to \mathbb{R}^+$. For each edge pq in

E, the number $\omega(pq)$ is called the *conductance* of pq, and $1/\omega(pq)$ is the *resistance* of pq. The function ω on E is called the *conductivity*.

Definition. Let $f: V \to \mathbb{R}$, and let $L_{\omega}f: intV \to \mathbb{R}$ a function defined by

$$L_{\omega}f(p) = \sum_{q \in N(p)} \omega(pq)(f(q) - f(p))$$

The function f is called ω -harmonic if $L_{\omega}f(p)=0 \ \forall p \in intV$

Let $\Phi(r)$ voltage applied at each boundary node r. Φ induces a voltage f(p) at each $p \in intV$.

$$L_{\omega}f(p)=0 \ \forall p \in intV. (Kirchhoff's law)$$

On the boundary bV of V, f determines a current I_{ϕ} by Ohm's law.

For each conductivity ω we define the linear Dirichlet-to-Neumann map Λ_{ω} by $\Lambda_{\omega}(\Phi) = I_{\Phi}$

Questions: (i) Is the map Λ_{ω} to ω one-to-one?

(ii) Is it true that $\omega = \beta \Leftrightarrow \Lambda_{\omega} = \Lambda_{\beta}$? (uniqueness)

(iii) Is there a constructive algorithm to obtain ω from Λ_{ω} ?

(Curtis and Morrow)

Interesting questions

- Is it possible to extend these results to more general finite graphs?. For instance, is (ii) true?.
- What type of boundary measurements and associated probes we need to construct Λ_{ω} from the available boundary data and/or probes?

Internet tomography

Goal: Understanding a large network like internet

quantities

Typical problems: Traffic delay, link level parameter estimation, topology, congestion in links, attacks

Definition. A tree T is a finite or countable collection of vertices $\{v_j \ j=0, 1,...\}$ and a collection of edges $e_{jk} = (v_j, v_k)$ Natural domain to visualize internet \mathbb{H}^3 (**Munzner**).

Locally, internet can be seen as part of a tree therefore natural domain is \mathbb{H}^2 (**Jonckheere E.-2004** experimentally). Hence, a way to study *locally* this kind of network can be done using the hyperbolic Radon transform on trees. *C. A. Berenstein et al.* [5, 6]

Data we need can be obtained using probes via measurements (sender-receiver)

Software: NS2 network simulator gives a number of other measurable

Visualization in real hyperbolic space (Munzner)

• Radon transform in real hyperbolic spaces

trees $\longrightarrow \mathbb{H}^2$ graphs $\longrightarrow \mathbb{H}^3$

NETWORK CONNECTIVITY

Figure 1: Prototype two-dimensional image depicting global connectivity among ISPs as viewed from skitter host. Graph layout code provided by W. Cheswick and H. Burch (Lucent/Bell Laboratories).

Taken from:http://www.nature.com/nature/webmatters/tomog/tomog.html, Authors are members of CAIDA organization.

The Institute for

nication No

raphs with a highly connective core and long tendrils are hyperbolic because the sides of ΔABC are forced to go via the core (*Jonckheere*)

CAIDA Monitoring Tool: graphical representation of the Internet in hyperbolic space

Communication networks-Weighted graph model

Networks: ATM, Internet, highways, phone,

Typical network problems:

- Failure of some nodes (Topology configuration)
- Congestion in links (Link-level parameter estimation)

Goal: Obtain some information of the inner structure of network

Letwork \longleftrightarrow G(V, E) a finite planar connected graph with $\partial G \neq \phi$

 $\omega: E \to \mathbb{R}^+$, $G(V, E, \omega)$ weighted graph

weight $\omega(x, y)$ \longleftrightarrow total traffic between endpoints x and y of the edge

Calculus on weighted graphs

Definitions: The degree of a node x in $G(V, E, \omega)$ is defined by

$$d_{\omega}x = \sum_{y \in V} \omega(x, y).$$

The Laplacian operator corresponding to this weight ω is defined by

$$\Delta_{\omega} f(x) = \sum_{y \in V} [f(x) - f(y)] \cdot \frac{\omega(x,y)}{d_{\omega} x}, \ x \in V$$

The integration of a function $f: G \to \mathbb{R}$ on a graph G = G(V, E) is defined by

$$\int_G f d\omega = \sum_{x \in V} f(x) d\omega x$$

A graph S=S(V', E') is a subgraph of G(E, V) if $V' \subset V$ and $E' \subset E$

For a subgraph S of G, the boundary of S, ∂S , is defined by

$$\partial S = \{ z \in V \mid z \notin S \ and \ z \sim y \ for some \ y \in S \}$$

the inner boundary of S, $inn\partial S$, is defined by

$$inn\partial S = \{z \in S \mid z \sim y \text{ for some } y \in S\}$$

 \overline{S} is the graph whose edges and nodes are in $S \cup \partial S$

the (outward) normal derivative $\frac{\partial f}{\partial x_{i}}(z)$ at $z \in \partial S$ is defined by

$$\frac{\partial f}{\partial n_{\omega}}(z) = \sum_{y \in S} [f(z) - f(y)] \cdot \frac{\omega(z,y)}{d_{\omega}'z}$$

where $d'_{\omega}x = \sum_{v \in S} \omega(z, y)$.

Weighted graph model ———— two kinds of disruptions

1-Edge ceases to exist ⇒Topology changes (F. Chung)

Problem 1: Determine the topology

(F. Chung)

- 2-Increase of traffic \Rightarrow same topology
 - weights ω remain same or increase
 Problem 2: Determine ω

CAN PROBLEMS 1 AND 2 BE SOLVED SIMULTANEOUSLY?

Problem 1: Determine the topology of the graph.

(F. Chung)

Foblem 2. Determine the weights ω

First, we need ω to be distinguished from any other weight β

We appeal to the following theorem of *C. Berenstein* and *S. Chung- 2003*

TEOREMA [2] (Berenstein-Chung))

RYLLET ω_1 and ω_2 be weights with $\omega_1 \leq \omega_2$ on $\overline{S} \times \overline{S}$ and

$$f_1, f_2: \overline{S} \to \mathbb{R}$$
 be functions satisfying that for $j=1, 2$,

$$\begin{cases} \Delta_{\omega_j} f_j(x) = 0, \ x \in S \\ \frac{\partial f}{\partial n_{\omega_j}}(z) = \Phi(z), \ z \in \partial S \\ \int_S f_j d\omega_j = K \end{cases}$$

for any given function
$$\Phi: \partial S \to \mathbb{R}$$
 with $\int_{\partial S} \Phi = 0$ and a given constant K with

 $K > m_0$ where

$$m_0 = \max_{j=1,2} \left| m_j \right| \cdot vol(S, w_j), m_j = \min_{z \in \partial S} f_j(z), j=1,2 \ and \ vol(S, w_j) = \sum_{x \in S} d_{\omega_j} x$$

If we assume that

(i)
$$\omega_1(z,y) = \omega_2(z,y)$$
 on $\partial S \times Int(\partial S)$

(ii)
$$f_1|_{\partial S} = f_2|_{\partial S}$$
,

then we have

$$f_1 \equiv f_2$$

and

$$\omega_1(x,y) = \omega_2(x,y)$$

for all x and y in S

Berenstein-Chung (uniqueness theorem)

Dirichlet-to-Neumann map Λ_{ω} determines ω uniquely

weight ω can be computed from knowledge of Dirichlet data for convenient choices of the input Neumann data in a "similar" way to the one for resistors networks

EIT → Neumann-to-Dirichlet problem

† continuous setting

Internet tomography Neumann-to-Dirichlet problem in graphs

CURRENT WORK

Based on the EIT approach, find the conductivity (weight) ω (output) where

$$\frac{\partial f}{\partial n_{\omega}}(z)$$
 , $f \big|_{\partial S}$ and $\omega \big|_{\partial S imes int \partial S}$

inputs (given or measured).

- Code written for the case of a 9 by 9 square network.

References

- Baras, C. Berenstein and F. Gavilánez, Continuous and discrete inverse conductivity problems. AMS, Contemporary Math, Vol. 362, 2004.
- [2] J. Baras, C. Berenstein and F. Gavilánez, Network tomography. To appear in AMS, Contemporary Math, Vol. 405, 2006.
- [3] C. A. Berenstein and S-Y. Chung, ω-Harmonic functions and inverse conductivity problems on networks. To appear in SIAM, Applied Mathematics, 2004
- [4] C. A. Berenstein, J. Baras, and F. Gavilánez, Local monitoring of the internet network. Available at http://techreports.isr.umd.edu/TechReports/ISR/2003/TR_2003-7/TR% _2003-7.phtml
- [5] C. A. Berenstein and E. Casadio Tarabusi, The inverse conductivity problem and the hyperbolic Radon transform, "75 years of Radon Transform", S. Gindikin and P. Michor, editors. International Press, 1994.
- [6] C. A. Berenstein and E. Casadio Tarabusi, Integral geometry in hyperbolic spaces and electrical impedance tomography, SIAM J. Appl. Math. 56 (1996), 755-764.
- [7] C. A. Berenstein, Local tomography and related problems, AMS Contemporary Mathematics, Vol. 278, 2001.
- [8] T. Munzner, Interactive Visualization of Large Graphs and Networks, Ph.D. Dissertation, Stanford University, June 2000.

References

- Baras, C. Berenstein and F. Gavilánez, Continuous and discrete inverse conductivity problems. AMS, Contemporary Math, Vol. 362, 2004.
- [2] J. Baras, C. Berenstein and F. Gavilánez, Network tomography. To appear in AMS, Contemporary Math, Vol. 405, 2006.
- [3] C. A. Berenstein and S-Y. Chung, ω-Harmonic functions and inverse conductivity problems on networks. To appear in SIAM, Applied Mathematics, 2004
- [4] C. A. Berenstein, J. Baras, and F. Gavilánez, Local monitoring of the internet network. Available at http://techreports.isr.umd.edu/TechReports/ISR/2003/TR_2003-7/TR% _2003-7.phtml
- [5] C. A. Berenstein and E. Casadio Tarabusi, The inverse conductivity problem and the hyperbolic Radon transform, "75 years of Radon Transform", S. Gindikin and P. Michor, editors. International Press, 1994.
- [6] C. A. Berenstein and E. Casadio Tarabusi, Integral geometry in hyperbolic spaces and electrical impedance tomography, SIAM J. Appl. Math. 56 (1996), 755-764.
- [7] C. A. Berenstein, Local tomography and related problems, AMS Contemporary Mathematics, Vol. 278, 2001.
- [8] T. Munzner, Interactive Visualization of Large Graphs and Networks, Ph.D. Dissertation, Stanford University, June 2000.

[9] E. B. Curtis, T. Ingerman, and J. A. Morrow, Circular planar graphs and resistors networks, Linear algebra and its applications, 283 (1998), 115-150.

- [10] E. B. Curtis, and J. A. Morrow, Inverse problems for electrical networks, Series on Applied Mathematics, Vol. 13, 2000.
- [11] E. B. Curtis, and J. A. Morrow, The Dirichlet to Neumann problem for a resistor network, AMS, 1990.
- [12] F. Chung, Spectral Graph Theory, AMS, 1997.
- [13] M. Coates, A. Hero III, R. Nowak, and B. Yu, Internet tomography, IEEE Signal processing magazine, may 2002.
- [14] J. Kleinberg, Detecting a network Failure, Internet Mathematics, Vol. 1, No. 1, 37-56, 2003.
- [15] F. Chung, M. Garrett, R. Graham, and D. Shallcross, Distance realization problems with applications to internet tomography, Journal of Computer and System Sciences 63, 432-448, 2001.
- [16] K. Claffy, T. Monk, and D. McRobb, Internet tomography, Nature, available from WWW, http://nature.com/nature/nature/webmatters/tomog/tomog.html, 1999.
- [17] E. B. Curtis, and J. A. Morrow, Determining the Resistors in a Network, SIAM J. Appl. Math., Vol. 50, No. 3, pp. 918-930, June 1990

- [9] E. B. Curtis, T. Ingerman, and J. A. Morrow, Circular planar graphs and resistors networks, Linear algebra and its applications, 283 (1998), 115-150.
- 19 Communication Network
- [10] E. B. Curtis, and J. A. Morrow, Inverse problems for electrical networks, World Scientific, Series on Applied Mathematics, Vol. 13, 2000.
- [11] E. B. Curtis, and J. A. Morrow, The Dirichlet to Neumann problem for a resistor network, SIAM J. Appl. Math 51 (1991), 1011-1029.
- [12] F. Chung, Spectral Graph Theory, AMS, 1997.
- [13] M. Coates, A. Hero III, R. Nowak, and B. Yu, Internet tomography, IEEE Signal processing magazine, 2002.
- [14] J. Kleinberg, Detecting a network Failure, Internet Mathematics, 1 (2003), 37-56, 2003.
- [15] F. Chung, M. Garrett, R. Graham, and D. Shallcross, Distance realization problems with applications to internet tomography, Journal of Computer and System Sciences 63 (2001), 432-448.
- [16] K. Claffy, T. Monk, and D. McRobb, Internet tomography, Nature, available from WWW, http://nature.com/nature/nature/webmatters/tomog/tomog.html, 1999.
- [17] E. B. Curtis, and J. A. Morrow, Determining the Resistors in a Network, SIAM J. Appl. Math. 50 (1990), 918-930.

- [18] C. A. Berenstein et al, Integral Geometry on Trees, American Journal of Mathematics 113 (1991), 441-470.
- [19] Sylvester, and G. Uhlmann, A global uniqueness theorem for an inverse boundary value problem, Ann. of Math. (2) 125 (1987), no. 1, 153-169.
- [20] A. I. Katsevich and A. G. Ramm, The Radon transform and local tomography. Boca Raton: CRC Press, 1996.

- [18] C. A. Berenstein et al, Integral Geometry on Trees, American Journal of Mathematics 113 (1991), 441-470.
- [19] J. Sylvester, and G. Uhlmann, A global uniqueness theorem for an inverse boundary value problem, Ann. of Math. (2) 125 (1987), 153-169.
- [20] A. I. Katsevich and A. G. Ramm, The Radon transform and local tomography. Boca Raton: CRC Press, 1996.

