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@ This talk will be divided into three parts
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Part I. Tomography.
-Introduction to the Radon transform
-Some Applications of the Radon transform

Part Il. Discrete analogues of tomography
-Electrical Tomography (network of resistors)
-Internet tomography (tree model)

Part I11. Network tomography
-Communication networks
-Weighted graph model
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The Radon transform of a reasonable function f(x), XER Mis e
defined to be

Rf(a,p) = lf f(z)dz,

where o €S ™, S™1 isthe unitspherein R", p € R,

|, ={ xsuchthat @-x =p } Is an hyperplane and dx is the
Lebesgue measure on this hyperplane.

QUESTION: How can one recover f(x) from Rf(a, p)?
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e n=2, CT scanners. Original case studied by Radon, (1917)

* n=3, (MRI ) Minkowski, Fritz John (1934): Relation with PDE
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If F, stands for the n-dimensional Fourier transform then a
standard inversion formula for the Radon transform in & 2 is

given by

f = F5'Fi(Rf)
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Definition. For g : St x R— R the backprojection operator R * is define

Rg(z) = | g(a,p)de, p=oa-z
S

One can introduce the operator A , square root of the Laplacian operator 4, and
we have the so called backprojection inversion formula

ANR*Rf)(z) = f(z)
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Schematic CAT scanner

The setup consists of a detector and an X-ray beam source. A cross-section of the human body is
scanned.

Let f(x) be the attenuation coefficient of the tissue at the point x. Let  be the straight line
representing the beam, 1 the initial intensity of the beam, and I, its intensity after having
traversed the body. It follows that

L = exp{— ff(:c)d:c}

MRI in R3, £ = plane



Electrical impedance tomography El

Finding the conductivity inside a plate by input-output current
map
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Electrical impedance tomography EIT

Let D be the unit disk in R?, £ >0 function on D, and let ¥ such that

and u a solution of

div(Bgradu) = 0, in D
(NP) Bg—g =V, on 0D
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EIT Problem: Find g from the knowledge of A (inverse conductivity
problem).

Nachman proved injectivity of the map C: f—A,

Berenstein and Casadio formulated an approximate solution of this problem
In terms of hyperbolic geometry in the hyperbolic disk and the corresponding
hyperbolic Radon transform R,

The input-output map A,: % — u (the Calderon map)

10
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(Finding small cracks) N L

A~ F
%%V' < 5
S, = Conductivity function of the material in normal conditions (Assume knowt) g

S = Actual conductivity
Problem: How much does £ deviate from £, ?

Assume /4, constant equal to 1, then the deviation J4is governed by
B= 1+, with | 8| << 1
If no cracks on oD and U solution of (NP) for 5 =1,

div(gradU) = 0, in D
g—g =WV, on 0D

11
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For u solution of (NP) for = 1+0p,
u=U+oU

The perturbation oU satisfies

r"

al’
i

With the only constraint

at win oD

) T O T4 "
—{grad o3, grad U7}

— — Ij :'I?J | '\II oan N'J,r)

/ Vs =10
A

Simplest input is a linear combination of dipoles —
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w, o, the Dirac delta

12
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The problem for the dipole (input) —:-.—%e?w at w now becomes

AU, =0 in D

arr. A J
Plee Y :
B = .|§S{']"t.-,. on o)

Y

The solution U,, has level curves that are geodesics and thus the hyperbolic
Radon transform appears naturally in this problem

13
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Consider a finite planar square network G(V,E). The nodes of V are the integer
lattice points p=(1,j), 0<i<n+1 and 0<j<n+1, the corner points exclude

and E the set of edges. Let intV, interior of V, consisting of the nodes p=(i,})
with1<i<nand I<j<n. Let ¢ G the boundary of G. If € E thenc

connects a pair of two adjacent nodes p and g and is denoted pg. Let p a node
and denote N(p) the set of neighboring nodes of p

et 1 L .
- .= > = =
Fars g =5 F 5 F = 5 F 3 & 01
L . . o i i il i 5 I
- =8 ¥ 8 & =8 ¥ 8 =3
- =8 ¥ 8 & =8 ¥ 8 =3
Lot 1 = ¥ . * =5 * ™ 5
- * & +* *
P35, w1

14



) The
\qE-RSIT}, lnsutul(.tol

5 Sy stems

N @}ﬁmtlon A network of resistors 7=/(V, E, w)is a network G(V,E)

//7 o gatellite a,,
“fRYt@ﬁether with a non-negative function @ : E— R*. For each edge pq in ’ I
E, the number o(pq) is called the conductance of pg, and 1/@w(pq) is the w{ 2

resistance of pg. The function w on E is called the conductivity.

Definition. Letf:V — &, and let L  f : intV — R a function defined by

Lof(p) = > w(pg)(f(q) — f(p))

qeN (p)

The function f is called @-harmonic if L  f(p)=0 ¥'p €intV

Let &) voltage applied at each boundary node r. @ induces a voltage f(p) at
each p €intV.

L, f(p)=0 ¥'p €intV. (Kirchhoff’s law)

15
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On the boundary bV of V, f determines a current | , by Ohm’s law. Ve

For each conductivity o we define the linear Dirichlet-to-Neumann map A,
by Aa) (¢): I(D

Questions: (i) Is the map A, to @ one-to-one ?
() Isittrue that o = g < A, = A, ? (uniqueness)
(111) Is there a constructive algorithm to obtain @ from A ?

(Curtis and Morrow)

16



Interesting questions

- Is i1t possible to extend these results to more general
finite graphs?. For instance, is (ii) true?.

- What type of boundary measurements and associated
probes we need to construct A, from the available
boundary data and/or probes?
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Typical problems: Traffic delay, link level parameter estimation, topology, eation ™

congestion in links, attacks

Definition. A tree T Is a finite or countable collection of vertices {v; J=0, 1,..}

and a collection of edges e, = (v;, V)
Natural domain to visualize mternet H? (Munzner).

Locally, internet can be seen as part of a tree therefore natural domain is H?
(Jonckheere E.-2004 experimentally). Hence, a way to study locally this kind
of network can be done using the hyperbolic Radon transform on trees. C. A.
Berenstein et al. [5, 6]

Data we need can be obtained using probes via measurements (sender-receiver)

Software: NS2 network simulator gives a number of other measurable
quantities

18



Visualization in real hyperbolic space
(Munzner)

e Radon transform in real hyperbolic spaces
trees — H°

graphs — H°

19
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Figure 1: Prototype two-dimensional image depicting global connectivity among ISPs as viewed from
skitter host. Graph layout code provided by W. Cheswick and H. Burch (Lucent/Bell Laboratories).

Taken from:http://www.nature.com/nature/webmatters/tomog/tomog.html, Authors are members of
CAIDA organization.
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CAIDA Monitoring Tool: graphical representation
of the Internet in hyperbolic space
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{ e Communication networks
-Weighted graph model

Networks: ATM, Internet, highways, phone,

Typical network problems:
e Failure of some nodes
(Topology configuration)
e Congestion in links
(Link-level parameter estimation)

Goal: Obtain some information of the inner structure of
network
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o E—=R*, G(V, E, ) weighted graph 1o DA

weight o (x,y) <«— total traffic between endpoints x and y of the edge

Calculus on weighted graphs
Definitions: The degree of a node x in G(V, E, w)is defined by

d,x= 2oy o(XY).
The Laplacian operator corresponding to this weight w is defined by
Auf(@) = Syevlf(@) — F)] - 2L, zev

The integration of a function f : G— R on a graph G=G(V, E) is
defined by

Jg fdw = > gev f(z)duwz

25
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A'graph S=S(V ', E ') is a subgraph of G(E, V) if V' c VandE ' CE

For a subgraph S of G, the boundary of S, 0S, is defined by
0S={ze€V |z& Sandz ~y forsomey € S}
the inner boundary of S, Innd S, is defined by
inndS =4{ze€ S| z~y forsomey € S}

S is the graph whose edges and nodes are InS U & S

the (outward) normal derivative 83_f(z) atz € 0 Sis defined by

FL(2) = Tyeslf(2) - fW)] - 272

where d’ ,x =2, s @ (Z, Y).

26
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Weighted graph model —— two kinds of disruptions

1-Edge ceases to exist =Topology changes (F. Chung)
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Problem 1: Determine the topology
(F. Chung)

2-Increase of traffic = e same topology

e Weights w remain same or increase

Problem 2: Determine w

27



CAN PROBLEMS 1 AND 2 BE SOLVED
SIMULTANEOUSLY?
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Problem 1: Determine the topology
of the graph.

(F. Chung)

29
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First, we need w to be distinguished from any other weight

p

We appeal to the following theorem of C. Berenstein and S.
Chung- 2003

30
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_ P
f,,f, 1 S — R be functions satisfying that for j=1, 2, ";% l 3

Aw Jj@)=0,z€S
(z) = P(2), €98

9 anw
\ I fjdw =K
for any given function @ :/S— R with o ¢® = 0 and a given constant K with

K>m, Where

Mo = I’T‘IaX‘7 1,2 ‘m]‘ vol (S, w;),m; = min,cpsfi(2),5 = 1,2 and vol(S, wj) = ¥ duw;a
If we assume that xS

(l) wi(z,y) = wo(z,y) ON oS xInt (é’S)

() filas = f2las:
then we have

and
wi(z,y) = wa(z,y)

forallxandyin S
31



Berenstein-Chung (uniqueness theorem)

J

Dirichlet-to-Neumann map 4, determines @
uniguely

J

welight @ can be computed from knowledge of
Dirichlet data for convenient choices of the
Input Neumann data in a “similar” way to the
one for resistors networks

32
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EIT «<— Neumann-to-Dirichlet problem =
4 continuous setting

Internet tomography <«— Neumann-to-
Dirichlet problem in graphs

33



CURRENT WORK ;7 )
Based on the EIT approach, find the conductivity
(weight) @ (output) where

o () Tlog AN Blyg i

Inputs (given or measured).

- Code written for the case of a 9 by 9 square
network.

34
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