MATH 316 – GENERAL SYLLABUS

Texts: Boyce and DiPrima (BD) Differential Equations (required)
 Polking and Arnold(PA) Ordinary Differential Equations using Matlab (optional)

Course Outline:

Beginning Week 1: Introduction.
- Classification of DEs.
- Mathematical models, dimensions and units, solutions to ODEs.
 See Sections 1.1,1.3 in BD

Weeks 1-3: First order equations $\frac{dy}{dx} = f(x,y)$. Here the emphasis is on geometry,
solution techniques and numerical approximations.
- Direction fields, solution curves, integral curves, some theory (do solution curves
touch?), long time behaviour.
- Autonomous equations $\frac{dy}{dx} = f(y)$, phase line, equilibria and stability.
- Separable equations $\frac{dy}{dx} = f(x)g(y)$
- Linear equations $y' + p(x)y = g(x)$: integrating factors, variation of parameter
- Theory: existence and uniqueness of solutions, linear vs nonlinear.
 See Sections 1.2, 2.1-2.5,2.7-2.8 in BD

Week 4: EXAM 1

Weeks 4-5: Homogeneous Second Order Equations $ay'' + by' + cy = 0$.
- Constant coefficient homogeneous
- Enough theory to argue that the general solution in the homogeneous case is a
 linear combination of two LI solutions
 See Sections 3.1-3.4 in BD.

Weeks 6-7: Nonhomogeneous Second Order Equations $ay'' + by' + cy = g(t)$.
- General solution = G.S. of homogeneous plus any particular solution
- Method of Undetermined Coefficients
- Variation of Parameters - Main point it always works, but more complicated
 than UC
- Harmonic and forced harmonic motion
 See Sections 3.5-3.8 in BD

Week 8: EXAM 2
Weeks 8-9: Laplace Transform

See Chapter 5 in BD

Weeks 10-11: Linear autonomous systems (2x2 case): $x' = ax + by; y' = cx + dy.$
- Matrix formulation and elementary matrix manipulations
- Eigenproblem and general solution
- Enough theory to argue that the general solution (i.e., the set of all solutions) is a linear combination of two linearly independent solutions
- Phase Plane

Most of Chapter 7 in BD.

Week 12: EXAM 3

Weeks 13-14: Nonlinear autonomous systems: $x' = f(x, y); y' = g(x, y)$.
- Equilibrium solutions and stability
- Linearization about equilibria
- Phase plane portraits
- Examples: predator prey models, competing species, pendulum.
- Conservative systems $x'' + g(x) = 0$ and the energy method

See Sections 9.1-9.5 in BD. Handout on conservative systems.

Week 15: Catch-up and Review

Finals Week: FINAL EXAM