Stat 345: Quiz 2 Based on 2.5-2.6 Name:

Formulas you may need:

1. Independence: Two events are independent if any one of the following equivalent statement is true:
 (1) \(P(A|B) = P(A) \)
 (2) \(P(B|A) = P(B) \)
 (3) \(P(A \cap B) = P(A)P(B) \)

1. A batch of 60 semiconductor chips contains 6 that are defective. Two chips are selected at random, without replacement, from the batch. Let \(A \) and \(B \) denote the events that the first and second chips selected is defective respectively.
 (a) Are \(A \) and \(B \) independent events? Give a proof of your statement.

 \[
P(B|A) = \frac{5}{59} \\
P(B) = P(B|A)P(A) + P(B|A')P(A') = \frac{5}{59} \times \frac{6}{60} + \frac{6}{59} \times (1 - \frac{6}{60}) = \frac{6}{60} = \frac{1}{10} \\
P(B) \neq P(B|A), \text{ so } A \text{ and } B \text{ are not independent.}
 \]

 (b) If the sampling were done with replacement, would \(A \) and \(B \) independent? Prove your statement.

 Yes.
 \[
P(B|A) = P(B) = \frac{6}{60} = \frac{1}{10}
 \]

2. In the 2004 presidential election, exit polls from the critical state of Ohio provided the following results:

<table>
<thead>
<tr>
<th></th>
<th>Bush</th>
<th>Kerry</th>
</tr>
</thead>
<tbody>
<tr>
<td>no college degree (62%)</td>
<td>50%</td>
<td>50%</td>
</tr>
<tr>
<td>college degree (38%)</td>
<td>53%</td>
<td>46%</td>
</tr>
</tbody>
</table>

If a randomly selected respondent voted for Bush, what is the probability that the person has a college degree?

Let \(C = \{\text{college degree}\} \) and \(B = \{\text{vote for bush}\} \)

\[
P(C|B) = \frac{P(B|C)P(C)}{P(B|C)P(C) + P(B|C')P(C')} = \frac{.53 \times .38}{.53 \times .38 + .50 \times .62} = .39382
\]