Introduction to BOA

- BOA stands for **Bayesian Output Analysis**.
- The package and related documentation are available at http://www.public-health.uiowa.edu
- BOA is a set of functions written for R and S-Plus to perform MCMC convergence diagnostics.
- BOA is compatible with BUGS output, R objects and text files.
- BOA is a menu-driven package.
- Available for both UNIX and Windows platforms.
- We will show the capabilities of BOA using the genetic linkage example.
- To install BOA, we need to download and unzipped a .tgz file.
- First, we start R or S-plus and type
  ```r
  source(‘‘boa.r’’) or source(‘‘<program directory>/boa.r’’)
  boa.menu()
  ```
• After starting BOA the following menu window appears:

BOA MAIN MENU

1:File >>
2:Data >>
3:Analysis >>
4:Plot >>
5:Options >>
6:Window >>

• To read in data generated from an MCMC algorithm, you need to type "2". This will allow to read data from different formats including ASCII files or BUGS output files.

IMPORT DATA MENU

1:BUGS Output File
2:Flat ASCII File
3:Data Matrix Object
4:View Format Specifications
5:Options...
6:Back
7:Return to Main Menu

Selection: 2
• By selecting “2”, we are asking BOA to read in an ASCII file.
• The ASCII file must be a column file where each column is separated by a blank space, a tab delimiter or a comma.
• The first row of this file must have the names for the parameters.
• The remaining rows are the values of the parameters from the MCMC.
• In this case below, we are reading the file link1.txt that corresponds to the genetic linkage example.

Enter filename prefix without the .txt extension
[Working Directory: ""]
1: link1
Read 1 items
+++ Data successfully imported +++
- link1.txt is a one column file of the parameter "theta" for the genetic linkage model.

- Since some of the BOA diagnostics use multiple chains, I also created files link2.txt, link3.txt, link4.txt.

Enter filename prefix without the .txt extension
[Working Directory: ""]
1: link2
Read 1 items
+++ Data successfully imported +++

- Each file considers 1000 draws from the Metropolis-Hastings algorithm for the genetic linkage model from different starting points.

- The option 3 of the main BOA menu brings you to the following menu:

ANALYSIS MENU
============
1:Descriptive Statistics >>
2:Convergence Diagnostics >>
3:Options...
4:Return to Main Menu
Selection: 1

- By selecting 1, BOA will take you to the descriptive statistics menu.
DESCRIPTIVE STATISTICS MENU

1: Autocorrelations
2: Correlation Matrix
3: Highest Probability Density Intervals
4: Summary Statistics
5: Back
6: Return to Main Menu

Selection: 3

- After typing 3, BOA will produce interval estimates for the parameter θ of the genetic linkage model based on all four files.

HIGHEST PROBABILITY DENSITY INTERVALS:
==

Alpha level = 0.05

Chain: link1

<table>
<thead>
<tr>
<th>Lower Bound</th>
<th>Upper Bound</th>
</tr>
</thead>
<tbody>
<tr>
<td>theta</td>
<td>0.5266789</td>
</tr>
</tbody>
</table>

Chain: link2

<table>
<thead>
<tr>
<th>Lower Bound</th>
<th>Upper Bound</th>
</tr>
</thead>
<tbody>
<tr>
<td>theta</td>
<td>0.5234056</td>
</tr>
</tbody>
</table>
- The first option for the descriptive statistics menu gives autocorrelation values for the parameter of our model.

LAGS AND AUTOCORRELATIONS:

<table>
<thead>
<tr>
<th>Lag 1</th>
<th>Lag 5</th>
<th>Lag 10</th>
<th>Lag 50</th>
</tr>
</thead>
<tbody>
<tr>
<td>theta</td>
<td>0.643131</td>
<td>0.1479772</td>
<td>0.03049042</td>
</tr>
</tbody>
</table>

Chain: link1

<table>
<thead>
<tr>
<th>Lag 1</th>
<th>Lag 5</th>
<th>Lag 10</th>
<th>Lag 50</th>
</tr>
</thead>
<tbody>
<tr>
<td>theta</td>
<td>0.6218542</td>
<td>0.0760426</td>
<td>0.0011866962</td>
</tr>
</tbody>
</table>

Chain: link2

<table>
<thead>
<tr>
<th>Lag 1</th>
<th>Lag 5</th>
<th>Lag 10</th>
<th>Lag 50</th>
</tr>
</thead>
<tbody>
<tr>
<td>theta</td>
<td>0.633444</td>
<td>0.1003947</td>
<td>0.01048863</td>
</tr>
</tbody>
</table>

Chain: link3

<table>
<thead>
<tr>
<th>Lag 1</th>
<th>Lag 5</th>
<th>Lag 10</th>
<th>Lag 50</th>
</tr>
</thead>
<tbody>
<tr>
<td>theta</td>
<td>0.632891</td>
<td>0.1097898</td>
<td>0.03234036</td>
</tr>
</tbody>
</table>
- The option 2 for in the analysis leads to the following menu.

CONVERGENCE DIAGNOSTICS MENU

1: Brooks, Gelman & Rubin
2: Geweke
3: Heidelberger & Welch
4: Raftery & Lewis
5: Back
6: Return to Main Menu
Selection: 1

BROOKS, GELMAN AND RUBIN CONVERGENCE DIAGNOSTICS:
===

Iterations used = 5002:10001

Potential Scale Reduction Factors

theta
1.000180

GEWEKE CONVERGENCE DIAGNOSTIC:
=================================

Fraction in first window = 0.1
Fraction in last window = 0.5

Chain: link1

theta
Z-Score 0.1528488
p-value 0.8785175

Press <ENTER> to continue

Chain: link2

theta
Z-Score 1.1465992
p-value 0.2515473

Chain: link3

theta
Z-Score -0.0744460
p-value 0.9406555

Press <ENTER> to continue

Chain: link4

theta
Z-Score -0.1002423
p-value 0.9201520
• We can also obtain results for the Raftery and Lewis diagnostic.

RAFTERY AND LEWIS CONVERGENCE DIAGNOSTIC:

Quantile = 0.025
Accuracy = +/- 0.005
Probability = 0.95

Chain: link1

<table>
<thead>
<tr>
<th>Thin Burn-in</th>
<th>Total Lower Bound Dependence Factor</th>
</tr>
</thead>
<tbody>
<tr>
<td>theta</td>
<td>5</td>
</tr>
</tbody>
</table>

Chain: link2

<table>
<thead>
<tr>
<th>Thin Burn-in</th>
<th>Total Lower Bound Dependence Factor</th>
</tr>
</thead>
<tbody>
<tr>
<td>theta</td>
<td>5</td>
</tr>
</tbody>
</table>

Chain: link3

<table>
<thead>
<tr>
<th>Thin Burn-in</th>
<th>Total Lower Bound Dependence Factor</th>
</tr>
</thead>
<tbody>
<tr>
<td>theta</td>
<td>5</td>
</tr>
</tbody>
</table>

Chain: link4

<table>
<thead>
<tr>
<th>Thin Burn-in</th>
<th>Total Lower Bound Dependence Factor</th>
</tr>
</thead>
<tbody>
<tr>
<td>theta</td>
<td>5</td>
</tr>
</tbody>
</table>
• BOA also has available a plot menu for descriptive statistics and graphical displays

PLOT MENU
=========
1: Descriptive
2: Convergence Diagnostics
3: Options...
4: Return to Main Menu

• For descriptive statistics we may obtain ACF plots, density estimators, ergodic means and trace plots

DESCRiptIVE PLOT MENU

1: Autocorrelations
2: Density
3: Running Mean
4: Trace
5: Back
6: Return to Main Menu
• Here, I am showing some of the plots obtained with this menu.

Bayesian Output Analysis

Autocorrelation Plot

theta : link1

Autocorrelation Plot

theta : link2

Autocorrelation Plot

theta : link3

Autocorrelation Plot

theta : link4
Bayesian Output Analysis

Density Plot

Parameter Value

Density

0 2 4 6 8

0 2 4 6 8

0 2 4 6 8

0 2 4 6 8

0 2 4 6 8

0 2 4 6 8

Parameter Value
Bayesian Output Analysis

Running Mean Plot

Parameter Value vs. Iteration
Bayesian Output Analysis

Trace Plot

Iteration

Parameter Value
- For convergence diagnostics you have several options as well.

CONVERGENCE DIAGNOSTICS PLOT MENU

1: Brooks & Gelman
2: Gelman & Rubin
3: Geweke
4: Back
5: Return to Main Menu

Bayesian Output Analysis

Gelman & Rubin Shrink Factors
Bayesian Output Analysis

- To save a plot in a postscript is a bit inconvenient. After creating the plot, you need to go back to the main menu and then to the window menu.

WINDOW 1 MENU

1: Previous
2: Next
3: Save to Postscript File
4: Close
5: Close All
6: Return to Main Menu
One last thing....

- **HW exercise Due April 8** For the HW you turned in today where the $N(0,1)$ is the target distribution and with the $U(\theta - \delta, \theta - \delta)$ perform convergence diagnostics using BOA. You will need to to run the Metropolis-Hastings from different starting points to produce multiple chains and apply diagnostics such as Gelman and Rubin’s.