Practice Problems for Exam # 1 - MATH 401/501 - Spring 2016

Instructor: C. Pereyra

1. Show by induction that the statement

\[P(n) : \ 1 + x + x^2 + \cdots + x^n = \frac{1 - x^{n+1}}{1 - x} \]

is true for all natural numbers \(n \), and any fixed rational number \(|x| \neq 1 \).

2. Given functions \(f : X \rightarrow Y \), \(g : Y \rightarrow Z \), show that if \(g \circ f \) is surjective (onto) then \(g \) must be surjective. Is it true that \(f \) must also be surjective? If true prove it, if false present a counterexample.

3. Given a set \(X \) and subsets \(A \) and \(B \) of \(X \). Show that \(X \setminus (A \cup B) = (X \setminus A) \cap (X \setminus B) \).

4. Let \(a \) and \(b \) be integer numbers. Show that if \(ab = 0 \) then \(a = 0 \) or \(b = 0 \). (You can use the fact that this is true for natural numbers).

5. Let \(r \) and \(q \) be rational numbers. Show that if \(rq = 0 \) then \(r = 0 \) or \(q = 0 \). (You can use the fact that this is true for integer numbers).

6. Given a rational number \(r \), and natural numbers \(n \) and \(m \). We define \(r^0 := 1 \) and given the rational number \(r^n \) then we define the rational number \(r^{n+1} := r^n \times r \).

 (a) Show that \((r^n)^m = r^{n \times m} \).

 Hint: fix one of the natural numbers and induct on the other.

 (b) Assume now that \(r \neq 0 \), \(p \) and \(q \) are integers, and show that \((r^p)^q = r^{p \times q} \). Where we define for a negative integer \(p = -n \), \(n \in \mathbb{N} \), \(r^p = r^{-n} := (r^n)^{-1} \). Useful auxiliary lemma is to show that: \((r^n)^{-1} = (r^{-1})^n \).

7. Let \(\epsilon > 0 \) be a positive rational number (a “step” or “unit”). Show that given a positive rational number \(x \geq 0 \), there exists a natural number \(n \) (depending both on the step \(\epsilon \) and on \(x \)) such that \(|x| < n \epsilon \). In words: given any positive step size we can overcome any fixed rational number with a finite number of steps.

8. Given a rational number \(x \), show directly from the definition of absolute value, that \(|-x| = |x| \).

9. In this problem, use any property of absolute value you wish, make sure you state properly the properties you are using.

 (a) Show that if \(x, y, z \in \mathbb{Q} \), \(|x - y| < 1/2 \), then \(|xz - yz| < |z|/2 \).

 (b) Show that if \(w, x, y, z \in \mathbb{Q} \), \(|w - x| \leq 1/2 \) and \(|y - z| \leq 1/2 \) then \(|(w + y) - (x + z)| \leq 1 \). Can you find rational numbers \(x, w, x, y, z \) such that the hypothesis are satisfied and \(|(w + y) - (x + z)| = 1 \)?

10. Show that the “reverse triangle inequality” holds for \(x, y \in \mathbb{Q} \): \(|x| - |y| \leq |x - y| \).
The following are additional problems in case you want more. Do not worry about them for the purpose of the exam on Thursday.

- Suppose \(f : X \to Y \), and suppose that \(A, B \) are subsets of \(X \) and \(C, D \) are subsets of \(Y \). The \textit{direct image of} \(A \) \textit{under} \(f \) is the subset of \(Y \) defined by

\[
f(A) := \{ y \in Y : y = f(x), x \in A \}.
\]

The \textit{inverse image of} \(C \) \textit{under} \(f \) is the subset of \(X \) defined by

\[
f^{-1}(C) := \{ x \in X : f(x) \in C \}.
\]

Determine which inclusion relationship must hold for the following pairs of sets:

(a) \(f(A \cap B) \) and \(f(A) \cap f(B) \),

(b) \(f^{-1}(C \cap D) \) and \(f^{-1}(C) \cap f^{-1}(D) \).

- Given sets \(A \) and \(B \), the power set \(A^B \) is the collection of all functions \(f : B \to A \). Show that given any sets (finite or not) \(A, B, C \) then

\[
\#((A^B)^C) = \#(A^{B \times C}).
\]