There are a total of 100 points, plus ten possible bonus points. No books, notes or calculators are allowed. Good luck!

<table>
<thead>
<tr>
<th>EXER. 1</th>
<th>EXER. 2</th>
<th>EXER. 3</th>
<th>EXER. 4</th>
<th>EXER. 5</th>
<th>EXER. 6</th>
<th>TOTAL</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Blackboard formulas and results promised

1. **Definitions of trigonometric, hyperbolic, logarithmic and power functions:**
 - \(\cos z = \frac{e^{iz} + e^{-iz}}{2} \), \(\sin z = \frac{e^{iz} - e^{-iz}}{2i} \).
 - \(\cosh z = \frac{e^z + e^{-z}}{2} \), \(\sinh z = \frac{e^z - e^{-z}}{2} \).
 - For \(z \neq 0 \), \(\log z = \ln |z| + i \text{Arg} z \) (single-valued).
 - For \(z \neq 0 \), \(\log z = \ln |z| + i \text{arg} z \) (multiple-valued).
 - For \(z \neq 0, a \in \mathbb{C} \), \(z^a = e^{a \log z} \) (multiple-valued when \(a \) is not an integer).

2. **Lemma:** If \(\phi : S \subset \mathbb{R}^2 \to \mathbb{R}, S \) is a domain (an open and connected set), \(\frac{\partial \phi}{\partial x} = \frac{\partial \phi}{\partial y} = 0 \) on \(S \) then \(\phi \) is a constant function.

3. **Cauchy-Riemann Equations in polar coordinates:** Given \(f(z) = u(r, \theta) + iv(r, \theta) \) for \(z \neq 0 \), then \(u \) and \(v \) satisfy the CR equations if and only if
 \[\frac{\partial v}{\partial \theta} = r \frac{\partial u}{\partial r}, \quad \frac{\partial u}{\partial \theta} = -r \frac{\partial v}{\partial r}. \]

4. **Limits at infinity and equal to infinity**
 - We say \(\lim_{z \to z_0} f(z) = \infty \) if and only if \(\lim_{z \to z_0} \frac{1}{f(z)} = 0 \).
 - We say \(\lim_{z \to \infty} f(z) = L \) if and only if \(\lim_{z \to 0} f(1/z) = L \).
 - We say \(\lim_{z \to \infty} f(z) = \infty \) if and only if \(\lim_{z \to 0} \frac{1}{f(1/z)} = 0 \).
1. (50 points + 10 bonus points) Please decide whether the following statements are true or false. If TRUE give a very short explanation as to why. If FALSE present a a counterexample or a corrected formula/statement. (There are 12 questions: 10 correct give you full credit, everything additional is bonus).

(a) If $z^5 = 2e^{i\pi}$ then $z = 2^{1/5}e^{i\pi/5}$. □ TRUE □ FALSE

(b) $|−i^3| = i$ □ TRUE □ FALSE

(c) $f(z) = e^z$ is a one-to-one function on \mathbb{C}. □ TRUE □ FALSE

(d) $\lim_{z \to (-3i)} z^2 e^z = -9 \cos 3 + i \cdot 9 \sin 3$. □ TRUE □ FALSE

(e) Arg(z) is a continuous function on $\mathbb{C} \setminus \{0\}$. □ TRUE □ FALSE

(f) Log(z^4) = 4Log(z) for all $z \neq 0$. □ TRUE □ FALSE
(g) $|\cos z| \leq 1$ for all $z \in \mathbb{C}$. □ TRUE □ FALSE

(h) If f is an entire function then $h(z) = e^z f(1/z^2)$ is analytic on $\mathbb{C} \setminus \{0\}$, and its derivative $h'(z) = h(z) + e^z f'(1/z^2)(-2/z^3)$. □ TRUE □ FALSE

(i) The function $u(x, y) = 2y - 3$ is harmonic in \mathbb{C}. □ TRUE □ FALSE

(j) If u and v are harmonic functions on \mathbb{C} then $f(z) = u(x, y) + iv(x, y)$ is analytic on \mathbb{C}. □ TRUE □ FALSE

(k) If $f(z)$ is an entire function with $u(x, y)$ its real part and $v(x, y)$ its imaginary part. Then u is the harmonic conjugate of v. □ TRUE □ FALSE

(m) If f is real-valued on \mathbb{C} and analytic then f must be a constant function. □ TRUE □ FALSE
2. (10 points) Let $z = 1 - i$. Write z in polar coordinates.

Write (a) $z^{1/3}$, (b) $\log z$ and (c) $\frac{i}{z}$ in the form $a + ib$ with $a, b \in \mathbb{R}$ (note: some of these are multiple-valued).

3. (10 pts) Find the limit if it exists otherwise justify why it does not exist. Here $y \in \mathbb{R}$ and $z \in \mathbb{C}$.

(a) $\lim_{z \to 0} \frac{\overline{z}}{z}$

(b) $\lim_{z \to i\pi} \frac{e^z + 1}{z - i\pi}$
4. (10 pts) Given the function \(f(z) = (x + \frac{y^3}{3}) + i(y - x + \frac{x^3}{3}) \) defined on the complex plane \(\mathbb{C} \).

(a) Determine all points of continuity of \(f \).

(b) Determine all points at which the function \(f \) is differentiable.

(c) Determine all points at which the function is analytic.
5. (10 pts) Can you find an entire function \(f(z) \) whose real part is \(u(x, y) = e^x \sin y \)? If yes, find such function \(f(z) \) and write it as a function of \(z \) only.

6. (10 pts) Find a function \(\phi(r, \theta) \) that is harmonic in the domain \(\{ z \in \mathbb{C} : 1 < |z - 3i| < 5 \} \) and that has boundary values \(\phi = 2 \) when \(|z - 3i| = 1 \) and \(\phi = 12 \) when \(|z - 3i| = 5 \).