Parseval’s Formula

We will now address the situation of when the value of a function f can be recovered from its Fourier series: in other words, when is

$$f(x) = \frac{a_0}{2} + \sum_{n=1}^{\infty} a_n \cos(nx) + b_n \sin(nx)?$$

Recall that if f is a continuous function on $[-\pi, \pi]$ then

$$|f| = \sqrt{\frac{1}{\pi} \int_{-\pi}^{\pi} (f(x))^2}.$$

1. Suppose $V = \mathbb{R}^3$ with the usual inner product.
 a. Show that $|v| = \sqrt{\langle v, v \rangle}$ is the usual Euclidean notion of size, namely the distance from v to $\vec{0}$.
 b. Which vector w, in the subspace generated by $\{e_1 = (1,0,0), e_2 = (0,1,0)\}$ is closest to v?
 c. How can you express w from problem b in terms of the inner product on \mathbb{R}^3?
 d. How does this relate to Problem 6 on the Inner Product problem set?
2. Let

\[v_k = f_k(x) = \frac{a_0}{2} + \sum_{n=1}^{k} a_n \cos (nx) + b_n \sin (nx) \]

so \(v_k \) is the truncated Fourier expansion of \(f(x) \). Show that \(v_k \) is the vector, in the vector space of functions generated by \(\{ \cos (0x), \ldots, \cos (kx), \sin (x), \ldots, \sin (kx) \} \), which is closest to \(f \), that is which minimizes \(|f - v_k| \).
3. Show that the best trigonometric approximation, relative to the distance $| \cdot |$, for $f(x)$ is the Fourier Series

$$F(x) = \frac{a_0}{2} + \sum_{n=1}^{\infty} a_n \cos(nx) + b_n \sin(nx).$$

Is the distance from f to its Fourier series necessarily zero? When the distance is zero does this mean that $f(x) = F(x)$ for all values of x? Suppose for the moment that $|f(x) - F(x)| = 0$. Give a plausible argument why

$$|f|^2 = \frac{a_0^2}{2} + \sum_{n=1}^{\infty} (a_n^2 + b_n^2).$$

(1)

Is your argument rigorous? What convergence issues need to be ironed out? Similarly, if we have a second function $g(x)$ with convergent Fourier series

$$g(x) = \frac{c_0}{2} + \sum_{n=1}^{\infty} c_n \cos(nx) + d_n \sin(nx)$$

then

$$\langle f(x), g(x) \rangle = \frac{a_0 c_0}{2} + \sum_{n=1}^{\infty} a_n c_n + b_n d_n.$$

(2)

The equations (1) and (2) are referred to as Parseval’s Formula.
4. It would be nice to have a large collection of functions for which one knows that

\[f(x) = \frac{a_0}{2} + \sum_{n=1}^{\infty} a_n \cos(nx) + b_n \sin(nx). \]

According to previous work, two reasonable hypotheses in order to guarantee this would be:

a. \(f(-\pi) = f(\pi) \),
b. \(f \) is twice differentiable with continuous second derivative. Show that the Fourier series for \(f \) does indeed converge under hypotheses a and b. In a situation where one knows that

\[\frac{a_0}{2} + \sum_{n=1}^{\infty} a_n \cos(nx) + b_n \sin(nx). \]

converges (and indeed converges uniformly) it follows that it is a continuous function. In this situation, Parsevals’ formula says that

\[\left| f - \left(\frac{a_0}{2} + \sum_{n=1}^{\infty} a_n \cos(nx) + b_n \sin(nx) \right) \right| = 0. \]

If \(f \) is continuous, show that you can then conclude that \(f = F \).
As you can see, the convergence issues which arise when studying Fourier series are quite subtle. Suppose \(f \) is a function which is nice enough so that its Fourier coefficients \(a_n \) and \(b_n \) are well defined and let \(F \) denote the corresponding Fourier series. Parseval’s formula says that \(|f - F| = 0 \) which means that there is no area underneath the graph of \(|f - F|^2 \). This does not mean that \(f = F \) but it certainly means that it cannot be non-zero over an entire interval. One would like to somehow identify all functions which differ from one another only off of a “negligeable” set and then one could truly say that any \(f = F \) in this new universe. In order to develop these ideas, one needs to study a little bit of measure theory and then introduce the space \(L^2 \) on the interval \([-\pi, \pi]\). The essential point to be gathered from this quick survey of Fourier analysis is that the functions \(\sin(nx) \), \(\cos(mx) \) are very special periodic functions, special because they form a basis for all (sufficiently nice) periodic functions. Just as a vector in \(\mathbb{R}^n \) can be prescribed by giving its coordinates with respect to the usual orthonormal basis, so a periodic function can be expressed as a sum of sine and cosine functions.