1. a. Let A and B be real $m \times n$ matrices. What can you say, in general, about the relationship of the three numbers $\text{rank}(A)$, $\text{rank}(B)$, $\text{rank}(A + B)$?

b. Let A be a real $m \times n$ matrix. What can you say, in general, about the relationship of the three numbers $\text{rank}(A)$, $\text{rank}(A^T A)$, $\text{rank}(A A^T)$?

Prove your claims.

2. a. Let A be a real $m \times n$ matrix. Define the singular value decomposition of A.

b. Suppose A is a 7×10 matrix with singular values

$$\sigma_1 = 10, \quad \sigma_2 = 5, \quad \sigma_3 = 1,$$

and all other singular values of A are zero.

What is the rank of A? What is the distance of A to the nearest matrix of rank 2? What is the distance of A to the zero matrix? Explain which distance function you use and justify your answers.

3. Given n real numbers r_j, $j = 1, \ldots, n$, we define an $n \times n$ circulant matrix, C, by:

$$c_{ij} = r_{j-i+1}, \quad r_p = r_{p+n}, \quad p \leq 0.$$

That is:

$$C = \begin{pmatrix} r_1 & r_2 & \cdots & r_n \\ r_n & r_1 & \cdots & r_{n-1} \\ \vdots & \vdots & \ddots & \vdots \\ r_2 & r_3 & \cdots & r_1 \end{pmatrix}.$$

a. Show that the discrete Fourier vectors, $q^{(k)}$, defined by:

$$q^{(k)}_j = e^{2\pi i (j-1)(k-1)/n}, \quad j, k = 1, \ldots, n,$$

are eigenvectors of C. What are the corresponding eigenvalues?

b. Sketch a fast algorithm for computing $C v$ and $C^{-1} v$ for favorable values of n. What is the approximate operation count of this fast algorithm?

Let:

$$B = C + uv^T,$$

where $u, v \in \mathbb{R}^n$. Describe a fast algorithm for solving $Bx = y$.

4. Describe three basic algorithms for finding the least squares solution of an overdetermined system of m linear equations in n unknowns. How do they compare in terms of cost? Discuss their accuracy.