Instruction: Complete all four problems.

1. In this problem all matrices are real and of dimension \(n \times n \).
 a) Define a normal matrix.
 b) Define an orthogonal matrix.
 c) State the properties of the eigenvalues and eigenvectors of a normal matrix? Prove your statements.
 d) Let \(Q \) denote an orthogonal matrix and let \(\Lambda \) denote a diagonal matrix. Is the matrix \(A = Q^{-1} \Lambda Q \) always normal? (Give a proof or counterexample.)

2. Consider an overdetermined linear system
 \[
 Ax = b
 \]
 where \(A \) is real of size \(m \times n \), \(x \in \mathbb{R}^n \), \(b \in \mathbb{R}^m \), \(m > n \).
 a) When is a vector \(x^* \in \mathbb{R}^n \) called a least squares solution of the system \(Ax = b \)?
 b) Give assumptions on \(A \) so that a least squares solution exists and is uniquely determined. Prove the result.
 c) Compute the least squares solution of
 \[
 \begin{pmatrix}
 1 & 0 \\
 1 & 1 \\
 0 & 1
 \end{pmatrix}
 \begin{pmatrix}
 x_1 \\
 x_2
 \end{pmatrix}
 =
 \begin{pmatrix}
 1 \\
 2 \\
 3
 \end{pmatrix}.
 \]

3. Let \(A \) be an \(n \times n \) positive definite symmetric matrix.
 a) Prove that \(A = LL^T \) where \(L \) is lower triangular.
 b) Estimate, as a function of \(n \), the number of arithmetic operations required to compute \(L \) by elimination.
 c) Using the matrix norm subordinate to the standard Euclidean vector norm, relate \(\| L \| \) to \(\| A \| \). Does this have any implications for the numerical stability of the computation of \(L \)?

4. Suppose \(A \) is an \(n \times n \) matrix with a known \(LU \) factorization and let \(B \) be a rank-one perturbation of \(A \), i.e.
 \[
 B = A + uv^T.
 \]
 Assuming both \(A \) and \(B \) are invertible, describe how to compute the solution to:
 \[
 Bx = c
 \]
 in \(O(n^2) \) operations.