NUMERICAL ANALYSIS QUALIFYING EXAM

Each Problem Counts 25 Points

January 1994

Name: ______________________

1. (i) State the fundamental theorem of linear algebra.
 (ii) Find the LU decomposition of the following matrix A.
 (iii) Find bases for each of the four fundamental subspaces associated with A (that is, $\mathcal{R}(A)$, $\mathcal{R}(A^T)$, $\mathcal{N}(A)$, and $\mathcal{N}(A^T)$), and state the dimension of these subspaces.

 $$A = \begin{bmatrix} 2 & -2 & 0 \\ -1 & 1 & 1 \\ 0 & 0 & 0 \\ 1 & -1 & 1 \end{bmatrix}$$

2. (i) Describe the singular value decomposition of an $m \times n$ matrix A. Define all matrices that you introduce.
 (ii) For the following matrix A and vector b, find the singular value decomposition, the pseudoinverse A^+, and the minimum length least squares solution x^+ of $Ax = b$.

 $$A = \begin{bmatrix} \sqrt{3} & 0 \\ 0 & 1 \\ 1 & 0 \end{bmatrix}, \quad b = \begin{bmatrix} 4 \\ 3 \\ 8 \end{bmatrix}.$$

3. A real square matrix A is called positive definite symmetric (PDS) if it is symmetric, $A = A^T$, and, for any $x \neq 0$:

 $$x^T Ax > 0.$$

 (i) Show that all eigenvalues of a PDS matrix are real and positive.
 (ii) Let $A^{(m)}$ be the $m \times m$ matrix obtained by intersecting the first m rows and columns of a PDS matrix, A. Show that $A^{(m)}$ is also PDS.
 (iii) Use the results above to show that if Gaussian elimination without pivoting is applied to a PDS matrix, only positive pivots are encountered. (Hint: consider the relationship between the pivots, the determinant, and the eigenvalues.)
 (iv) Use (iii) to prove the existence of the Cholesky decomposition of a PDS matrix: $A = LL^T$ where L is lower triangular.
NUMERICAL ANALYSIS 01/94

4. The power method for computing an eigenvalue of a matrix, A, is defined by:

$$y_{n+1} = Ax_n, \quad \lambda_{n+1} = y_{n+1}^T x_n, \quad x_{n+1} = \frac{y_{n+1}}{\sqrt{y_{n+1}^T y_{n+1}}}.$$

where x_0 satisfying $x_0^T x_0 = 1$ is otherwise arbitrary.

(i) Show that if there is a single extreme eigenvalue, that is a simple eigenvalue λ such that $|\alpha| < |\lambda|$ for all other eigenvalues α, then the power method converges, that is $\lambda_n \to \lambda$, for most x_0. (To simplify your arguments, assume that A is diagonalizable.)

(ii) Describe the typical behavior of the method if the extreme eigenvalues correspond to a conjugate imaginary pair. In particular show that the sequence λ_n may converge to a number which is not an eigenvalue. (An example will do.)

(iii) Let A be a real skew-symmetric matrix, i.e. $A = -A^T$. Show that all eigenvalues of A are imaginary. What can you say about the eigenvalues of A^2?

(iv) Suggest a modification of the power method to compute extreme eigenvalues of a skew-symmetric matrix.