Complex Analysis Qualifying Exam

August 1999

Do the following 8 problems. Show all your work and explain all steps in a proof or derivation.

1. Let \(f \) be analytic on \(\mathbb{C} \) and real-valued on the circle \(|z| = 1 \). Show that \(f \) is a constant on \(\mathbb{C} \).

2. Classify the singularities at \(z = 0 \) of the following functions \(f(z) \) (including the point at \(\infty \)).

 a) \(f(z) = \frac{\sin^2 z}{z^4} \).

 b) \(f(z) = \sin \left(\frac{1}{z} \right) + \frac{1}{z^2(z - 1)} \).

 c) \(f(z) = \csc z - \frac{1}{z} \).

3. Show the map \(f(z) = \frac{z - i}{z + i} \) is a bijection of the upper half plane \(H = \{ z \in \mathbb{C} | \text{Im } z > 0 \} \) onto the unit disc \(D = \{ z \in \mathbb{C} : |z| < 1 \} \).

4. Let \(f \) be a continuous map of a connected open subset \(U \subset \mathbb{C} \) into \(\mathbb{C} \).

 a) Show that \(f \) has a primitive on \(U \) if and only if \(\int_{\gamma} f(z)dz = 0 \) for every simple closed curve \(\gamma \) contained in \(U \).

 b) Consider \(f(z) = \frac{1}{z} \) on the punctured unit disc \(D(0, 1) - \{0\} \). Does \(f \) have a primitive on \(D(0, 1) - \{0\} \)? Explain.

5. Use the theory of residues to evaluate the integral \(\int_{0}^{\infty} \frac{\ln x \, dx}{x^2 + a^2} \).

6. State the Argument Principle and use it to prove the Open Mapping Theorem: Let \(f \) be analytic on some region \(\Omega \). Then the image \(f(U) \) is open in \(\mathbb{C} \) for every open set \(U \subset \Omega \). Hint. Apply the Argument Principle to the function \(f(z) - w \).

7. Use the Casorati-Weierstrass Theorem to prove that if the composition \(f \circ g \) of two entire functions \(f \) and \(g \) is a polynomial, then both \(f \) and \(g \) are polynomials.

8. Let \(f \) be a bounded analytic function on the disc \(D(0, R) \). Suppose that \(f \) also satisfies \(f^{(i)}(0) = 0 \) for all \(i = 0, \cdots, k \). Show that \(f \) satisfies the inequality \(|f(z)| \leq \frac{M}{R^{k+1}} |z|^{k+1} \) on \(D(0, R) \) where \(M = \sup_{z \in D(0, R)} |f(z)| \).