1. Let \(\{a_n\} \) be a sequence of complex numbers. Assume that \(f(z) = \sum_{n=0}^{\infty} a_n z^n \) converges for all \(z \) satisfying \(|z| \leq r \). Prove that if \(|a_1| > \sum_{n=2}^{\infty} n|a_n|r^{n-1} \), then \(f \) is an injective function on the disc \(|z| \leq r \).

2. Let \(f(z) = \frac{1}{z-1} + \frac{1}{(z-2)^2} \). Expand \(f(z) \) in a
 i) Taylor series in \(|z| < 1 \)
 ii) Laurent series in \(1 < |z| < 2 \).

3. A complex-valued function \(f = U + iV \) is said to be harmonic on a domain \(D \subset \mathbb{C} \) if \(U \) and \(V \) are harmonic on \(D \). Show that \(f \) is holomorphic on \(D \) if and only if both \(f \) and \(zf \) are harmonic on \(D \).

4. (a) Show \(\sum_{n=-\infty}^{\infty} \frac{1}{(z-n)^2} \) is meromorphic in the complex plane \(\mathbb{C} \)
 (b) Argue that \(\sum_{n=-\infty}^{\infty} \frac{1}{(z-n)^2} \) is holomorphic in \(\mathbb{C} \)
 (c) Show that this holomorphic function is 0, i.e. \(\sum_{n=-\infty}^{\infty} \frac{1}{(z-n)^2} = \sum_{n=-\infty}^{\infty} \frac{z^2}{(\sin \pi z)^2} = \sum_{n=-\infty}^{\infty} \frac{1}{(z-n)^2} \)
5. Let \(f : U \to \mathbb{C} \) be a holomorphic function defined on an open subset \(U \) of \(\mathbb{C} \). Let \(R \) be a closed rectangle contained in \(U \) (assume that the sides of \(R \) are parallel to the lines \(\text{Re}z = 0 \) and \(\text{Im}z = 0 \)). Give a complete proof of the equality

\[
\int_{\partial R} f(z)\,dz = 0
\]

6. Let \(p_n(z) = 1 + \frac{z}{1!} + \frac{z^2}{2!} + \cdots + \frac{z^n}{n!} \). Prove that for every \(R > 0 \) there exists a positive integer \(n(R) \) such that all roots of \(p_n(z) = 0 \) for \(n \geq n(R) \) belong to the set \(\{z \in \mathbb{C} \mid |z| > R\} \).

7. Assume that \(a, b, c \) are real numbers satisfying \(ac - b^2 > 0 \). Prove using residues

\[
\int_{-\infty}^{\infty} \frac{dx}{ax^2 + 2bx + c} = \frac{\pi}{\sqrt{ac - b^2}}.
\]

8. Let \(\{a_n\} \) and \(\{b_n\} \) be sequences of complex numbers. Assume that \(\{a_n\} \) has no accumulation point. Prove that there exists a holomorphic function \(f : \mathbb{C} \to \mathbb{C} \) such that \(f(a_n) = b_n \).