Complex Variables
Master's Examination

Spring 2000

Instructions: There are nine (9) questions on this examination, and each question is worth 25 points. Work any 8 problems. A maximum score of 200 points is possible.

1. Find a conformal mapping of the strip $0 < \Re z < 1$ onto the unit disk in such a way that $z = 1/2$ goes to $w = 0$ and $z = \infty$ goes to $w = 1$.

2. According to the Weierstrass factorization theorem, $f(z) = \cos \sqrt{z}$ can be written as an infinite product

 $$f(z) = C e^{g(z)} z^m \prod_{n=1}^{\infty} \left(1 - \frac{z}{a_n} \right) e^{h_n(z)} ,$$

 where $g(z)$ is entire and

 $$h_n = \begin{cases} 0, & k = 0 \\ \frac{1}{a_n} + \frac{1}{2} \left(\frac{z}{a_n} \right)^2 + \cdots + \frac{1}{k} \left(\frac{z}{a_n} \right)^k , & k \in \mathbb{Z}^+ \end{cases}$$

 Determine a_n, k and m.

3. According to the Mittag-Leffler theorem, the meromorphic function

 $$f(z) = \frac{\pi^2}{\sin^2 \pi z} ,$$

 can be expressed by the infinite series

 $$f(z) = \sum_{k} \left[P_k \left(\frac{1}{z - b_k} \right) - p_k(z) \right] + g(z) ,$$

 where $P_k(z)$, $p_k(z)$ are appropriately chosen polynomials, b_k are appropriately chosen complex numbers and $g(z)$ is analytic in the entire complex plane. Determine b_k, P_k and p_k.

4. For $a, b > 0$, evaluate the integral

 $$\int_{0}^{\infty} \frac{\cos ax}{x^2 + b^2} dx .$$

 Carefully justify any estimate you make.

5. Evaluate the integral

 $$\int_{0}^{\infty} \frac{x^p}{1 + x^2} dx ,$$

 with $-1 < p < 1$ by contour integration. As in the previous problem, carefully justify all your estimates.
6. Let \(B(0; 1) = \{ z \in \mathbb{C} \mid |z| < 1 \} \) be the unit disk. If \(a > e \) and \(n \) is a positive integer, prove that the equation \(e^z = az^n \) has \(n \) distinct roots in \(B(0; 1) \) (counted with multiplicity).

7. Let \(\Omega \subset \mathbb{C} \) be a simply connected region, and \(u : \Omega \to \mathbb{R} \) be a harmonic function. Prove that there exists \(v : \Omega \to \mathbb{R} \) such that \(u + iv \) is analytic on \(\Omega \).
 \textit{Hint:} Consider \(g(z) = \frac{\partial u}{\partial x} + i \left(-\frac{\partial u}{\partial y} \right) \).

8. Assume that \(f(z) \) is analytic on \(\mathbb{C} \setminus \{0\} \) and
 \[|f(z)| \leq |z|^2 + \frac{1}{|z|^{1/2}} \]
 for all \(z \in \mathbb{C} \setminus \{0\} \). Prove that \(f \) is a polynomial of degree at most 2.

9. Let \(f(z) \) be continuous on the closed right half-plane \(\tilde{\mathcal{H}} = \{ z \in \mathbb{C} \mid \Re z \geq 0 \} \) and analytic on the open right half-plane \(\mathcal{H} = \{ z \in \mathbb{C} \mid \Re z > 0 \} \). Suppose there exist constants \(C, M \in \mathbb{R} \) and a positive integer \(n \) such that
 (a) \(|f(iy)| \leq M \) for all \(y \in \mathbb{R} \),
 (b) \(|f(z)| \leq C (1 + |z|^n) \) for all \(z \in \mathcal{H} \).
 Prove that \(|f(z)| \leq M \) for all \(z \in \mathcal{H} \).
 \textit{Hint:} For \(\epsilon > 0 \), consider
 \[f_\epsilon(z) := \frac{f(z)}{(1 + \epsilon z)^{n+1}} \]
 and apply the maximum principle.