Each problem is worth 10 points.

1. Prove that any finitely generated subgroup of the additive group \mathbb{Q} is generated by one element.

2. Let G be a finite group and let $C(G)$ be its center. Assume $G/C(G)$ is cyclic. Prove that G is commutative.

3. Let G be a finite group of order p^aq with p, q primes, $p > q$. Prove that G is not simple.

4. Let G be an additive subgroup of \mathbb{R}. (\textit{R}=the field of real numbers.) Assume there exists an interval $I = (a, b) \subset \mathbb{R}$ such that such that $G \cap I = \{0\}$. Prove that G is generated by one element.

5. Let A be a commutative ring with unit element. Assume $a \in A$ is contained in all prime ideals of A. Prove that a is nilpotent (i.e. that there exists an integer $n \geq 1$ such that $a^n = 0$.)

6. Prove that the ring of Gauss integers $\mathbb{Z}[i] := \{a + bi | a, b \in \mathbb{Z}\}$ is principal.

7. Let $a_1, ..., a_n$ be integers with greatest common divisor 1. Prove that there exists a matrix A with integer coefficients, whose first row is $[a_1, ..., a_n]$, such that $det(A) = 1$. (Hint: consider the \mathbb{Z}–module \mathbb{Z}^n and the submodule generated by the vector $[a_1, ..., a_n]$.)

8. Determine the Galois group over \mathbb{Q} of the polynomial $x^6 - 5$.

9. Prove the fundamental theorem of algebra (that is show that the field of complex numbers \mathbb{C} is algebraically closed.)

10. Let A be a $n \times n$ matrix with complex coefficients. Prove that $A^n = 0$ if and only if $tr(A) = tr(A^2) = ... = tr(A^n) = 0$.