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We present a fast and efficient spectral method for computing the eigenvalues and eigenfunctions
for a one-dimensional piecewise smooth potential as is the case of epitaxially grown semiconductor
heterostructures. Many physical devices such as quantum well infrared photo-detectors rely upon
transitions between bound and quasi-bound or continuum states, consequently it is imperative to
determine the resonant spectrum as well as the bound states. Two approaches to the unbound
domain problem are introduced. A least-squares rational approximation for radiation conditions
can give sizeable errors which do not improve with truncation. Instead of trying to approximate
the transparent boundary conditions, our method uses mapping to compute the solution over all
space to machine precision. Moreover, we demonstrate that the resonant eigenvalues can computed
without shooting methods by deforming the coordinates in the complex plane to a contour along
which the eigenfunctions decay exponentially. Finally, we introduce a means of computing inner

products and expectations of operators with quadrature accuracy in the spectral domain.

PACS numbers: 73.21.-b, 02.60.Lj, 03.65.Ge

I. INTRODUCTION

Spectral methods have been most popular in the field
of computational fluid dynamics[1], although as we shall
demonstrate, they are especially well suited to quan-
tum mechanical problems. Even so, the literature for
spectral methods in quantum mechanics is relatively
limited. More commonly, finite difference[2] schemes
or shooting methods such as the transfer matrix([3, 4]
and transmission line analogy[5] have been employed
in computing eigenvalues and eigenfunctions for quan-
tum mechanical potentials. Spectral methods have been
employed to compute eigenfunctions for atomic[6] and
oscillator[7] potentials with great success. Here we in-
troduce a spectral-element approach based on Lanc-
zos’ tau method[8] for solving the one-dimensional time-
independent Schrodinger equation (TISE) with arbitrary
piecewise smooth potentials in unbounded domains. This
approach allows for a numerically robust and fast compu-
tation of the eigenvalues and eigenvectors of the Hamil-
tonian operator for potentials with an arbitrary number
of discontinuities typified by epitaxially grown quantum
semiconductor devices. The spectral method offers a sub-
stantial advantage over shooting methods in that it is
possible to simultaneously compute as many eigenfunc-
tions and eigenvalues as desired. While this is also true
for finite difference schemes, we shall see that for a given
tolerable error, the spectral method requires matrices
which are usually orders of magnitude smaller than the
corresponding finite difference matrices. Since the energy
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band profile of an epitaxially grown structure is piecewise
smooth, spectral-element methods guarantee exponential
convergence of the solution[10], whereas finite-difference
methods will converge only algebraically.

Spectral methods are divided into three general types,
Galerkin, tau, and collocation schemes which are also
called pseudospectral methods. In the Galerkin method,
the solution of a differential equation (DE) is expanded
in terms of trial functions. The trial functions are
constructed from a basis of orthogonal polynomials so
that each trial function satisfies the boundary conditions
(BCs) independently. In contrast, the tau method di-
rectly uses the basis functions as trial functions even
though these do not individually satisfy the BCs. In-
stead so-called tau conditions are imposed which require
that the superposition of trial functions satisfy the BCs.
Both tau and Galerkin methods operate in the spectral
or modal space, meaning that the solution of the DE is
represented by a vector containing the coefficients of ex-
pansion in terms of trial functions. Collocation schemes
work directly in point or nodal space and are frequently
favored for nonlinear problems as the iterative solution
to the DE often requires less computational effort. DE’s
involving complicated BCs can render Galerkin meth-
ods less appealing as the construction of trial functions
becomes more laborious and computationally expensive.
We prefer the tau method over collocation for two rea-
sons. It gives slightly faster convergence, but more im-
portantly the matrices can be converted to quasi-banded
form[14, 15] allowing the use of sparse eigenvalue-solvers.
We chose Chebyshev polynomials of the first kind as
the trial functions because the Chebyshev-Gauss-Lobatto
nodes have a closed-form expression and allow use of
the Fast Fourier Transform (FFT) to transform between
point space and modal space. In general, we found that
using Legendre polynomials as the trial functions resulted



in slightly reduced rates of convergence.

Our multi-domain approach combined with rational
mapping allows one to treat the asymptotic regions ex-
actly as any other elements. By deforming the coordi-
nates to a contour in the complex plane, we can find a
trajectory along which the resonant eigenfunctions de-
cay and have a convergent expansion which allows the
efficient computation of the resonant spectrum.

II. FORMULATION

The TISE in one dimension is
{————— n v<m)} o) = Bo(e) (1)

Assume that V'(z) has compact support such that the
potential is asymptotically constant.
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The potential V(z) may have discontinuities at z; and
z, but is assumed smooth for z; < ¢ < z,. Let
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The Schrédinger eigenproblem is then solved numerically
using Lanczos’ tau method[8] which is described in detail
below. Let N be the order of truncation so that on the
unit interval the Chebyshev-Gauss-Lobatto (CGL) nodes
are

wk
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The known functions p(Z) and ¢(Z) are samples at the
CGL nodes and are expanded in terms of Chebyshev
polynomials of the first kind[10]

T) = ZﬁjTj (&) . (7)

The Chebyshev polynomials satisfy the following recur-
rence relation and derivative identity[11]
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The values that p(Z) takes at the CGL nodes are stored
in a column vector py. The vectors of nodal values and
expansion coefficients are related by the cosine transform
matrix

Ty
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The structure of the matrix M allows for transforma-
tion between the nodal space where the function is rep-
resented by the vector py and the coefficient space
where the function is represented by p using the FFT
which scales as O(N log(N)) instead of O(N?). The
functions p(z), ¢(z) and w(x) have convolution matrix
representations[14] of the form

N
P=> §T;, (10)
7=0

where the T; are computed from the Chebyshev recur-
rence relation applied to the X matrix (A2)

To=1, T,=X, (11)
Tjy1 =2XT; —T; 1, j=1,2,...

Here I is the identity. One now obtains the matrix form
of the differential equation

{-o’D[PD] +Q} = \i. (12)

where the differentiation operator has discretized as the
D matrix (Al). The a term is a scaling factor which
arises from the change of coordinates when the prob-
lem was mapped onto the unit interval (a = 2/L).
It is often desirable to convert to integration precon-
ditioned form[15], which improves the convergence, but
more importantly renders the generalized eigenproblem
more sparse, which is of particular value when using a
sparse eigenvalue solver such as ARPACK][16]. Two im-
portant identities are

DX -XD =1, BpD=1I. (13)
where By is the integration matrix (A3). We use the
notation A, for the matrix A with the first n rows set to
zero. To convert to integrator form, the second derivative
must be brought to the left of P to do so, the necessary
identity is

PD =DP - P’ | (14)

where the prime notation indicates
N
=Y piT;, p'=D'p. (15)
=0

The DE is rewritten as the matrix equation

{-o’D[DP - P'| +Q} i = Aa (16)
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FIG. 1: Convergence comparison of the tau, collocation, and
finite difference methods for the ground state of the infinite
potential well of width L = 2 (unitless).

The integration By;) matrix is then applied twice and
letting

L = —o’P + o’BP’ + BQ (17)
we obtain the generalized eigenvalue problem (GEP)
Li = AB%i1 . (18)

Now we must impose the two tau conditions since the DE
is second order. This is accomplished by inserting Dirich-
let operators for the endpoints into the first two rows of
L. These operators are described below. The GEP is
solved numerically using the QZ algorithm[9]. This is
done easily in MATLAB®with the command eig(L,B2).

To demonstrate the convergence, we show the absolute
error versus polynomial truncation for an infinite poten-
tial well on the unit interval. The convergence of the
tau, collocation, and finite difference (FD) schemes for
the ground state makes the advantage of spectral meth-
ods immediately apparent. The finite difference method,
however, exhibits algebraic convergence. For example,
the three-point FD scheme has second order convergence.
This means that if one doubles the number of FD nodes
then the error is expected to reduce by a factor of four. In
contrast, the error for tau and collocation spectral meth-
ods appears to drop by roughly an order of magnitude
for each extra term added to the series and demonstrates
the expected exponential convergence.Figure 1 demon-
strates the convergence of the integration-preconditioned
tau method and collocation method with thee-, five-, and
seven-point FD schemes. One advantage of FD schemes
is that although the matrix may be very large, it gen-
erally has banded or quasi-banded form, consequently
the matrix tends to be sparse. The discretized poten-
tial will only affect the diagonal elements of the FD and
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FIG. 2: Comparison of spectral and finite difference methods
for the convergence of the third eigenvalue as a function of
number of nonzero matrix elements.

collocation matrices so the sparsity will not be affected
as in the case of the tau method. With the availabil-
ity of sparse solvers[16], perhaps a fairer comparison of
the spectral and FD schemes is convergence as a func-
tion of matrix sparsity. Figure 2 demonstrates that the
tau method not only has a substantial advantage over
all three FD schemes, but its advantage over collocation
has increased as well. As long as the potential can be
closely approximated by a low order polynomial or ra-
tional function, as is the case with semiconductor het-
erostructures, the preconditioned tau method will result
in sparse quasi-banded matrices, whereas collocation re-
sults in full matrices. The FD approximations were per-
formed on the uniform grid points. Had we chosen the
CGL nodes for constructing the FD matrix, then in the
limit as the number of points approaches the size of the
matrix, the FD matrix would converge to the Chebyshev
collocation matrix[12].

IIT. MULTIPLE ELEMENTS

While the spectral method produces optimal results
approximating smooth functions, in most practical het-
erostructures, the potential is only smooth within a
given epitaxial layer with potential discontinuities in the
band edge corresponding to material interfaces. Cheby-
shev polynomials will converge to a discontinuous func-
tion in the L, sense but not in L., due to the Gibbs
phenomenon[10]. Although there exist methods for fil-
tering out the Gibbs phenomena[13] and restoring spec-
tral convergence, heterostructure problems are most ef-
ficiently solved using spectral elements since the discon-
tinuities have known fixed locations. When there are
multiple elements, there is a different discretized Hamil-
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FIG. 3: Absolute error for the first three eigenvalues for the
two-element potential well. The exact values were computed
with the secant method.

tonian operator for each element. A global solution is
obtained by requiring that each local solution and its
derivative equal next local solution at the interface be-
tween elements. Consider a discontinuous potential well

@ : —1<z<0
q(x) =< @ 0<z<1 (19)
oo : Jz|>1

letting for example g; = 0 and g2 = 100. This gives two
DEs where the solutions are coupled through boundary
conditions at z = 0.

{—dd—; + (11,2} u1,2(7) = Aua2(2) (20)

ul(—l) = 0,
u1(0) = u2(0),

u(+1) =0
u3(0) = u5(0)

Since both elements have unit length, the scaling factor
is a = £ = 2. Writing (20) in terms of (18)

L
Loy 2 = AB%i1; 5 (21)
o iy =0,
6+f11 - 6_ﬁ2 = 0

6+ﬁ2 - 0
avily —av_tz =0

The Dirichlet and Neumann operators are row vectors
defined in (A4). Typically the elements will not be of the
same length and the effective mass in the two regions may
be different, so the Neumann operators must be scaled
accordingly. Now the equations in (21) can be written as

(22)
This approach generalizes to any number of elements
where matching conditions on the solution and its deriva-
tive are imposed at the interfaces. In general, the left ma-
trix of the pencil (22) will be block tridiagonal and the
right matrix will be block diagonal. Figure 3 compares
the first three eigenvalues of (22) with those obtained
using the secant method. It should also be mentioned
that although we have chosen the same polynomial trun-
cation for each element, this is by no means necessary.
Typically one may wish to use a larger truncation with
longer elements or in elements where the wavefunction is
expected to oscillate rapidly over space. privelage

IV. UNBOUNDED DOMAINS

A radiation condition is constructed by imposing a
Dirichlet-to-Neumann condition which depends on the
group velocity. The Schrédinger equation is parabolic
because it is first order in time and second order in space,
therefore the group velocity has a square root dependence
on the electron’s energy. The square root function has
a branch point at zero kinetic energy, therefore it does
not have a convergent Taylor series at this point. One
approach to construct radiation conditions for the TISE
is to approximate the group velocity by a linear least-
squares fit[2]. While this simplifies the problem greatly,
we have found that the computed eigenvalues can be off
by as much as 20%. Other authors have used Padé ap-
proximations [17] of the group velocity with slightly im-
proved results. In the special case of the potential which
has the same asymptotic value on both sides, one can
write exact radiation conditions by taking the wavenum-
ber as a linear eigenvalue and the energy as a quadratic
eigenvalue term[18]. The quadratic eigenvalue problem
leads to a doubling of matrix size and is rather limited in
usefulness due to the requirement of asymptotic symme-
try. Approximate absorbing boundary conditions are de-
veloped in detail in section ITI-A below. Instead of trying
to approximate the radiation condition, we demonstrate
a method to compute the entire solution over all space
to machine precision.

First we consider bound states where the outgoing
waves are simple decaying exponentials. A common ap-
proach would be to simply truncate the domain at a
large distance from the well with the expectation that
the wavefunction will have decayed to approximately zero
by reaching the endpoint. We shall see, however, that
this approach is not optimal as the nodes will be over-
clustered where the solution goes to zero. A much more



efficient approach is to use a polynomial expansion on
the semi-infinite interval. This has been accomplished
with great success using Laguerre functions[19, 20] and
it is possible to use multiple families of polynomials in
the construction of multi-element operators such as is
(22). However, the Laguerre functions are not polyno-
mials and consequently the matrix representations of op-
erators are full matrices and are more computationally
expensive to construct. If we wished to compute solu-
tions on finite-length intervals with Chebyshev polyno-
mials and use Laguerre functions for semi-infinite inter-
vals, then we require two sets of operators to solve the
complete problem. An attractive alternative is to employ
rational mapping [21] which allows one to map the semi-
infinite interval to the unit interval while using the same
Chebyshev approach as before. Such a mapping results
in a clustering of nodes at the interface to the local so-
lution and gives spectral convergence to solutions which
decay exponentially.

A. Absorbing Boundary Conditions

A traditional way to solve DE’s on unbounded do-
mains is to truncate the domain and match the nu-
merically computed local solution to a known asymp-
totic solution[2, 17]. For the TISE in one dimension,
this is accomplished by imposing continuity of the loga-
rithmic derivative of the wavefunction across the inter-
face between the local and asymptotic regions. Since
the asymptotic solution is of the form exp(y/A — qz), the
logarithmic derivative at the interface is some constant
times v/A — ¢. This term is simply a scaled group veloc-
ity. Since the overall eigenproblem depends on both A
and VA we can not, in general solve exactly. If, how-
ever, the eigenproblem contains only powers of A then it
can be solved as a GEP by constructing the companion
matrices[18].

We extended the approach of Shibata[2] by approxi-
mating the scaled square-root function /1 — ¢ for ¢ €
[0,1] by a least-squares rational function.

K
> angk
VionRg) = =
1+ Z bk¢k (¢)
k=1

The expansion coefficients can be computed exactly by
solving the system of equations

Va,i;/ (A(¢) - V1= <756‘(<75))2 dp=0  (24)
0

These optimal coefficients are given in table I. Using
these various expansions, the error |R(¢) — /1 — ¢ is
plotted in figure 4. As one might expect the error de-
creases through most of the interval for higher order ex-

TABLE I: The coefficients of the first three least-squares ra-
tional approximations to the square root function

bi-linear bi-quadratic bi-cubic
ao 0.98674351585014 0.99953973549047 0.99998457979265
a1 -0.91988472622478 -1.67601451666117 -2.38532812936857
a2 s 0.68013245842345 1.82014806012346

as .- . -0.43463829207320
b1 -0.52449567723343 -1.18441536224446 -1.88583012408147
b2 .- 0.24557351809084 1.00597708415993
bs .- e -0.11510707954682

TABLE II: Minimum and maximum relative error of the seven
bound state eigenvalues for least-squares rational approxima-
tions

bi-linear bi-quadratic bi-cubic
min error 1.2323% 0.7585% 0.3647%
max error 16.1008% 11.4503% 14.7714%

pansions, however, the error does not improve signifi-
cantly in the neighborhood of the branch point at ¢ = 1.
Although the error appears to be reasonably small, the
DE is weakly ill-posed[17] with respect to these approx-
imate BCs. To demonstrate, we computed the seven
bound states of a finite potential well on the unit interval
with scaled depth of 100. The minimum and maximum
relative error for the computed eigenvalues is given in
table II. Whether one might desire to use these absorb-
ing boundary conditions depends largely on the required
accuracy and nature of the problem. This approach is
reasonably suited for finding approximate eigenvalues far
away from the top of the quantum well since the rational
approximant fits the exact function more closely there.
The problems with absorbing boundary conditions can
be avoided entirely by solving the TISE over all space.
This technique is introduced in the next section.

B. Rational Mapping for Bound States

Now we consider an approach which maps the semi-
infinite intervals (—oo, —R] and [+R, c0) to the unit in-
terval. This is accomplished using a rational map. Let
Y- [—OO,—R] = [_171] and Y+t [+R,+OO] = [_171]
These maps and their inverses are

rFR +3

The mapped derivatives are

B 1

= - 12— 2

% 4R(yi¢ ) s (26)
d? 1 d 1 d?
Sl 18- 4+ — D= (2
— = i (y+ F1) s + oz (y+ F1) @ (27)
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FIG. 4: Absolute error for the linear, bi-linear, bi-quadratic,
and bi-cubic least-squares approximations to /1 — ¢.

One can then construct a three-element scheme similar
0 (22) where there will be one sub-matrix each for the
right and left asymptotic regions and a sub-matrix for
the quantum well element. The matching of the Dirichlet
conditions and Neumann conditions are exactly as before
because the mappings are precisely linear at the points
z = £ R. We then implement this approach and examine
the convergence of the first and third eigenvalues of a
finite potential well with depth gy = 100 and width L =
2. The integrator preconditioned operators for the left
(-) and right (4) asymptotic regions are

L. =

(X FD)* + S%B(X FI)3+ (28)

B?[qoI —

" 16R?
3

SR (XF 1)2]

whereas the operator for the quantum well is simply —1I.

The left-hand side of the resulting matrix pencil is

o
04 |—o_
L_
Vy | —V_
l.h.s.= —vy | Ve (29)
—I
-0+ |0_
5
Ly

and the right-hand-side is simply block diagonal with
three B[22] blocks. The exact eigenvalues have been com-
puted using the Newton-Raphson method. Additionally
we have computed A 3 using domain truncation where an
element of length L = 15 has been placed on either side
of the quantum well. Figure 5 demonstrates that both
methods converge, however the rational map gives spec-
tral convergence whereas the truncated domain approach
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FIG. 5: Absolute error of the first and third eigenvalues with
rational mapping compared to domain truncation. For do-
main truncation, L = 15.

provides algebraic convergence. Both methods are lim-
ited to the calculation of bound states as the Dirichlet
conditions imposed by domain truncation will discretize
the continuous spectrum into real bound states and de-
stroying the resonances [22-25]. The rational mapping
does not work for unbound states since it will map a
function which oscillates periodically on an infinite inter-
val to a finite interval thereby creating a function which
has an essential singularity at a point in the domain such
as sin(1/z) and can not be approximated using spectral
methods. For unbound states we shall take a different
approach.

C. Computing Resonances with Complex
Coordinate Deformations

The resonances in the continuum density-of-states
(DOS) correspond to the poles of the single-particle
Green’s function which lie off of the real axis[22]. These
eigenvalues do not correspond to physical states as their
eigenfunctions exhibit unbounded growth at infinity.
Nevertheless, numerous calculations for transitions be-
tween bound states and the continuous spectrum de-
pend on the spectral density of unbound states. One
can always obtain the DOS from the trace of the Green’s
function[26] if it is available. commitee

pip() = Y000~ M) = ~3[Tr{G(z, 23 V)] (30)

For one-dimensional problems a “closed form” for the
Green’s function can be obtained[27] from solving the
boundary value problem using shooting methods[5], how-
ever, even constructing just the diagonal elements of the
Green’s function is unnecessarily expensive as we need



only know the location of the poles[22].

If the coordinate z is taken along the real axis, the
eigenfunctions diverge at large distances. Since the co-
ordinates are not a quantum mechanical observable, the
spectrum is not affected by solving the eigenvalue prob-
lem along a different contour in the complex plane[28].
In general, computation along a contour in the complex
plane requires analytically continuing the potential in the
complex. However, in the asymptotic region where the
potential is constant, this continuation is trivially accom-
plished. By choosing a new coordinate contour of the
form[29, 30]

z—ic(—x—R)" if z<—-R
z= z if —R<z<+R (31)
z+iclzx —R)" if z>+R
ceRT, ne{234,...}

the resonant eigenfunctions will exhibit super-
exponential decay along the contour. Since the contour
is at least C!, there will be no reflection. Consequently,
only the resonant eigenvalues with negative imaginary
part will be resolved since they correspond to outward
propagating solutions. To compute the eigenfunctions
along the new contour, all that is required is the
modification of the Hamiltonian to the new coordinates.

d? 2z (dz\ "0 d dz\ "% &
o= (F) S+ (5) s (32)
dz? dz? \ dx dz dz dz?

Convergence depends on the choice of the parameters
n and c. For low energy resonances, n = 2 and ¢ = 1 give
optimal convergence, however, for higher energy states,
the solution does not decay fast enough to resolve the
eigenfunctions. In these cases, using a cubic or quartic
deformation (n = 3,4) or larger coefficient ¢ will make it
possible to resolve higher energy states at the expense of
requiring higher truncation for the lower states.

The convergence for bound states was shown (Fig. 5)
to improve by mapping the semi-infinite interval onto the
finite interval, so the same approach can be applied here.
The rational map gives the best convergence for func-
tions which decay exponentially[1], however, if we use a
quadratic deformation of the coordinates, the resonant
eigenfunctions will decay as e~®". Tor this type of de-
cay the rational mapping will over-resolve the eigenfunc-
tions away from the local solution. An asymptotically
linear deformation will give exponential decay and there-
fore faster convergence, but will not be globally C* unless
we introduce an matching curve such as in the contour
in figure 7, requiring the introduction of intermediate,
“matching” elements.

D. Scattering States and Tunneling

Scattering states belong to the continuous spectrum
and for a one-dimensional problem, they can be thought
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FIG. 6: Convergence of the first and third resonances us-
ing quadratic (n = 2) and cubic (n = 3) contours with end
element lengths L = 2 and contour coefficient ¢ = 5. See
equation (31).
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FIG. 7: A C' contour along which the solutions have asymp-
totic exponential decay.

of as right or left propagating waves. Unlike resonances,
scattering states are physical solutions, but are not true
eigenfunctions since the do not satisfy two-point bound-
ary conditions. Traditionally, the scattering states and
tunneling probability have been computed using shooting
by approximating the potential as piecewise constant[3]
or linear[4]. Here we use the same approach, except that
the spectral method is optimal because instead of approx-
imating the potential as piecewise constant or linear, any
piecewise smooth function allowed.

Here we describe how to compute the right-
propagating scattering wavefunction for a single element.
Generalization to multiple elements is similar to the
eigenvalue problems before and can be solved rapidly
since it is a block-tridiagonal system. The initial val-
ues for the problem are imposed at the right endpoint.
Using the scaled functions and parameters as before

’LL(+1) = 17 ul(+1) = ikr; kr,l =V A— qr,1 (33)



To compute the Chebyshev expansion coefficients for the
solution, one must solve the integration-preconditioned
system

5y 1
vy = ik, (34)
—I+B2[V — Al 0

The approach is similar for left propagating solutions,
except initial values are imposed at the left endpoint and
ik, is replaced by —ik;. Once the solution vector, i is
computed, the reflection and tunneling probabilities are
calculated by

(ikb_ —v_)a|

RN =Ghs vva

V. NUMERICAL INNER PRODUCTS

Frequently in quantum mechanics, one is interested in
computing inner products such as a transition probability
or the expectation value of an operator. Here we show
that when the spectral-tau method is used to compute
the expansion coefficients for the eigenfunctions of the
Hamiltonian, inner products can be computed rapidly
with quadrature accuracy without requiring a transfor-
mation to point space. Now supposing one wishes to
compute the inner product

+1

twl) = [

-1

u*(x)v(z)dx (36)

The numerical integration is carried out as
(ulvy = bUtY (37)

Here the notation fJ"i does not mean the Hermitian con-
jugate of the matrix U, but rather that the matrix is con-
structed using the complex conjugates of the elements of
. The definite integral operator b is

b=-2(-1031015"10-- (N?-1)"1) (38)

Constructing the convolution matrix is the most numeri-
cally expensive aspect since it scales as O(N?3). This can
be improved greatly by plugging the definition into the
inner product.

N N
(ulv) =b) apTe¥ = a;bT¥ (39)
k=0 k=0

On can then define an inner product operator matrix
where the rows are the integrated convolution matrices
of the basis functions

bTo
bT,
K=| . (40)
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FIG. 8: Convergence of the transition matrix elements of the
scaled momentum operator.

The benefit to constructing the matrix K is that it may
be computed to an arbitrarily large truncation, indepen-
dent of a given problem. This matrix can be stored in a
file and one need only take the upper left (N+1)x (N+1)
sub-matrix to compute the inner product. One then has

(ulv) = @K% (41)

Where u* is the Hermitian conjugate. One is also fre-
quently interested in computing a number of transition
probabilities or expectation values of operators. Given a
linear operator @ which is discretized as O, it is possible
to compute transition probabilities between a number of
states u; where j = 1...n simultaneously. Let S be a an
(N +1) xn matrix containing a subset of the eigenvectors
of the discretized Hamiltonian H such that

S=(ty Gy G1g --- 1y ) (42)
Then the complete transition matrix for the operator £
is

(u1|Our) (u1|Ouz) -+ (ur|Oun)
(u2|(:9u1) (u2]|Ouz) | (Uzl(:')un) _ §'KOS
(43)

The matrix KO can be prepared in advance, since it does
not depend on the potential. With this advantage, the
matrix multiplication in the spectral domain is as fast as
the analogous computation in point space. One benefit
of working in the spectral domain is that it is easy to
determine if a solution if fully resolved by observing the
exponential decay of expansion coefficients. This is less
apparent by examining the solution’s behavior in point
space.



VI. CONCLUDING REMARKS

We have presented a fast and efficient method of solv-
ing the TISE for an arbitrary semiconductor heterostruc-
ture. By expanding in terms of orthogonal polynomials,
we obtain a matrix representation of the Hamiltonian
from which we may simultaneously compute as many
eigenfunctions and eigenvalues as desired. This offers
a substantial advantage over more prevalent shooting
methods as we do not need to hunt for eigenvalues be-
cause that work is performed by a matrix eigen-solver
routine. For all examples, the MATLAB®function eig
was used to obtain eigenvalues and eigenvectors. We
have also shown that the spectral method requires much
smaller matrices than the finite difference method to
achieve comparable error. Frequently, the spectral ma-
trix size is orders of magnitude smaller. Integration pre-
conditioning was introduced to the Schrodinger eigen-
problem, giving a sparse quasi-banded structure to the
matrices.

The spectral element method was then extended to

incorporate unbounded domains through rational map-
ping. The mapping demonstrated superior convergence
over the more traditional domain truncation approach.
We discussed the phenomena of resonances and the diffi-
culties of computing them. Using a complex coordinate
deformation for the end elements, we showed that one
may solve the TISE on a new contour, along which its
eigenfunctions have a convergent expansion. Addition-
ally, the scattering states and tunneling probability were
shown to be easily obtainable by formulating a spectral
element initial value problem. Finally we demonstrated
that one may easily compute inner products and expec-
tations of operators in the spectral domain using simple
matrix vector multiplication.
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APPENDIX A: CHEBYSHEV MATRICES AND
MATLAB®SCRIPTS

The fast cosine transform from nodal to spectral values
is



temp=ifft ([u(1:N);u(N-1:-1:2)]);
uhat=[temp(1,:); 2*temp(2:N,:)];

and the transform from spectral to nodal values is

temp=fft([uhat(1,:); ...
[uhat(2:N,:) ;uhat(N-1:-1:2,:)1/21);
u=temp(1:N,:);}

The Chebyshev differentiation matrix, D, for N = 8 is

5 0 7 0
0 12 0 16
10 0 14 0O
0 12 0 16

0 12 0 16
0 0 14 0
0 0 0 16
0 0 0 O

vl

I
SO OO OO O
SO0 OO OO O
OO OODOCOO RO
SO OO OO W
SO O OO OO

This can be constructed easily with the script
D=zeros (N+1) ;

for k=1:N D(k,k+1:2:N+1)=2*%(k:2:N) end
D(1,:)=D(1,:)/2;

The Chebyshev position operator matrix is

o N O
O = O =
O = O
O = O
= O

10 0 14 0 (A1)

(A2)

The X matrix has the script

band=ones (N, 1) /2;
X=diag(band,-1)+diag(band,1);
X(2,1)1=1;
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The Chebyshev integration matrix, B, which is the

pseudo-inverse of D has the form

000 0 0 ...0
10-2 0 0 ... 0
00 -2 0 ...0

By =

5 0 —%
0 s 0

The script for the By matrix is

band=[0 1./(2*%(1:N+1))];
B=diag(band(2:N+1),-1)-diag(band(1:N),1);
B(2,1)=1;

The Dirichlet and Neumann operators are

6=(1-11-11-1--- (-1)V)
op=(111111---1)
v_=(01-49 -16 25 --- N*(-1)N+!)
vy=(014916 25 --- N?)

(A3)

(A4)



