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Invertibility of current density from near-field electromagnetic data
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The problem of determining a current density confined to a volume from measurements of the
magnetic and electric fields it produces exterior to that volume is known to have nonunique
solutions. Despite the nonunigueness of the inversion we show that one may nevertheless uniquely
determine certain moments of the vector spherical harmonic expansion of the current. It is
demonstrated that the determination of these moments allows for the unique inversion of a current
density confined to a spherical shell. Although unique the inversion may be ill conditioned and
require a regularization of the inversion as demonstrated in an example numerical inversion.
© 2003 American Institute of Physic§DOI: 10.1063/1.1611262

I. INTRODUCTION and due to the current sourdér,t) contained in the interior

o ) of the shell, invert the field data to obtain the current density
The electromagnetic inverse problem consists of the deg; some of its properties. Initially we do not invoke the in-

termination or estimation of the current source underlyingg ..o homogeneous conductor assumption and we seek in-
the electric and magnetic fields measured outside the sourcga,q inversion for the more general problem of téfal-

However, as was shown by Helmholtz in 185, current mary plus ohmig current. We take this approach since there
distribution inside a conductor cannot in general be deterys oongjgerable dispute over the applicability of the infinite

mined uniquely from knowledge of the electromagnetic ﬁeldhomogeneous conductor and spherically symmetric conduc-
exterior to the conductor. There exist current distributions, assumptions to most situations of practical intefest.

which give rise to no magnetic field outside, no electric field o ever we do contrast our results to the infinite homoge-
outside or neithet® However, if certain constraints are oqs conductor model since it is a useful idealizaion.

known to apply to a current distribution, one can perform the 1 grticle is organized as follows: In Sec. Il we give a
inversion uniquely(see-planar casé _ _consistent presentation of the near-field approximation as
In neuroscience applications one is usually interested iy taing to an inversion for the total current density. Section
obtaining information about the primary current soud®e | in estigates the uniquely determined properties of a cur-
due to direct neuronal activity and defined in the following .o+ density for the inverse magnetometry problem. Section

it — 3P i : . .
decomposition of the total currenl:=J°+cE. One is then |, shows in what manner electrical potential data may add to
faced with the problem of inverting for botf andE simul- 6 jnversion problem. Section V then makes connection

ta_neously given extgrnal field data. This task.is further COMyith the infinite homogeneous conductor case. Section VI
plicated by the difficulty of p%r_f?rmmg detailed measure- 5 hjies the results of the preceding sections to the unique
ments of tissue conductivity(x).>™"In the case of an infinite i, arsjon of a current on a spherical shell. Although unique,
homogeneous conductivity the ohmic curremt&)E, make e jnversion is still not well-posed in the Hadamard sense
no contributions to the external magnetic field, which cangj,ce as will be shown, the inversion can be ill-conditioned

then be expressed in terms of the primary current alone. _qgading to “high frequency” noise amplification. Regulariza-

course, the essential non-uniqueness of the INVersiof,, may he needed to make the inversion well-behaved. In
remains reqiring additional constraints or assumptions forgec v we formulate a simulated experiment to illustrate
a unigue inversioft: the competing effects of increased magnetic field sampling,

The purpos_e Of_ this article is twofglldl) to give a com- noise amplification, and regularization. Conclusions appear
plete characterization of those quantities related to the cuk, gac v

rent density which can be determined by a linear inversion

and (2) to present a numerical algorithm for the unique in-

version on a spherical shell. II. A CONSISTENT NEAR-FIELD APPROXIMATION
We state the idealized near-field electromagnetic inverse

problem as follows: Given the magnetic fiegdr,t) and the

electric fieldE(r,t), known everywhere on a spherical shell

Although Plonsey has treated with success the quasi-
static problem for primary currents by neglecting certain
time derivatives in the Maxwell equations, such an approxi-
mation leads to inconsistency if applied to the total current

dAuthor to whom correspondence should be addressed; electronic maibituation. Ne_lmel_y the ne_c_]_lect of th_e displacement (?U”fent
sheltraw@unm.edu (1/c) (o€l ot) implies thatV-j=0. But since the charge distri-
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butionq is initially zero the equatio¥-j=0 implies, through The frequencies involved in neuronal activitypically
the equation of continuity, that it will remain zero as will the ~100 H2® are small compared to the reciprocal of the time
electric potential. Clearly an approach focused on the total€eded for the signal to propagate from the source to the
current must account for the near-field electric potentialss€nsor. This leads to a near-field expansion with respect to
which are measured routinely in the low-frequency electrothe small dimensionless parameter R /c, the ratio of a
encephalography experiment. charactgrlstlc dlstanca between the source posmons and
In this section we derive a consistent near field approxithe positions of the field measuremerigpproximately 25
mation to form the basis of the inverse problem for the total™ to the distance that would be propagated by the electro-

current. The microscopic Maxwell equations are written as magnetic field in vacuum during a characteristic period. Here
Q. is the characteristic frequency of the current density. To

V-b(x,t)=0 V-e(x,t)=4mq(x1), accomplish this Eq9(3)—(4) are written in terms of the di-
mensionless independent variablesx/R, w=w/{}., and
190 41 . . . -
V Xb(x,t)— < Ee(x’t): T](X’t)’ (1) the dimensionless dependent variabley=j/J;, A

=calJ4mR?, ®=c¢/IA4mR? E=cel4nR, and B
190 =cb/J.47R as
VXe(x,t)+ = —Db(x,t)=0.
cat V2A(r)+ e2W?A(r) = —J(r), 7
It will be assumed that there exists no initial charge distribu- i
tion despite the fact that charge separation does exist across a eV2d(r)+ e3w?d(r)= —V-J(r), (8)
resting polarized neuron. To do so assumes a spatial scale of w

interest which we take to be a volurweinclusive of many  \yhere J, is a characteristic current magnitude. The defini-
neurongpossibly a cubic millimetgrover which the average tions of the potentials Eq(5) and Lorentz gauge Ed6)

charge is zero. Such an average denoted(byt) for a mi-  pecome

croscopic quantityf(x,t) is defined byf(x,t)=1NV[\f(x B ] B

+x',t)d%’. Since this averaging process is linear we may ~ B(1)=VXA(r) iewA(r)—E(r)=Va(r), ©)
then write the macroscopic equations at this scale of interest V-A(r)=iewd(r) (10)
to simply be '

We obtain a near-field approximation by expanding the mag-
netic, electric, and current fields in terms of the smallness
parametefe as follows:

Vb(x,0)=0 V-&xw)=4mq(x0),

VXE(X,w)-Hw/CaX,w):4T7rj_(x,w), 2
_ A= 'Ay(r) d(rie)=2 'dp(r), (1D

vxax,w)—%"&x,w):o,

Jrie)=> "3 (r). (12)

where we have also transformed into frequency space to ben-

efit from the change of time derivatives to algebraic quanti- - . 3 . )
ties. In the remainder of this paper we will drop the explicitSUbStltmIon of Eq(12) into Eqs.(7)~(10) yields, upon col

frequency dependence of vector and scalar fields. lecting the zeroth order contributions, the following set of

__In terms of the vector potentialx) and scalar potential equations:
¢(X) the Maxwell equations may be written in the Lorentz VZ2Ag=—Jy Eo=-Vd,, (13
gauge as
V’JOZO BOZVXA(), (14)
— w’_ 4r—
Vea(x)+ —Za(x)=— T](X)’ 3 V-Ay=0. (15
c
Similarly, the first order contributions yield the additional set
— w? — idmr _ — of equations
v ¢(X)+?¢(X)=TV’J(X), 4 _
i
VA =—J; V2D,=—V-J, 16
where the potentials are defined by ! ! 0wt (16
b(x)=VXax), Bi=VXA; iwAy—E;=Vd,, (17)
. 5 .
iw__ — © V-Aj=iwdy. (18
< A —ex)=Ve(x)
The solutions of the potential equations given in Egs.
and the Lorentz gauge is given by (13) and(16) are, respectively,
J— | w — 1 ‘]n(r ,) 3.
V'a(x)=F¢(x). (6) An(r)_ﬂf r—r| asr’, (19
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i V'-3,(r") . order near-field approximation since they do not contribute
Do(r)=— 477Wj r—r| dsr’, (20 to the magnetic field. Furthermore, any current with vanish-

_ o ing momentsm!!, is as well a silent current. From E¢R5)
wheren=0, 1. The expansion of the current density in theye may conclude that the measurement of the magnetic field
smallness parametershows the dependence of the currentcan only give information about the=j component of the

on the characteristic distanée That dependence is implicit cyrrent density while th&-J,=0 constraint yields a restric-

in the confinement of the current within a volume of radiUStion upon thel :j -1 Component of the current density‘ No

R. information about thé=j + 1 component of the current den-
sity is obtained from the field measurement without addi-
I1l. MAGNETIC FIELD DATA AND INVERSION tional constraints being placed upon the current.

In thls section we investigate the determlnable quantltle?V- ELECTRIC FIELD DATA AND INVERSION
of the inverse magnetometry problem. Since the measure-

ments are performed on a spherical shell it is natural to ex-  Electric potential measurements give information about
pand the magnetic fieldand vector potentialin terms of  the small but, as we will see, not necessarily negligihle
vector spherical harmoni¢¥SH). The resulting expressions The zeroth order solution for the electric potential given by
will allow a precise characterization of the properties of theEq. (20) can be written &8

current density which the idealized magnetometry experi-

ment may determine. External to the current containing re- @ (r)=— I_E Vo) '_Jl(r )
gion we may write Eq(19) with n=0 as® W im 2j+1
2l I~ 1
r Yin() r
— ’ | AY M m * ’ . 3.7
Ao(r)—”}r:ﬂ (Jvao(r )Y n(Q)dr D er+1Y1m(Q )Y im(Q)dr". (26)
(21)

Substituting the VSH expansior; = =jm,ajm(r) Y|n(),
wherel=j,j+1,j—1 (with the exception that=1 for | into Eq. (26) and simplifying we obtain

=0), andm=—j,—j+1,...j—1,j. We will, as in the above i

equation, use the variabl@ to denote the ordered pair of Dy(r)= _2 M}ﬂ:l,l—lem(Q), 27)
angular variable$6,¢). By writing the zeroth order current W im

; . _ | |
in the VSH expansio(r) == jmajm(r) Yjm(?) EA. (2)  \where we have used-J;=0 on the surface of the unit

becomes sphere and we have definpgf, = [3r*a],(r)r2dr. Defining
Il I D= Do(r) YT (Q)dQ, where the integral is taken over
me YJm(Q) J f Im .
Ag(r)=> , (22)  the unit sphere, Eq27) can be written as
fim\21+1) (I+1
IR S 2j+1\2
where we have defined jfp= fgr*aj (r)r2dr. Now since W= WD | — (28)

V-Jo(r)=0 it can easily be showfsee Appendix A that _ _
ml, "~ 1=0. Using this property and taking the curl of Eq. Also, sinceJ; obeys Eq(20) one can write, as fod,, that
(22) gives the magnetic field on the unit shell surface
i
2j+1

/ T b BIM (29)
v oo Mim= ~ 1 s a1z PAr
miYIr Q). (23 7O+
- Transforming into the time domain we can now write the
Since we are interested in determining the momenits  result of this section as
we can simply write Eq(23) in terms of the radial compo-

Bo(Q)=—i2

m

o= i . 2j+1 .
nent of By-e, =B, only to obtain M}Jm(t): i - J mB'{I‘(t), (30)
jl/2(j+1)1/2 B J (]+1)
=j -  mly.
S T MYl - -1i-1q) (2j 1) F0d (31
Mim™ =|—
and, transforming back to the time domain, we arrive at the " J at
result of this section Although electric potential measurements only give in-
241 formation about the relatively smadlJ; contribution to the
mﬂn(t)= —i- J B%{I‘(t), current, this information is not necessarily negligible. Such is
IREIR G the case for thé=j —1 component of the current density for
mj,lyj,l(t)_o (25 which the zeroth order magnetic field measurements give no
jm -

A direct information. Although knowledge of the small first
where we have defineB)'= [ Bor(Q)Y],(2)dQ. In Eq.  order currenfobtained from Eq(31)] contributes little to the
(25) the j=0 term poses no special problem siritgb(Q) total current magnitude, it may provide localization informa-
=0. tion. In addition it should be noted that tle contribution to
From Eq.(23) we can conclude that the=j+1,j—1  the current is notably different from th&, contribution in

components of the current are always silent in this lowesthat the former leads to a net charge formatitdme diver-
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gence is non zejoand therefore may give information of a tained about thé=j+1 components of the current density.
special nature albeit of smaller amplitude than Sggerm.  Also notice that, unlike the total current case, the determin-
Note that Eq.(31) provides no significant additional infor- able quantitiesm}r;”’1 depend on the electric potential
mation about thé=] component of the current density since rather than its time derivative.

B, is negligible compare®,, and cannot be measured in-

dependent 0By, .

VI. A UNIQUELY INVERTIBLE CURRENT DENSITY

V. INFINITE HOMOGENEOUS CONDUCTOR ) )
We now look at a case where the magnetic and electric

In this section we make connections with the infinite field information is enough to determine the current density.
homogeneous conductor model. If one has knowledge of thg, the following we assume that the current is restricted to a
conductivity of the medium containing the primary currentshell of radius,. Results are given for both the total current
sources one may writd=J,—oV®, whereJ, is the pri-  and the primary current of an infinite homogeneous conduc-
mary current source and-oV® is the current given by tor. Although the infinite homogeneous conductor is rarely
Ohm’s law. Note that this expression uses the dimensionlesgalized as a suitable approximation to the practical problems

conductivity constanr=4woRJ;/c, whereo is the con-  of interest this does serve as an important case with which to
ductivity averaged over a suitable spatial scale. This relationdraw distinction with the total current case.

ship is valid for all orders of the expansion in the smallness
parametele so that A. Total current case
In this caselJ=Jy+ €J; and we may write the coeffi-
Jo(r)=Jop(r) —aVdy(r). 32 0 1
o(1)=Jop(r) — oV bo(r) (32 cients of the VSH expansion of the current density as
Strictly speaking we should include the contribution of ef- | 5 | | 5 |
fective current densities from magnetization and polarization ~ &m(r)=r"8(r —ro)bjy,, ajn=r"=6(r —ro)Bjm,
effects. However, these currents make a negligible contribu- (38)
tion to the total current as shown by Plonséf/the conduc- wherel =j,j+1,j—1 and the coefficienﬂs}m andﬂ}m are to

tivity o can be considered to be infinite homogeneous thig)o jetermined from measurement of the mom(ﬂnﬁﬁ and
form of the totgl current denery, when cor_nblned with Eqgs. }n—ql,j—ll Multiplying each side of Eq(38) by the appropri-
(13) and (16), yields the following connection between ze- ate power ofr and integrating we obtain
roth and first order contributions to the current density:

mk () =kl wl=rkl,. (39

One can view the solution of E¢39) as a simple inver-
sion of a diagonal matrix. However, the dependence on
may make these diagonal matrices ill conditoned with con-

iw
V-Jl(r)z;V-Jop(r). (33

Substitution of Eqs(32) and(33) into Eq. (20) then gives

Ag(r) = 1 Jop(r’) 34 dition number given by ¢ ¢, wherej. is a cutoff number
0 4a ) |r=r'|" for j. As a result noise in the high spatial frequency compo-
1 V' Jou(r') nents of the current density may be amplified. To obtain a
Dy(r)=— f Op, d3r’. (35) well-conditioned inversion we apply a Tikhonov regulariza-
Amo Ir—r’| tion (see Appendix D to smooth the high frequency noise.

As noted by Othe?sthe ohmic contribution to the current For a diagonal matrix the classical Tikhonov regularization
density does not contribute to the magnetic field in this caséakes the simple form

of a homogeneous conducting medium. Note that E8§. K K
and (35) both depend on the zeroth order primary current  pi _ Mo m (r), Bl = Mo Ik (40)
only. S R A G

A derivation similar to those presented in the preceding

sections of this article results in the uniquely determinedVherex is the regularization parameter and we havefSet
quantities =0 andL =1 (see Appendix [ A proper choice of the regu-

larization parametei balances spatial smoothing against

2j+1 noise reduction.

i —_j__ 7 Rpim
Mjm(t) = Ijl/Z(j 1)1 Bor (1), (36) The restriction of the current to the shell surface com-
" bined with V-J,=0 implies thatJy-r=0. This condition
gl 2j+1 gives the following relationship between thej+1 andl
J—Li—11y = )
M, (D=0 i ) Pjm(L), 37 Zj—1 components:
where mj (t) = fgr*aj,(r,t)r’dr and theaj, (r,w) are the , i _ i
. . j+1_ j—1 jt+1_ j—1
VSH coefficients of the zeroth order primary currel},. Am = ViFzdm - m = Vjrgdm (41

Therefore, in the case of the homogeneous conductor the -
electric and magnetic field measurements yield zeroth orde€ombining the definition of the known quantitiesi;,,
current density information in orthogonal subspaces. Noticen!*)~*, and u},*)~* with Eq. (41) one then obtains the
that, as in the total current case, there is no information obeurrent density
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rj—2

i 0

1l J

m! - Y:
m m
] rS] )2 J

ic
J=8(r—ro) X
jm

+ejul BTl — — + — (42
e\ T i

or in terms of the magnetic and electric field quantities

Jc H j_2
L 2]+1 g .
J=6(r—r —iBl"— ——— !
( O)JEm OrWrSJ+)\2 jm
oD, rh® [yirlooyicd
+e2j+1—C — LI .
S rd 22\ i+l

(43

B. Infinite homogeneous conductor case

D. J. Sheltraw and E. A. Coutsias 5

regularized data such as that associated with a truncated
spherical harmonic expansion, a reconstruction is guaranteed
for arbitraryry>0.

VII. A SIMULATED INVERSION ON A SPHERICAL
SHELL

In this section a simulation to test the inversion on a
spherical conducting shell is presented. In the next section
we will use this simulation in a number of examples to test
the inversion method on the shell. We assume the current
density to be restricted to a shell of known radigs<1. We
also assume that the radial component of the magnetic field,
B,, can be sampled on a grito be specified belowof a
larger spherical shell of radius= 1. We will make use of the
SPHEREPACK-3.0Fortran-77 cod&*?to perform the analysis
of a simulated magnetic field to find the valugg' and the
subsequent synthesis of the current density.

Now we consider the case of an infinite homogeneous\. The simulation

conductor. In this case we write the coefficients of the VSH

expansion of the current density as
aj(r)=r"28(r=ro)bjy, (44)

where again thda)}m are coefficients to be determined. If we
assume thal,-r=0 we may write, in a manner similar to the
total current,

C2j+1 rhr
Jop=08(r—r —iBJy . Y!
Op ( O)JEm Or\/ﬁrglﬂxz jm
b (Yt vt
+o\2]+ 1P, — + .
S LT e SN N

(45)
Note that the conditiord,-r=0 is an additional constraint

which is not implied by restriction to the shell as in the total

current case.

C. Validity of inversion

TheJ, part of the current density given by E@.3) may
be reconstructed according to

Jc 2i j-2
) 2]+ 1 rg )
J=—id8(r—r Bl'—— — Yio. 4

( 0)12m Or\/j—z—jr(g)]_’_)\z jm ( 7)
In the case of the current shell it is somewhat simpler to
represent the results of the inversion in terms of a scalar
stream function ¢(6,¢) such that J(r)=r"28(r—ry)e
X Vo where

b 2j+1
¥ % Mrpazj(+1 m
To create simulated magnetic field measurements we
make use of a current density of the form

o(r—ro)
J0:e¢—2
)

(48)

sSin6G(0),

No (49

2n+1
G()= 2, ~ P,(cosfy)P,(cosb),
n=0

~ Having found the VSH expansion of the current densi-yhere thep, are Legendre functions and the functiGig)
ties of Secs. VIA and VIB from measurements of the mag-s 3 truncated Legendre expansiond§tosé—coséy).

netic and electric fields does not guarantee that the series The radial component of the magnetic field due to the

given by Eq.(43) or (45) will converge. If we insist that the

currents of the type given in E¢49) is directly calculated as

currents have finite energy, then it is appropriate to require

that||J|,<o; for the case in Eq(43) without electric field
contributions, e.g., this implies

BiN(2j+1)]2
=S [Bor(2j+ 11" _

- 46
m o rdtiGi+1) 48

Br:|21 a,P,(cos#), (50)
|+1
I+ 1)

A= a1 LP1alC0sto) ~Pis(costo)]. (51

Clearly, this restricts the magnetic field, and the smallemhere we have taken=1. The field due to these elemental

we desirery to be for the shell on which we perform the

currents can be rotated by the anglés,,) (see Appendix

inversion, the more severe the restriction. The above condi€) and superimposed upon others to give a richer set of
tion is of course met whenever the radius of reconstructionsimulated fields to test the inversion algorithm and its limi-
ro, is greater than or equal to the radius of a sphere comtations. In the next section of this article we will use these

pletely enclosing the current,.. But reconstruction on a
spherical shell of smaller radiug<r could be also found
for sufficiently fast decayindl'. On the other hand, for

PROOF COPY 014321JAP
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through regularization. We do so by adding noise of a given
signal-to-noise ratidSNR) to each field point in the simu-
lated measurement. The SNR is given by SNR,,0,
whereS;,axis the maximum signal over all field points and
is the standard deviation of 0 deviafés.

For the purpose of error analysis we combine E48),
(50), and(51) to obtain the current stream function directly
as

Mo o0
= En; P1(€0S6)[ Py 1(COSbg) — Py 1(cOsby) ],
(52

which will be useful in the next section of this article.

As discussed by Swarztraulér,? the analysis ofB,,
into spherical harmonic componer&§;' requires truncations
with j=<N the number of zonal harmonics included. For each
j there are 2+ 1 values form, therefore, the determination
of (N+1)? spherical harmonic coefficients is required. On
the other hand, the spherical transform algorithms given irFIG. 1. Direct plot of the current stream function withy,, =35, (6, ,#,)1
SPHEREPACK-3.0require sampling on a grid that is equally =(45.0),Ny;=35, (6;.¢:)2=(67.0).
spaced in both longitudeé and latituded. With the product
grid containingN points in thed direction and A points in
the ¢ direction, this results in 82 data points, making the the inversion this trend does not persist as one can see when
analysis problem 1. This results in the analysis being perthe sampling is nean;;=49 andnj,,=96. Near this sam-
formed as a least squares problEmi* A spectral filtering  Pling density an amplification of machine precision “noise,”
where at#= 6, only 2Nsiné longitudinal points are re- due to the ill-conditioned nature of the inversion, begins to
quired can be employed without effective loss of compete with the reduction in error due to increased sam-
resolution® This reduces the number of required sample valPling density. Of course the precise limit imposed by the
ues to wN?/2 for the entire sphere although the analysishoise to the effectively attainable resolution worsens expo-
problem is still 1. To employ the above algorithm, our nentially with decreasing values of,, the reconstruction
method requires the values on the reduced grid and producé&adius.
the values on the equispaced gficsed bySPHEREPACK-3.) Figures 4—6 illustrate the importance of regularization in
by fft-based interpolation. any practical situation with added noise. Here we vary the

regularization parametex to illustrate the tradeoff between
the noise-filtering effects and the smoothing effects inherent
B. An example to a Tikhonov regularization of the inversion. In Fig. 4,

In this section we give an example inversion to test thevhere regularization of=0 is used, the 5% Gaussian-
ability to resolve currents on a spherical shell and explore théistributed sampling noise entirely obscures the inversion. In
amount of regularization needed to control the instability dis-
cussed in Sec. VI. The example demonstrates the effect of
variation in the following parameters: The number of latitude
and longitude sampling points,, andn,,,; the SNR, and
the regularization parametar

In Figs. 1-6 we show the graphical results of an ex-
ample inversion for two closely spaced current rings on a
spherical shell of radius,= 0.8 which is the reconstruction
surface as well. Figure 1 is a direct plot of the current stream
function as given by Eq52). The plots of Figs. 1-2 can be
compared to this direct plot for a visual check of inversion
accuracy. Tables | and Il give a more precise check of the
inversion error.

Figures 2 and 3 pertain to a noiseless sampling of the
magnetic field. These figures illustrate the progressively bet-
ter resolution of the current density as sampling of the mag-
netic field is increased. Table | shows a precipitous reduction
in the error near a sampling such thag=41 and ny,
=80. Although increasing the sampling of the field allows
one to compute components of the current stream function of
largerj andm values and therefore provide greater detail in FIG. 2. Reconstruction witiN,,= 25, Njo,=48, S2N=inf, €,=0.195.
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FIG. 3. Reconstruction withN;=65, N, =128, S2N=», e,=3.34 FIG. 5. Reconstruction wittN,;=65, N;,,=128, S2N=20, A=0.03, ¢,
x 10710 =0.400.

Fig. 5 a value of\=0.03 suppresses the noise but at a highfrusted and testable constraints in the inverse magnetometry
cost to resolution. From Fig. 6 and Table Il it appears thatroblem. In general these added constraints will clearly con-
A=0.002 is a good choice of a regularization parameter tha@in the majority of the information needed in an unique
balances noise amplification reduction against smoothing efhversion for the current density of the idealized inverse
fects of the Tikhonov regularization. Table Il shows that themagnetometry problem.

same sampling as that used in the noiseless case appears to We have shown in what sense electric potential data may

give the best error but this error value is considerably highepe incorporated to give additional information on the total
as Compared to the noiseless case. current. When inverting for the total current, magnetic field

data gives information about zeroth order near-field contri-
butions to the current density, whereas electric potential data
gives information about the first order contributions. When
We have shown that for the idealized inverse magnetomthe conductivity is known, as in the case of a homogeneous
etry problem the determinable quantities in a VSH represenconductor, both the magnetic and electric data give zeroth
tation are moments of the expansion coefficients. Only on@rder information about the primary currents.
moment per coefficient is fixed by magnetic field measure-  Finally we have shown that for a spherical shell a unique
ments alone. This clearly exhibits the need for additionainversion is possible. However, the inversion has been shown

VIIl. CONCLUSIONS

FIG. 4. Reconstruction withN =65, N,,,=128, S2N=20, \=0, e, FIG. 6. Reconstruction withN =65, N,;,=128, S2N=20, A\=0.002, e,
=71.9. =9.60x10 2,
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TABLE I. Relative error with SNR-o-. which for k=j becomesn! " ™'=0. It is easy 1o see that
. - Error the conditionV-Ay=0 is equwalent t(mJ L-1-0, so the
a on vanishing of the divergence &, is |mpI|ed by that ofJ, as

9 16 0.633 616 464 expected_
17 32 0.499 727 286
25 48 0.194 608 761
= o S a1t APPENDIX B: SPHERICAL HARMONIC PROPERTIES
49 96 6.274 477 4810 ™ In this appendix we give some information on vector
57 112 1.052 210 4910

spherical harmonics. The vector spherical harmonics may be

65 128 3.344016 2410 *© . ! :
generated from the scalar spherical harmonics according to

. [j+1 1 oY,
Vin'= 21j+1 ~&Yimt ey ra
to be ill-conditioned in general. A regularization may be
needed and this regularization must balance the filtering of im Yjp
amplified “high frequency” noise against the smoothing of ‘751 +1 sin 0)

spatial detail in the inversion.
. m Yim i Yim
Yin=—¢ e, T
NG sing (1) 90
1dYjm im Yy

&Yim T 59 TS Sing)

(B1)
ACKNOWLEDGMENT

The authors wish to thank the Mental lliness and Neu- Y};lz \/2.]—+1
roscience Discovery Institute for their support of this work. J

In addition, the following property is used in this article:

APPENDIX A: DIVERGENCE CONSTRAINT i — i

Y =———=(eXVq)Yin. (B2)
jm TN jm
In this Appendix we derive the restriction on the mo- jG+1)
mentsmJ i=1-0 given by the conditiorW-J,=0. From  The vector spherical harmonics obey the orthogonality prop-
this condltlon we ha/¥ erty
m (2
. [ :
0= \/_ . . a}ml(l’), fo fo Tm,Yl S|n0d0d¢:5jj75”75mmr (BS)
d j+2 (A1) and the following relations for the divergence operator:
j+1| -+ ——alni(r).
dr r jt1/d j+2
o Kt . . . [fY' HN=- - —+—|fYj,
Multiplying Eq. (A1) by r and integrating by parts gives 2j+1\dr r
1 . i 1=
0=\/k+1(k—j)J rlal " Y(r)r2 dr V[T im] (B4)
O V.[fYi-t= 4/ I_(d j_l)fY
1 ; ' jm 1™ i dr jm
—\/j—(k—j+3)f r g I(r)r2dr. (A2) 2itlidr v
0 and the curl operatdt
since there is no current on the shell of radius 1. Therefore, j d j+2
we obtain Vx[fyHl i/ — 4+ T fyd
1\dr r Im
(k—=jyml H s \/ 7 (k+] +1ml M=0, (A3) _ i (d
: : VXYl =i 4] fylet
) 2j+1\dr r
j+1 j+1 1
TABLE II. Relative error with SNR=20. +i 2+ 1 dr -+ p fY}m ) (B5)
al on E .
nlgt ”'16 0633::7 187 VX[fYI 1=i4/ it1d_J- )fY
17 32 0.499 966 94 2j+1ldr
gg gi 8-132 ;g? ?gg where f=f(r). We also give the connection between the
mn 80 0.096 111 095 spherical harmonics and associated Legendre functions
49 96 0.096 569 9241 2i+1 (j—m)!
57 112 0.096 098 5884 Y. (0,0)=\]—— ———P"(cosh)expim .
65 128 0.096 013 9612 im( 8. ) 4m (j+m)! ) (cosf)expim &

(B6)
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APPENDIX C: ROTATION OF ELEMENTAL MAGNETIC
FIELDS

In Sec. VII we performed rotations upon elemental fields
to obtain our simulated fields. Each elemental fiBldis a
sum of Legendre polynomials of the formB,
=2,,P,(cosf). The rotation operatoR,=R (¢, ,6,), act-
ing on a Legendre polynomidt,(cosé), yields

' (I—m)!
R Pi(cos8)=P(6,)P(6)+2 ﬁ

m=1

P(6;)

X P"(6)cosm( ¢, — ¢) (Cy
so that the rotated elemental field becomes
l=m)!
B(6,)=2, aiPi(6)P(0) +22 e P(6)
X P{"(@)cosm( ¢, — o). (C2

The fields due to each elemental current can then be added ag

the sampling points for the simulated field measurement.

APPENDIX D: TIKHONOV REGULARIZATION

In this Appendix we give a brief review of Tikhonov
regularization as it applies to this articfeWe assume one
wants to invert the following linear equation given the data

Af=d. (D1)

We will also assume that the matrix is ill conditioned.
Tikhonov regularization of Eq.(D1) obtains a well-
conditioned solution by minimizing the following functional:

fo=argmif\|L(f—f)|2+ | d— Af]?}, (D2)

where\ is the regularization parameter and is a default
solution. If X is large the data misfit term|d—Af|?, be-
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comes negligible and the solution tendsftoin which high

frequency behavior has been effectively smoothed, regard-

less of its origin. If\ is small the solution tends to the solu-

tion of Eq.(D1), which is presumably ill conditioned, result-
ing in noise amplification. A practical choice of the
regularization parameter balances smoothing of the solution
against reduction of the amplified high frequency noise in the
data. Minimizing Eq.(D2) one obtains

(N2LIL+AA) f=N2LILf+ Ald. (D3)

For systems of equations which are relatively sntalffew

hundred equationghis equation may be directly solved for
f. For larger systems one may employ searching or iterative
algorithms.
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