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Spin-up and spin-down in a circular tank with a uniformly sloping bottom are studied
experimentally and numerically for small values of the relative change in the angular
velocity of the tank. Generally, the initial single-cell flow evolves into a number of
smaller vortices. The evolution is compared with an analytical model based on an ex-
pansion of the flow field in linear Rossby waves (Pedlosky and Greenspan, 1967). Al-
though it is possible to tune the experimental parameters in such a way that agreement
with the theory is found, in most cases the experiments show shedding of vortices in the
initial stage of the spin-up or spin-down, a phenomenon not described by the analyti-
cal model. Nonetheless, in such cases the analytical model still accounts for other
observations: the alternating generation of cyclonic and anticyclonic vortices in the
eastern part of the tank and their subsequent westward motion.

Keywords: Spin-up; §-plane; sliced cylinder

1. INTRODUCTION

During the last decades, the spin-up of a homogeneous fluid to a final
state of solid-body rotation due to a change in the angular velocity of
its container has received considerable attention. Most studies on this

*Corresponding author. e-mail: bjarne.stenum@tisoe.dk
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subject concerned the flow in a circular tank (Greenspan and Howard,
1963; Wedemeyer, 1964; Weidman, 1976; Van de Konijnenberg and
Van Heijst, 1995). In a circular geometry, the flow remains ap-
proximately azimuthal, and slowly gains a higher angular velocity by
a secondary flow driven by the Ekman layers at the bottom and, if
present, at the lid of the tank. Van Heijst (1989) first studied spin-up
in cylindrical geometries with non-circular cross section, such as a
semi-circle and a circle with a radial barrier. This study was followed
by a number of publications on spin-up in various geometries, most
of them rectangular (Van Heijst ez al., 1990; Van Heijst ez al., 1994;
Suh, 1994; Van de Konijnenberg, 1995). In non-circular geometries,
the flow usually separates from the lateral boundaries, and evolves
into a pattern of a small number of counterrotating vortices. The
organization into a quasi-steady streamline pattern depends on ex-
perimental parameters such as the shape of the container and the
angular velocity. Geometries that can accommodate a small number
of equally-sized vortices, such as a slender rectangular tank, favour
the formation of a quasi-steady vortex pattern. The occurrence of self-
organization in spin-up experiments is related to the two-dimensional
nature of rotating flows. Spin-up flows are not only approximately
horizontal, but also independent of the vertical coordinate. How-
ever, the presence of Ekman layers leads to differences from purely
two-dimensional flows, in particular with respect to the decay of the
relative flow.

A different class of non-axisymmetric geometries is formed by the
introduction of a sloping bottom. Already in 1967, Pedlosky and
Greenspan studied spin-up in a sliced cylinder — a circular cylinder
with a uniformly sloping bottom and a flat rigid lid. Pedlosky and
Greenspan presented an analytical solution for the time-dependent
flow for the case in which the increase in angular velocity is very
small. This solution consists of an expansion in Rossby wave
modes, multiplied by an overall factor representing the exponential
decay of the relative flow due to Ekman pumping,

Van Heijst e al. (1994) combined a rectangular geometry with a
sloping bottom. In this case the flow tends to become very complicat-
ed and erratic; usually there is no formation of a quasi-steady stream-
line pattern. In late stages of the evolution it should be possible to
describe the flow in terms of linear Rossby waves, but unless the rela-
tive increase in angular velocity is small compared with the relative
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differences in depth, separation from the sidewall and subsequent
vortex formation takes place in the beginning of the experiment.

In the present paper we study the spin-up in a circular tank with a
uniformly sloping bottom. This geometry has the attractive property
of axisymmetric flow in the limiting case of a vanishing topography,
so that the effect of the topography becomes particularly clear. We
will show that also in this case, flow separation and vortex shedding
from the sidewall is the rule rather than the exception.

The study of the flow in a tank with a sloping bottom has relevance
for meso-scale flows in the Earth’s atmosphere and oceans, since the
non-uniform depth acts in a similar way as a latitudinal variation in
the Coriolis parameter f. Indeed, in Pedlosky and Greenspan (1967)
and in subsequent papers by Beardsley (1969) and Beardsley and
Robbins (1975) the sliced cylinder had the purpose of modelling the
ocean circulation. The emphasis of those papers, however, is on flows
with stationary forcing by a differential rotation of the rigid lid. In
the present paper we study the spin-up process without aiming direct-
ly at the modelling of a particular geophysical flow.

The further organisation of this paper is as follows. Some general
aspects of the spin-up flow in the geometry under consideration are
reviewed in Sect. 2. The linear theory and the experimental and nu-
merical methods are explained in Sects. 3, 4 and 5. The experimental
results are presented in Sect. 6 and discussed in Sect. 7, to be followed
by the numerical results in Sect. 8. Finally, some general conclusions
are drawn in Sect. 9.

2. GENERAL BACKGROUND

Three dimensionless parameters determine the spin-up we consider in
this paper. The first one is the Rossby number Ro, which is, in
general, a measure of the relative flow with respect to the back-
ground rotation. In the present paper we define it as Ro= AQ/(}, with
AQ the increase in angular velocity and ) the final angular velocity.
We will restrict ourselves to Rossby numbers in the range between
—0.1 and 0.1. The second parameter is the Ekman number E, de-
fined as v/(QH?), with v the kinematic viscosity and H a measure of
the depth in the tank. The third parameter is k= AH/Hpmay, the ratio
between the depth difference AH= Hpax — Hmin between the deepest
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and the shallowest part, and the maximum depth. It is this param-
cter which gives rise to differences from earlier studies on spin-up in a
circular tank with a flat bottom. A fourth parameter would be the
ratio between depth H,,,, and radius a of the tank, but in the present
paper both H,, and a are fixed.

It is well known that an inclined bottom influences a rotating fluid
by vortex stretching, in a way that leads to similar dynamics as in the
B-plane model of meso-scale geophysical flow (see e.g., Van Heijst,
1994). Summarizing the essential points, the flow of fluid along a
depth gradient leads to an increase of vorticity w given for small
Rossby number by w/dt=2QH"'v-V H, where v is the horizontal ve-
locity field. With the depth gradient taken in the negative y-direction,
this can be written as dw/dt=—pv,, with §=—-20H"'0H/dy. In
a geophysical context, one finds the same term —fv,, but with
B=2Qcos¢/R, with ¢ the latitude and R the Earth’s radius. In view of
this analogy, the shallow part of the tank is referred to as the
north, and the deeper part as the south. In this paper we take the x-
and y-direction in the direction of the east resp. the north, the
origin coinciding with the centre of the tank.

According to both the topographic and geophysical definition, the
parameter § is a local quantity. However, it is common practice to use
the 8-plane model, in which 3 is uniform throughout the domain un-
der consideration. In a sliced cylinder this is never quite true, since
the depth is not uniform. [A uniform value for B could be obtained
by a depth of the form H(y)=c,exp(y/c,), but this is not a geometry
we used in our experiments.] The question naturally arises what val-
ue for H should be chosen if the sliced cylinder is to be represented
by a (-plane. In the present paper we adopted the central value
H(0)=(1/2)(Hmax + Humin), Tepresenting an average of the depth over
the area of the tank. Although arbitrary to a certain extent, this choice
provides a reasonable average between the extreme values Hpax and
Hpin. Note that the same question appears in the definition of the
Ekman number; also in that case we choose the average depth H(0).

In the experiments, the rotation of the flow does not only give rise
to the topographic S-effect, but also to the formation of Ekman lay-
ers at the bottom and top of the vessel. The Ekman layers lead to
a secondary flow, which ultimately leads to the decay of the relative
flow. The secondary flow leads to a contraction or dilatation of the
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two-dimensional velocity field, so it can be represented by the two-
dimensional divergence V.v. If both the Rossby number and the
Ekman number are small, V. v may be approximated by Aw, where
A =2VQ/H is the inverse of the spin-up time (see Greenspan and
Howard, 1963). Making this assumption and including the 8-term,
the vorticity equation becomes

%—{—V-Vw—kﬁvy:—)\w—&—uvzw. (1
This equation, together with the approximation that the two-
dimensional velocity field is divergence-free, was used in the numeri-
cal simulation.

More generally, the smaliness of the Rossby number may be
exploited with different theoretical assumptions, all of which are
sometimes categorized as ‘linear’. First, one may assume that in every
point, V. v=)w, so the two-dimensional divergence resulting from
the Ekman suction is proportional to the relative vorticity. Combined
with the ‘compressible’ (i.e., not divergence-free) two-dimensional
vorticity equation, this corresponds to the Wedemeyer model in
non-linear spin-up in a circular cylinder (Wedemeyer, 1964). With this
model, the vorticity equation becomes

%—:Jrv-Vw—}—ﬁ(l +w/2Q)vy, = —A(1 +w/2Qw+ vV,  (2)
where also the 3-term is given in its ‘compressible’ form. In the pre-
sent paper we use this form of the vorticity equation for qualitative
discussions only. Second, one may consider the velocity field as sole-
noidal in addition to the assumption that V.v=)\w. This approach
reminds of the Boussinesq approximation for flow with density
fluctuations, and means that the divergent part of the velocity field is
neglected, except in the Ekman damping term where the divergence
is replaced by Aw. It can be shown that in order to obtain a consis-
tent model (i.e., one in which the vorticity integrated over the entire
domain remains zero), the two factors 1+ w/2Q in (2) should be re-
placed by 1. Thus, this assumption leads to (1); the incompressibility
of the two-dimensional flow is explicitly visible from the form of the
B-term and the Ekman-damping term, and implicitly taken into
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account in the advective term. Third, one may also neglect the
advective term. This assumption is quite drastic, since it eliminates
the possibility of vortex shedding from domain boundaries; in fact,
it eliminates the very existence of vortices in the way they are usually
interpreted. In reality, advection of vorticity tends to be important
even if the Rossby number is small. Indeed, in the absence of the
B-effect and (more hypothetically) Ekman suction, the influence of
the background rotation is not noticeable at all, so the advective term
plays the same role as in a non-rotating fluid. We will show that in
our experiments with the Rossby number of the order of 0.1, the
advective term cannot be neglected.

3. LINEAR THEORY

An analytical expression to the linear spin-up problem in the limiting
case Ro— 0 was given by Pedlosky and Greenspan (1967). Their re-
sult is a solution of (1) with the omission of the advective term, the
Ekman damping term and the viscous term. There seems to be little
need to review the method they used ( for more explanation the reader
may also consult Pedlosky, 1987). However, the result of Pedlosky
and Greenspan seems to include a typographical error with respect to
the time-dependent terms. We repeated the calculation and arrived
(in dimensional quantities) at

xy, o m,,x Bat  mw
X R ZZ ( )cos(m&)cos( p 2kmn T)

m=0 n—l
(3)
or, with faster convergence,
P(x,y,1) _ 1 o o 86 mnr
“AQT == + MZO ; k2 cos(ma)
. Bat mw\ . Bat
sin ( p +4k > ) sin (m) (4)
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with ¢ the stream function, and k,,,, the n-th positive zero of the m-th
order Bessel function, 6,=1/2, and 6,,=1 for m>1. With a minor
translation of symbols, this corresponds to the formula given by
Greenspan (1968).

Each mode is characterized by a stationary pattern of radial and
azimuthal nodal lines, intersected by equidistant nodal lines running
north —south and moving from east to west. At =0, the modes add
up to a solid-body rotation. However, as each mode has its own phase
velocity, the coherence of the initial flow is gradually lost. Around
Bat=5.68, the first invading vortex cell appears in the eastern part of
the tank, replacing the initial anticyclone. More and more vortices
and smaller structures appear as time proceeds. Figure 1 gives an
overview of the first stages of the flow according to this solution (up
to SBat=48).

4. EXPERIMENTAL SET-UP

The experiments were performed in a circular tank with radius
a=20cm, depth Hp,,=20cm and a transparent rigid lid. A topo-
graphic 3-plane was created with a false bottom, consisting of an
elliptic plate designed for a particular slope. Before the experiment,
the tank was placed on a rotating table, and filled with demineralized
water seeded with small (~ 50 um) particles. The tank is filled up to
the rigid lid, so there is no free surface. At t=0, the angular velocity
of the table was changed in a few seconds from Q — AQ to €. This
period of a few seconds is comparable with the rotation period of
the tank, but short compared with the rotation period of the rela-
tive flow in the rotating system. In the experiments we report here,
Q was always equal to 2.0 rad/s. The angular velocities are controlled
electronically, and are accurate to 0.01%. Quantitative results were
obtained by intersecting the tank with a horizontal light sheet, and
applying tracking techniques to the illuminated particles. First, a
video recording of the flow was made with a video camera corotating
with the tank. Then, after the experiment, the recording was processed
by a PC equipped with a frame grabber. For this purpose, the Dig-
Image system developed by Dalziel (1992) was used. This is an
image processing system that allows the tracking of particles based
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FIGURE 1 Stream function of the spin-up flow according to the analytical solution
The numbers at .the contours are the values of ¢/AQd® In all figures in the presen£
paper, the depth increases in the direction from the top to the bottom of the page. (This
means that the pp;itive x-direction is to the right, the positive y-direction to the .to of
the page.) A positive value of the stream function corresponds to a cyclonic rotati(?n

on a number of user-defined criteria such as brightness and size.
The vorticity was obtained by matching the data with spline func-
tions and manipulating the coefficients of this expansion. The stream
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TABLE 1 Overview of experimental parameters

Ro=AQ/Q k=AH/Hpax B(m s E
Experiment 1 0.01 0.5 6.66 2.22%x 1073
Experiment 2 0.1 0.1 1.05 1.39% 1073
Experiment 3 -0.1 0.1 1.05 1.39x 1073
Experiment 4 0.1 0.5 6.66 2.22x107°

function was calculated from the vorticity by using a Poisson solver.
In this way the stream function of the solenoidal component of the
velocity field is calculated (not, as would have been an alternative
option, the stream function based on a velocity field weighted with
the local depth).

In addition to the experiments with particles, experiments were
performed with a small amount of dye added to the otherwise clear
water. In this way, a qualitative impression of the flow field could be
obtained. In particular, these visualizations show that no three-dimen-
sional instabilities develop at the sidewall, and the flow remains vir-
tually two-dimensional. The absence of differential advection of dye at
different depths is so convincing that we considered it to be point-
less to perform measurements with light sheets at varying depth.

Four experiments are described in the present paper, all with small
values for the Rossby number (see Tab. I). Experiment 1 is aimed at
a comparison with the analytical theory. In experiments 2 and 3, the
conditions leading to agreement with the analytical theory are re-
laxed, and vortex shedding from the sidewall is seen to take place.
These experiments form the backbone of the paper, in the sense that
they demonstrate the phenomena we wish to describe. Experiment 4
clarifies the crucial role of the ratio Ro/x in experiments of this type.

5. NUMERICAL METHOD

In order to make a comparison with the experimental data, we calcu-
lated a numerical solution of (1) with the parameters corresponding
to experiment 2 (see Tab. I). For this purpose we used a finite-
difference method in the vorticity, stream-function formulation. In
this method the flow is assumed to be strictly incompressible, so al-
though the dynamical consequences of vortex stretching and squeez-
ing (induced by the topography and the Ekman layers) are taken into
account, the contraction or dilatation itself is neglected. The numerical
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scheme utilizes a third-order stiffly stable time-stepping algorithm as
described by Karniadakis et al. (1991). The diffusive term is treated
implicitly, and the circular domain discretized in polar co-ordinates.
The use of a staggered grid — i.e., the n grid-points are located at the
centres of the n boxes filling the domain, rather than on the edges
of the boxes —in the radial direction avoids the need for a special
treatment of the co-ordinate singularity at r=0. Grid-points were
spaced non-equidistantly in the radial direction; a cosine distribution
was used across the diameter to have a higher spatial resolution near
the wall, where steep gradients appear due to the no-slip boundary
condition. The no-slip boundary condition was implemented by ad-
justing the vorticity at r=a so that the normal derivative of the
stream function vanishes. Additionally, in the implicit viscous solver
an artificially high value for the viscosity at r=g was used, so that
on the outermost grid-points the vorticity was coupled strongly to the
vorticity on the wall. In the solution of the Poisson equation, the
stream function was taken to be zero at r=a. The advective term has
the form of a Poisson bracket, and was calculated using the discret-
ized form given by Arakawa (1966). This discretization retains the
most important symmetries of the advection term, that is, conserva-
tion of energy and enstrophy. The numerical scheme was verified by
reproducing the results of the spectral code described in Coutsias
and Lynov (1991) for the case of a Lamb dipole impinging on a
no-slip wall, while the regularity of the centre was checked by moni-
toring a Lamb dipole moving through it. No spurious effects were
noticed at the co-ordinate origin in that case.

For the initial condition we assume that immediately after a change
AQ in the angular velocity, the absolute vorticity in the non-rotating
system is still unaffected by the motion of the sidewalls. As a result,
the relative vorticity of the starting flow has a uniform value —2AQ.
However, at the sidewall, the no-slip boundary condition gives rise
to a singular layer of concentrated vorticity with positive sign. This
shear layer starts to thicken by viscous diffusion immediately after its
formation, but the start of the experiment may be considered as the
limiting case in which this shear layer is singular. The velocity field of
this initial condition, referred to as the starting flow, is determined by

VXu=—-2A0 (5)
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with zero normal velocity at all solid boundaries. Clearly, for a cir-
cular geometry with a flat bottom, the solution consists of a solid-
body rotation with angular velocity —Af2. In the case of a sloping
bottom, however, an analytic solution is difficult to construct. An
approximation for the starting flow according to the shallow-water
model was given by Van de Konijnenberg (1995). For small inclina-
tion aa, this result implies a displacement of the centre of the starting
vortex by (3/8)aa to the deeper part of the tank. For a bottom eleva-
tion AH of 2cm, a depth H of 20cm and a radius a of 20cm, this
yields 0.375cm. In view of its smallness, this displacement has been
ignored in the initial condition of the numerical simulation; a solid-
body rotation has been used instead.

The representation of the sloping bottom by a two-dimensional
numerical model requires further consideration. According to an
argument that can be found in Pedlosky (1987), the Ekman pump-
ing velocity for a layer of fluid with uniform inclination o« is
(1/2)(1//9)1/2(008 @) 2w in the normal direction, which corresponds
to a pumping velocity (1 12)(v/)*(cos o) >%w in the vertical direct-
ion. This means an increase of the bottom Ekman pumping rate by
a factor cos >2a. The two-dimensional divergence is then given by
the sum of the pumping rates at the top and bottom plates, divided
by the local depth of the fluid. For x=0.1, the factor cos™*?a differs
from 1 by less than 0.2%. In our simulation, this correction was not
taken into account. The depth differences lead to a larger error of
the order of 10% in the local divergence, but in view of the success
of the numerical run with the incompressible method, we did not
investigate this matter in further detail.

6. EXPERIMENTAL RESULTS

6.1. Experiment 1: Spin-up Ro =0.01, x =0.5

Experiment 1 (with the angular velocity increasing from 1.98 to
2.00rad/s and depth varying from 10cm in the north to 20cm in the
south) was performed in order to find an optimal agreement with the
analytical results. The slope is very pronounced in this case, and
the Rossby number has about the smallest value we could deal with.
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Since the relative flow is very weak, the accuracy of these results is
lower than that of the other experimental results in this paper.
However, the stream function, being an integral over the velocity
field that is actually measured, still gives acceptable results up to
Pat=48. The results are presented in Figure 2. In spite of the Rossby
number being small, its finite value is still noticeable. Around Bat =20,
there is a slight asymmetry with respect to reflection in the x-axis.
Experiments with varying AQ indicate that this is a result of the
Rossby number still being too large. Moreover, at a closer look, the
streamline pattern in the experiment seems to evolve slightly faster
than the analytical theory predicts. However, this can be ascribed
to the unprecise definition of the parameter B in the case of large
depth differences (see Sect. 2). As the dimensionless time Bat de-
pends on g, the apparent speed of the evolution may easily be off
by 10%.

The limited accuracy of this experiment does not allow a detailed
quantitative comparison with the theory, but some observations with
respect to the value of the stream function can be made. When time
increases, the experimental flow becomes weaker than the theoretical
solution. This is a consequence of the decay of the experimental flow
due to Ekman damping. The spin-up time in this experiment is given
in dimensionless time by Ba/A=70.7. This means that at Bat =48, the
experimental flow should have decayed by a factor exp(—48/70.7)=
0.507. A comparison between the experimental and numerical results
(taking into account a time lag BalAt=~4) shows that this is roughly
correct. In any case, this issue does not affect the agreement between
the experimental and theoretical streamline patterns, since the ana-
lytical theory allows for Ekman damping by multiplication the solu-
tion with a uniform factor exp(—At).

On [at =4, however, there is a clear difference between experiment
and theory. The experimental flow should have decayed by a factor
exp(—4/70.7)=0.945, but the extremal value 0.35 (we disregard the
minus sign) of the stream function in the experiment is smaller than
the predicted value 0.49 x 0.945=0.46. Moreover, the streamlines in
the experiment have moved more to the left than in the theory. This
difference seems to be connected with the geometrical effect of the
sloping bottom. The analytical theory takes the B-effect of the slop-
ing bottom into account, but otherwise the depth is assumed to be
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In spite of the mentioned differences, from the viewpoint of a
general evolution of the streamline pattern, the qualitative agreement
between the experiment and the theory is striking. Thus, the experi-
ment provides a convincing confirmation of the analytical results de-
scribing an essential limiting case of the spin-up process.

As the further experiments and the numerical simulations will
show, the flow for higher values of the Rossby number is considerably
more complex than the analytical results and the experimental data
of experiment 1 suggest. This is already forecast by an overview of the
time scales appearing in the problem. In the theory, time appears
only in the dimensionless combination Sat, and we use this product
as nondimensionalized time when we present our experimental and
numerical results. However, besides the time scale (8a)”' one can
recognize 1~ as the formation time of the Ekman layer, (AQ)™! as
the time needed for an azimuthal displacement of one radian if the
starting flow would remain stationary, H/(2v/v) as the spin-up time
scale, and a’/v as the time scale associated with viscous diffusion in
the horizontal plane. Our scaling facilitates a comparison with the ana-
lytical results, but for certain other aspects of the flow (such as the
long-term decay of the flow) other choices would be more appropriate.

6.2. Experiment 2: Spin-up Ro=0.1, k = 0.1

Next, we consider experiment 2, with  =2rad/s, AQ=0.2rad/s, and
depth varying from 18 to 20cm. With this experiment we exemplify
the dynamics in detail, so we present more comprehensive results for
this case than for the other experiments. The experimental data for
stream function and vorticity are presented in Figures 3 and 4. For
Bat < 6, the flow is close to solid-body rotation. Then, at about Bat =28,
the flow separates from the sidewall. The vorticity distributions
clearly show a kind of ‘bridge’ of cyclonic (dark) vorticity from the
sidewall to the vortex, indicating the formation of the vortex from vor-
ticity of the initial shear layer at the sidewall. The principal vortex
that is formed by the separation grows in size and strength until it
fills almost the entire tank; around fBar=28, the flow has essentially
the opposite sense as at the start of the experiment. Later, this struc-
ture is replaced by another vortex formed in the eastern part of the
tank.
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FIGURE 3 Stream function ¥/AQa? of experiment 2 (radius @=20cm, depth varying
from 18 cm to 20 cm, spin-up from 1.8 to 2.0rad/s).
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apt=-4 apt =8 apt=12

{;IeGbgsl:E 4 lYortlcn)f distribution of experimqnt 2. The grey scales were chosen to give

e sual impression of the flow, not to facilitate a quantitative comparison between
1fferent times. Light corresponds to anticyclonic, dark to cyclonic vorticity. The ran

of grey scales gradually changes as the relative flow becomes weaker. v &

dispersed and deformed. The Rossby-wave nature of the flow in later
stages can be seen from the general westward motion of the stream-

line pattern; vortex cells disappear in the western part of the tank
new ones are formed in the eastern part. ,
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6.3. Experiment 3: Spin-down Ro= — 0.1, k=0.1

Experiment 3, spin-down from 2.2 to 2.0rad/s with a maximal
bottom elevation of 2 cm, was meant as the inverse of experiment 2.
The basis behind the concept of an ‘inverse’ experiment is a symmetry
in (1): if the fields ¥(x, y), u(x,¥), v(x,y) and w(x,y) represent a sol-
ution of (1), then so do —(x, —y) u(x, —y), —¥(x, —y) and —w(x, —y).
Thus, with the parameters 8 and v in (1) held constant and A de-
pending on Q only, one would expect experiments 2 and 3 to give
symmetric results, the symmetry consisting of a reflection with respect
to the x-axis.

The results for experiment 3 are presented in Figure 5. Although
not perfect, the predicted symmetry is easy to recognize. In particular,
the formation of vortices in the early stage of the experiment and the
orientation of the separatrix between large vortices in later stages of
the experiment are encouraging. However, the asymmetry is beyond
experimental error; in particular, the values of the stream function
suggest that the flow in the spin-down experiment decays somewhat
faster than in the corresponding spin-up experiment. This raises the
question to what extent symmetry-breaking effects can play a role.
In general, the symmetry between spin-up and spin-down exists only
for small Rossby numbers. If the Rossby number is not small, the
Ekman-damping term in the vorticity equation has to be modified,
unavoidably breaking the symmetry between spin-up and spin-down.
In fact, in that case even the symmetry between spin-up and spin-
down in a circular container with a flat bottom would be lost. Ac-
cording to the Wedemeyer model (Wedemeyer, 1964) for nonlinear
spin-up and spin-down, the Ekman-suction term is equal to —A(1+
w/2Q)w. This leads to cyclonic vortices decaying faster than anticy-
clonic vortices, which is indeed observed in the experiments. For Ro=
0.1 one could estimate the Ekman damping in the beginning of
the experiment by —0.9\w, for Ro=—10.1 one finds — 1.1 w. This
corresponds to a difference of 20% in the spin-up time in the first
stage of the experiment. Since the dimensionless linear spin-up time
aB/\ is equal to 14 for this slope, one would expect a dimensionless
time lag of the order of 2.8 to develop. This is in rough agreement
with the experimental results, which suggest a time lag of about
4; the streamline patterns for a3t equal to 40, 44 and 48 in Figure 3
resemble closely those for a8t equal to 36, 40 and 44 in Figure 5.
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represented in Figure 6. Separation
a dimensional time measured in sec
fast that we have to allow for an

FIGURE 5  Stream function 1/|AQ|a® of experiment 3 (radius a=20cm, depth varying

from 18 cm to 20cm, spin-down from 2.2 to 2.0 rad/s).

6.4. Experiment 4: Spin-up Ro = 0.1, « = 0.5

The results of experiment 4, in which the topography is again FIGURE 6 Stream function $/AQa” of e

extremely pronounced with the depth varying from 10 to 20cm, are from 10cm to 20 cm, spin-up from 1.8 to
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represented in Figure 6. Separation from the sidewall takes place in
a dimensional time measured in seconds. Indeed, the flow evolves so
fast that we have to allow for an uncertainty in the reported time

aBi-20 aft = 24

of experiment 3 (radius g = i
-2 to 2.0rad/s). @7 20cm, depth vavine

) 0°19 k=05

in which the topography is again

depth varying from 10 to 20 cm, are FIGURE 6 Stream function 1/AQa?® of experiment 4 (radius a=20cm, depth varying

from 10 cm to 20 cm, spin-up from 1.8 to 2.0rad/s).
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of the order of Bar=1, since it takes several seconds for the table to
reach its final angular velocity.

Compared with all other experiments described in this paper, it is
striking that experiment 4 shows an anticyclonic rotation of the
dipolar structure consisting of the initial anticyclonic cell and the
cyclonic cell formed by vortex separation. Again, the only possible
explanation for this phenomenon is vortex stretching, caused by the
displacement of vortex columns across isobaths; we will return to this
matter in the discussion.

In the further evolution of the flow, one can recognize several
general properties of the analytical solution that are, at least to a cer-
tain extent, also observed in experiments 2 and 3. In the first place,
there is a tendency of all vortices to move to the west. This tend-
ency becomes more pronounced as the relative flow becomes weaker.
It seems therefore to be plausible that if one would take the stream-
lines in an advanced stage of the experiment as an initial condition,
the analytical model would give a fair description of the flow from
that time. Second, the flow is seen to break up into a number of
smaller vortices. Unfortunately, the flow decays before really small
scales develop. Substituting larger and larger values for Sar in the
analytical series expression yields a more and more intricate stream-
line pattern, but as a result of Ekman damping and other experi-
mental limitations we are not able to monitor the flow of experiment
1 for an indefinite time. '

7. DISCUSSION OF THE EXPERIMENTAL
RESULTS

An important observation in experiments 2, 3 and 4 is vortex shed-
ding from the sidewall in an early stage in the experiment. Vortex
shedding consists of the detachment of the initial shear layer from the
sidewall, advection of (in the case of spin-up) cyclonic vorticity away
from the wall, and the subsequent roll-up into a vortex. This phenom-
enon is markedly different from the separation and cell formation
seen in the analytical results (Fig. 1) and in experiment 1 (Fig. 2).
In the analytical results, no sidewall boundary layer with singular vor-
ticity is formed, and no vortex shedding occurs. This is an implication
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of the free-slip boundary condition and the missing nonlinearity in
the analytical model; vortex shedding can only take place if both
advection and viscous diffusion (with no-slip boundary condition)
are present. A further condition for vortex shedding is a significant
angular displacement in the course of the spin-up process. Since the
flow decays on a time scale 7 = H/(2v/»Q) this means that Ro/vE
should not be small. For E< 1 this condition is satisfied for all but
the tiniest increases in angular velocity. However, one question is
whether fluid elements have enough time to travel over appreciable
distances, but it is another matter whether they really do so if the finite
spin-up time is not a restriction. Suppose that both Ekman damp-
ing and viscous diffusion are absent. Then, the nature of the time-
dependent flow depends on the ratio between the magnitudes of the
advective term and the S-term. If the flow structures are characterized
by a typical length scale L and velocity U, then cross-over between
the advective term and the S-term takes place for Lgy = /U/8,
which is known as the Rhines length scale. In a spin-up experiment
without dissipation, we may put U=aAQ and, at the start of the
experiment, L=a. In the limiting case a/Lg;>> 1, the radius of the
tank is much larger than the Rhines length scale; equivalently, one
can say that Ro/k=(AQ/Q)/(AH/Hmax) < 1. In this case the g-effect
will disrupt the flow after the slightest spatial displacement; fluid ele-
ments can hardly move without inducing alterations in the velocity
field of the same order of magnitude as the initial flow. The analytical
theory, in which AQ/Q is arbitrarily small, corresponds to this case.
In the opposite limit a/Lgs< 1, the fluid may travel all around the
tank with only slight modifications induced by the g-effect. This is
most easily seen by considering a spin-up experiment with a very
small slope; the fluid may then rotate over a full 360° without significant
deviations from solid-body rotation.

Additional experiments not reported in the present paper show
these conjectures to be valid. In particular, in experiments with Ro =
0.01 and x decreasing from 0.5 to 0, the streamlines tend to become
more circular and the agreement with the linear theory is lost. Thus,
the value of the Rossby number being small is really an insufficient
criterion for the theoretical analysis to apply; the agreement between
experiment 1 and the linear theory owes as much to the strong slope
as to the smallness of the relative increase in angular velocity.
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Now, consider again the spin-up flow according to the analytical
theory. Typical of the solution is the decreasing coherence of the wave
modes, resulting in the vortex structures becoming smaller with time.
This means that the ratio L/Lg,< 1 will gradually decrease to the
point where the advection can no longer be neglected and the linear-
ity is lost. Note, however, that in the presence of Ekman damping
this ‘turbulent’ stage may never be reached. The Rhines length scale
is based on a velocity scale aA), which in the case of Ekman damp-
ing should be regarded as an exponentially decreasing quantity. It
is therefore possible to perform experiments for which the analytical
model (apart from a factor representing the decay of the flow) gives
a good representation of the flow at all times. Such a case is shown
by experiment 1 (Fig. 2).

It is difficult to give a detailed explanation for when and where the
vortex shedding in experiments 2, 3 and 4 (Figs. 3-6) takes place.
An elementary consideration is that in the case of spin-up, the shed
vortex must be cyclonic, since it consists of the vorticity from the ini-
tial shear layer at the wall. Second, one might estimate separation
to occur at roughly the same time as in the analytical model, differ-
ences appearing by advection of vorticity from the boundary into
the interior. However, if AQ/Q and AH/H are of the same order of
magnitude, the separation may occur somewhat later than in the
analytical model, since a larger azimuthal displacement is needed to
accumulate a change in the relative flow. It seems that this effect is
indeed seen in the experiments.

A related issue is the retrograde drift of the shed vortex in experi-
ment 4 (Fig. 6). Apparently, in experiment 4 the value of the parameter
Ro/k is such that the flow is affected strongly by the topography, but
only after a rotation of the initial flow over an angle of the order of
180°. Considering the flow as the sum of a solid-body rotation plus
a disturbance caused by the vortex stretching, one finds a centre of
positive vorticity emerges in the south, and a centre of negative vor-
ticity in the north in that case. Of course, the same topographic
vortex stretching is present in experiments 2 and 3, but in that case
the disturbance of the relative flow is five times as weak, which is
insufficient to disrupt the initial flow within one revolution. On
the other hand, if Ro/k is smaller, the disturbance develops so
fast that the vortex-stretching argument applies to small angular

|
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displacements only; this is the parameter regime described by the
analytical theory.

Another aspect of the flow is the position of the centre (i.e., the
point with zero velocity) in the first stage of the experiment. After a
fraction of a revolution of the flow in the rotating system, the flow
field consists of the initial solid-body rotation, plus a weak dipole
with the positive lobe in the east and the negative lobe in the west.
Adding these two contributions, one finds a velocity field in which
the centre has shifted slightly to the west. This conclusion corre-
sponds to the theory of Pedlosky and Greenspan (1967). However,
in experiments 2, 3 and 4 the angular displacement does not remain
small. After half a revolution (AQz= ), the velocity field may be ap-
proximated by a solid-body rotation, plus a dipole with the negative
lobe in the north and the positive lobe in the south. This implies a
shift of the centre to the north, in agreement with the experimental
observations. Note that the northward shift is not caused by a rota-
tion of the initial dipole, but is really explained by vortex stretching,
as expressed by the S-term in the vorticity equation.

8. NUMERICAL RESULTS

In order to obtain a better understanding of the spin-up process un-
der consideration, we made a numerical simulation with the param-
eters corresponding to experiment 2 (Figs. 2 and 3). The results for
the stream function and vorticity of the numerical run are presented
in Figures 7 and 8. Both the streamline contour plot and the vortic-
ity distributions show a good agreement between the experimental
and numerical data, another indication of the two-dimensional nature
of the flow and the validity of the two-dimensional representation
of the Ekman layer. However, it should be noted that the conditions
are favourable for such a comparison; the Rossby number is small, the
topography is moderate, and with a Reynolds number (defined as
Re=a*AQ/v) of 8000 the flow lies well within the application range
of the numerical code.

Unfortunately, the resolution of our experimental method is in-
sufficient to give a detailed insight in the evolution of the flow at
early times. The numerical simulations do not have this limitation,
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FIGURE 7 Stream function /AQa’ according to the numerical simulation of
experiment 2.

and can be used to study the separation and vortex shedding more
closely.

First, we determined the separation time, according to the criterion
that 9vg/Or be zero at the wall. In order to distinguish between the
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FIGURE 8 Vorticity of the numerical simulation of experiment 2.

influence of different terms in the vorticity equation, we calculated the
separation time in three numerical simulations, represented in Table
I1. All three experiments concern the parameters of experiment 2.
Simulation A (the physical run) represents the modelling discussed in

y -
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TABLE II Numerical simulations with the parameters of experiment 2

Designation Diffusion Adbvection Separation time fBat,
Simulation A Physical run Yes Yes 4.19
Simulation B Inviscid run No Yes 8.16
Simulation C Linear run No No 5.69 (analytical model: 5.68)

Sect. 5. In simulation B (the inviscid run), the same parameters are
used as in the physical run, but with the diffusive term switched
off. In simulation C (the linear run) the advective term is omitted in
addition; apart from the uniform damping provided by Ekman
pumping, this brings us back to the analytical model. For the physi-
cal run we found fats.,=4.19, for the inviscid run Batse,=8.16 and
for the linear run fBat,,=5.69. The agreement of the linear run with
the analytical solution is as expected, and provides a further verifica-
tion of the correctness of both methods. According to the physical
run, the separation time is shorter than in the analytical theory.
Apparently, the inward diffusion of positive vorticity accelerates the
process of cyclonic vortex formation. The inviscid run indicates that
advection tends to delay separation, which is not surprising in view of
the fact that the rotating fluid motion will tend to remove concentra-
tions of cyclonic vorticity away from the eastern part of the tank.
Second, we estimated the time at which cyclonic vortices are form-
ed at the sidewall. As a first criterion for the presence of cyclonic
vortices, we require the flow to form closed streamlines with v > 0.
In addition, we use a criterion based on the Weiss field (Weiss,
1991), defined as (1/4) (0°—w?), with w the vorticity and o?=
(Ov,/Ox — (9vy/3y)2 + (8v/8y + 8v,/0x)* a measure of the strain rate,
The Weiss field is required to exceed a somewhat arbitrarily chosen,
but very small negative threshold. As a consequence of this second
criterion, we find only vortices associated with a local concentration of
vorticity, not the vortex cells formed by Rossby-wave propagation.
Figure 9 shows the vortex-shedding time versus the Rossby number
for a number of different values of the slope (non-dimensionalized as
aB/S1). For Ro < 0.05, we find no separation according to the criteria
mentioned above, so the flow is in the Rossby-mode regime. For
0.05 < Ro < 0.1 a vortex-shedding time is found which is roughly
inversely proportional to the Rossby number. This dependence
would be in contrast with the analytical theory (according to which
the flow field depends on Bar only) but is in agreement with the
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notion that for finite Ro/x and given slope, the ﬁuid‘has to rotate
over a certain angle before the topography becomes noticeable. Mqre-
over, this argument also explains why the scaled vortex-shedding
time is, in a reasonable approximation, independent of z?,B/Q. If the
extent to which the flow is affected by the topf)graphy is measured
by the number of isobaths that is crossed, an mc‘rease. of the‘slope
by a factor two would make the vortex shedding time twice as
short, so the time scale aBtsheq Would be unaltered.

9. CONCLUSION

We have performed four spin-up experiments in a circulz}r tank with
a sloping bottom, all with values of the Rossby Pumber in the. range
from — 0.1 to 0.1. The results confirm the validity .of Fheoretlcal -
sults of Pedlosky and Greenspan (1967), but also mdlcat.e that im-
portant deviations can occur for conditions that at first sight would
seem to meet the criteria on which the theory is based. The t‘heor);‘
departs from an equilibrium between dw/0t and Bv,, and consists o
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an expansion of the flow in linear Rossby waves. We have shown in
Sect. 6.1 that it is indeed possible to tune the parameters of experi-
ments in a rotating tank in such a way that agreement with the
linear theory is found. However, the theory does not incorporate
viscous diffusion, the formation of a boundary layer at the sidewall,
and advective transport of vorticity. The experiments in Sects. 6.2,
6.3 and 6.4 show that even for small values of the Rossby number,
vorticity from the initial sidewall boundary layer may enter the do-
main and roll up into vortices. In earlier work, this phenomenon of
vortex shedding has been confused with the inviscid flow separation
following from the analytical results. Vortex shedding can be seen in
Figure 2.16 of Greenspan (1968), but apparently it was not recognized
as such.

Thus, the Rossby number is not the only parameter that plays a
role. Equally important for the nature of the spin-up is the ratio Ro/k
(with x a measure of the depth gradient). If Ro/x is small, the topo-
graphy dominates the dynamics, and the analytical theory applies.
If Ro/x is not small, the influence of the topography is moderate, and
the validity of the analytical results is lost. In such cases one may
expect either ongoing circular motion, or shedding of vortices from
the sidewall and the formation of filaments of concentrated vorticity.
This argument can also be expressed in terms of the parameter a/L gy,
the ratio of the radius a of the tank and the Rhines length Lgy, =
VU/B. Since a/Lgy is inversely proportional to v/ Ro/x, the ratio
a/Lgy should be large in order for the theory to be valid.

Our measurements are confirmed by a numerical simulation of one
of the experiments in which vortex shedding occurs. This calculation
is based on a two-dimensional representation of the flow field, with a
linear modelling of Ekman pumping. Owing to the smallness of the
Rossby number, this approach is very accurate, and leads to an excel-
lent agreement with the experimental data. By the subsequent omis-
sion of the viscous and the advective term in the vorticity equation,
it is confirmed that the differences between the linear theory and the
experiments are caused by those terms. Further numerical simula-
tions have been used to study the mechanism of vortex shedding
in more detail. The time at which vortex shedding occurs is different
from the separation time from the linear theory, but is in agreement
with predictions based on the notion that Ro/x has a finite value.
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The decay of the relative flow takes place by viscous diffusion in the
horizontal plane and, usually more important, by the Ekman pump-
ing mechanism. In the case of a flat bottom (or top) plate and small
Rossby number, the properties of the Ekman layer are well known.
The divergence of the two-dimensional flow field can then be coupled
to the vorticity, and the fiow may be modelled by (1). In the case of
experiment 2, this approach leads to a good agreement between
experimental and numerical results. Unfortunately, a generally
acceptable model for the two-dimensional representation of non-
linear Ekman layers has never been formulated. A consistent model
results from the assumption of a linear relationship between vorticity
and two-dimensional divergence. In combination with a compressible
two-dimensional flow field, this approach is known as the Wedemeyer
model. This model describes an inward moving front in the case of
nonlinear spin-up, whereas in nonlinear spin-down the flow remains in
solid-body rotation. The Wedemeyer model is known to be inaccurate
for quantitative applications, but it retains its qualitative validity
beyond the conditions it was meant for. In some additional nonlinear
spin-down experiments not reported here, it was observed that the
initial shear layer remains attached to the sidewall, and the flow
remains roughly axisymmetric regardless of the sloping bottom.
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