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Fundamental interactions of
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The effect of no-slip walls on the evolution of coherent, vortical structures in two-dimensional flows is studied by
numerical calculations. The calculations are based on an accurate and efficient spectral scheme which has been developed
for the solution of the 2D Navier-Stokes equations in the vorticity-stream function representation for bounded geometries.

Fundamental proce:

connected to vorticity detachment from the boundary layers caused by the proximity of vortical

structures are described. These processes include enstrophy enhancement of the main flow during bursting events. and

pinning down of vortex dipoles by “vortex shielding”.

1. Introduction

A basic property of many two-dimensional flow
systems is the ability to support the existence of
isolated coherent vortical structures for times
which afe very long compared to the turnaround
time of the structures themselves. These vortical
structures can be formed in a variety of ways,
either by external forcing or by nonlinear amalga-
mation processes in freely decaying turbulence.
Spectacular examples of such coherent vortices
can be observed in the atmospheres of Jupiter
and Neptune, but coherent vortices also play an
important role in the large-scale fluid motions of
the earth’s atmosphere and oceans.

Many different laboratory experiments have
demonstrated generation of essentially two-
dimensional vortical structures. In ordinary fluids,
the first stages of the evolution of perturbed
shear layers [1] are predominantly two-dimen-
sional processes under which coherent vortices
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form and coalesce. Experiments in rotating tanks
[2-6], in stratified fluids [7], in soap-films [8]. and
in mercury subject to an external magnetic field
[9, 10] also show the generation of various types
of two-dimensional vortical structures, such as
monopoles, dipoles and tripoles. In magnetically
confined plasmas, Q-machine experiments [11-13]
have demonstrated the generation and interac-
tion of two-dimensional coherent structures, or
convective cells, caused by cross-field electrostatic
perturbations. These convective cells greatly en-
hance the cross-field plasma transport, a property
which can be responsible for many of the prob-
lems with plasma confinement in large magnetic
fusion experiments.

A number of numerical simulations have been
performed to study various aspects of coherent
vortices in two-dimensional flows. These studies
include investigations of the emergence of iso-
lated vortices in turbulent flows [14-19] and in
perturbed shear layers [20-22], properties of iso-
lated vortices [23, 24], and interactions between
various vortical structures [25

In this paper, the effect of no-slip walls on the
evolution of vortical structures in two-dimensions
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is investigated by using an accurate and efficient
spectral scheme [32] based on Chebyshev—
Fourier expansions. It should be stressed that it is
not the intention in the present paper to study
the complex problem of transition [34] from lami-
nar to turbulent flow at a no-slip boundary. For a
transition, three-dimensional effects probably play
an important role [35], so only fairly low resolu-
tion numerical studies can be carried out at pre-
sent. In this work, it will be assumed that the
two-dimensional vortical structures are created by
some mechanism at a distance from the walls.
This makes it easier to separate the development
of the boundary layer from the generation pro-
cess of the coherent vortices. Specifically, two
different processes are investigated. The first is
the effect of no-slip walls on the roll-up of a
perturbed shear layer, and the second is the
collision of a vortex dipole with no-slip wall. In
both cases, vorticity detachments from the
boundary layer are observed to occur in sudden
bursting events. In the latter case, it is found that
the motion of the impinging dipole is stopped by
shielding of the two vortices in the original dipole
by rings of boundary layer vorticity.

The paper is organized as follows. Section 2
describes some properties of the basic equations.
In particular, the problem connected to the
overdeterminacy of the Poisson equation for the
stream function due to the no-slip boundaries is
addressed. This problem is resolved analytically
by expanding the fields in Fourier—Chebyshev
series and imposing necessary and sufficient inte-
gral solvability constraints on the vorticity field.
In section 3 the numerical scheme is briefly dis-
cussed, and section 4 contains a description of
the results. Finally, some concluding remarks are
included in section 5.

2. Basic equations

The basic equations describing the two-dimen-
sional flows under investigation are the Navier—

Stokes (N-S) equations, which consist of the
momentum equation

i 5
o S w-Va=—Vp+uVu (1)

ot
and the continuity equation
Veu=0. (2

Here, u is the flow velocity, p the pressure, and v
the kinematic viscosity.

The flows considered in this paper are assumed
to take place in a channel which is periodic in the
x direction with periodicity length L and bounded
in the y direction by no-slip walls at y = + 1. The
x and y variables are normalized by a character-
istic length scale L. If furthermore a characteris-
tic velocity, Uy, is introduced, all variables in egs.
(1), (2) can be made dimensionless by proper
combinations of L, and U,. The normalized vis-
cosity v obtained in this manner is the reciprocal
of the Reynolds number

where »; is the fluid viscosity in physical dimen-
sions.

Egs. (1), (2) express the N-S equations in the
“primitive variable™ or the “velocity-pressure”
(V-P) formulation. Taking the curl of (1) leads to

S >
T H(e.0) =v Vi, (4)
where the scalar vorticity  is given by

=0z, (5)
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the stream function & by
u=Vi X2z, (6)

and the Jacobian J(f. g) is defined as

O]

By taking the curl of (6) it is seen that the stream
function ¢ satisfies the Poisson equation

Vi =w. (8)
Egs. (4) and (8) give the N-S equations in the
“vorticity-stream function” (V-S) formulation,
which will be employed in the following. In this
formulation, the incompressibility condition (2) is
automatically satisfied.

2.1. Boundary conditions

The fields are now Fourier expanded in the x
direction according to

: N2=1 (0 (y .
(ZEL:;%!E (d’:E:‘_;)Cxp(iTm'].

9)

where the subindex n now indicates a field in
Fourier (or mode) space.
Introducing the no-slip boundary conditions

u(x,y

(10)

the stream function is found to satisfy the
Neumann boundary conditions

B,

a

=0, n#0, (11)

as well as the Dirichlet boundary conditions

Uo(£1) = F=(1),

U, (£1)=0, n#0, (12)

where F *(t) are arbitrary functions of time.

These boundary conditions (11), (12) will cause
the Poisson equation (8) to be overdetermined
unless some constraints are imposed on w,(y). In
the following discussion of how these “solvability
constraints” [33] are determined, the two cases
n =0 and n =0 are investigated separately.

2.1.1. Fourier mode n#+ 0
Inserting the Fourier expansions (9) into Pois-
son’s equation (8) gives

dy, %
5 A=, (13)

where

(14)

In (13), the y derivative has been written as an
ordinary derivative. This is done in order to sim-
plify the following discussion and is justified
by the lack of explicit time dependence in the
Poisson equation (8).

Eq. (13) is subject to both the Dirichlet bound-

ary conditions

U (1) =0, (15)
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(£1)"'p%,

mnp

(28)

Thus, for each Fourier mode » different from 0, a
Poisson-Dirichlet problem (20), (21) must be
solved for each forcing Chebyshev mode T,,(y).
In order to resolve the sharp boundary layers in
the fields o,,,(y) for high values of #. it has been
found that the number of Chebyshev modes, P.
used in the expansion (27) of g,,,(y) must exceed
the number of Chebyshev forcing modes by ap-
proximately 40. Since (20) only depends on n”,
the values of B, are the same for cosine and
sine terms.

It should be emphasized that the determina-
tion of B, is independent of the value of » and
only needs to be performed once for each differ-
ent geometry, i.e. it depends only on L besides
M and N. Values of B, obtained for high values
of M and/or N can directly be used in lower
resolution runs. These properties are in contrast
to the characteristics of the scheme by Dennis
and Quartapelle [36] for determination of no-slip
boundary constraints. Their scheme also makes
use of the velocity—stream function formulation,
but requires an additional Poisson equation to be
solved per Fourier mode at each time step. Thus,
although the present scheme requires #(M X N)
Poisson equations to be solved, this calculation is
performed once and for all (for each different
geometry), which is much faster than the
Dennis-Quartapelle scheme for typical simula-
tions of dynamical flow processes.

2.1.2. Fourier mode n =0
In this case the no-slip conditions are

B,

Uo(y=x1)=F=(1). (29)

The value ,(y) contains an arbitrary constant,
since only @l,/dy enters the N-S equations.
There is consequently freedom to choose one of
the functions F*(r) or F~(r). while the other
remains unknown.

In order to preserve the velocity difference
between the flow at the two walls, the vorticity
must maintain the circulation, C, where

ngépu ~dl=L(U=U")
:j;)wd\':Lf:“wu(,\l!)d,\'. (30)

Here, D and 8D are the surface and boundary of
the two-dimensional flow, respectively.

Given w(y.r=0). the Galilean invariance of
the N-S equations allows both U~ and U~ to be
determined by choosing a frame of reference. In
—U~ is made.

The temporal evolution of C can be found by
surface integration of (4), which yields

The requirement that dC/dr=0 subsequently
imposes the constraint

=o0. (32)

Tt is seen that conservation of C either requires
enforcement of

[ on(r. 0 dy = [Tay(y.0)ay (33
—1 -1

or eq. (32), which only amounts to one constraint
on wy(y). A second constraint can be found by
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integrating the x component of the moment
equation in primitive variables (1) along the walls
at y = =1, which gives

1 5
— Ly ®Ph-xn (34)

where 3pl,- ., is the total pressure difference
along a length of period of the channel at either
wall. The two conditions in (34) are consistent
with (32) provided that

3ply=s1=3pli=_1=3p. (35)

Thus, for n =0 egs. (32), (34) and (35) give the
two constraints

Provided a perfect numerical time integration
these constraints ensure the conservation of cir-
culation C. Consequently, a time history of C(r)
can serve as a measure of accuracy of the numeri-
cal code.

For the Poisson equation with 27 =0, the
Neumann conditions (dt,/8y)|,. ., =U~ are
employed with

5[ lon(s1=0)ay. ©7)

Since ¥,(y) is expanded in Chebyshev polynomi-
als as written in (23). the coefficient W, is left
undetermined by (37). The freedom to add any
constant value to #y(y), as discussed above, is
then used to set

Yoo =0. (38)

2.2. Initial vorticity distribution

The code is initialized by choosing a vorticity
distribution at 7 = 0. This initial vorticity distribu-
tion must, naturally, satisfy the no-slip boundary
conditions (10). If the coefficients w,,,,(t = 0) from
(23) and B, from (28) are considered as the
components of an M-dimensional vector for fixed
n# 0, then the initial guess for @,,,,(r = 0) has to
be projected normally onto a plane containing
the vectors with the components B, and B,

Since the vectors with the componcnts B dnd

B, are generally not mutually orthogonal, two

vectors with the components

be, = (B

it B)s b= (Br—Bg)

(39)

are introduced. It is clear from (28) that these
two vectors are orthogonal to each other.
The projection of the initial guess for @,,,,(r = 0)

onto the true no-slip w,, (t=0) is then per-
formed by

, O B e B b

Opn = Opp =™ e 12 Omn ™ o
llag,I*

i = T ey o

(40)

In order for this projection scheme to give rea-
sonable results, the initial guess @,,, should not
be too far from satisfying the no-slip constraints
(25). This can typically be achieved by choosing a
zero-order distribution which gives rise to a flow
parallel to the walls and adding an arbitrary, but

not too large perturbation.

2.3. Energy and enstrophy evolution

The lsmporal evolution of the total ene:
Iul ds, and the total enstrophy,
/po’ dx can be found from (1) and (4). The
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results are

% = 0+ VL (U 0~ U e")
180,
~op T‘.“d,\‘ (41)
and
%:x,/;u(vwl)4ndllelj;)(vw)3ds. (42)

where n is the outgoing normal to the boundary.
It is seen that the terms originating from surface
integrations over D are all negative. The only way
for energy or enstrophy to increase in the flow is
via the boundary terms calculated along aD. Egs.
(41) and (42) will be used as accuracy checks of
the numerical code.

3. Numerical scheme

Insertion of the Fourier—Chebyshev expansions
described by (9) and (23) into Poisson’s equation
(8) vields

M
L p(pP=m)y, =K, = —0,,. (43)

=m=2
p=mevén

where A, is given by (14). The Dirichlet boundary
conditions (15) for n = 0 give

M
Y ()", =0,

m=0

for n#0, (44)

while the Neumann boundary conditions from

(29) together with (38) result in

T (1), = U=,

m=1

g =0, (45)

where U = is defined by (37).

Following the “tau-method” [37, 38], the last
two rows in (43) are replaced by either (44), if
n#0, or (45). if n=0. The resulting system

(46)

mpYpn

where @, =w,,, except for &g _;,=
=U" and @y, =@y, =0, for n=1,
The matrix A is regular and contains zeroes bc—
low the main diagonal (except for the last two
rows). Direct solution of (46) requires £(M>N)
operations, which is unacceptable since ¥(x,y)
must be determined at every time step. However,
Chebyshev recursion relations [37] allow the
transformation of A into a tri-diagonal submatrix
above the last two rows, which contain the
boundary conditions. Subsequent Gauss elimina-
tion produces a lower triangular, tri-diagonal
matrix ready for solution by direct forward substi-
tution. These row operations are only performed
initially on A. The actual solution of Poisson’s
equation by this scheme requires only &(MN)
operations. It has been proven [39] that such
recursions can be derived for the second deriva-
tive operator for a wide class of orthogonal
polynomial families obeying 3-term recursion
relations of the type satisfied by symmetric Jacobi
polynomials.

The Chebyshev-Fourier expansion of the vor-
ticity dynamical equation (4) is straightforward.
The nonlinear products in the convective term
described by the Jacobian are computed in point
space and the result fully dealiased using the 5
truncation scheme [32, 37, 38].
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For the time integration of (4), the presence
of both a nonlinear convective term and a lin-
ear diffusion term necessitates the use of a
mixed explicit—implicit scheme. A 3rd order
Adams-Bashforth predictor—corrector scheme is
used for the former term and a backwards Euler
scheme for the latter. This means that at the kth
step, a Helmholtz equation of the form

(I1-vdt A} )w**' = F* (47)
has to be solved for both the predictor and the
corrector step. In (47) 8¢ is the time step, A% is
the finite approximation to the Laplacian opera-
tor by M Chebyshev and N Fourier modes, and
F* represents the terms which are already re-
solved by the explicit predictor and corrector
steps. As in the case of the Poisson equation, the
vorticity constraints enter via the tau-method,
which, for each Fourier mode n, means replacing
the last two rows in (47) corresponding to the two
highest Chebyshev modes by either (253), for n o
or (36), for n = 0. The scheme for the numerical
solution of the Helmholtz equation (47) is equiva-

Table 1

lent to the scheme discussed above for the solu-
tion of the Poisson equation. Due to the hig
efficiency of the Poisson and Helmholtz solvers,
most of the time in the code is spent in the FFT
routines, which are already very efficient.

4. Numerical results

This section contains results from three differ-
ent runs. An account of the basic parameters for
the runs of and the results obtained for the
accuracy checks is given in table 1. The runs were
performed on Rise’s Apollo DN10000 *mini-
supercomputer” and used approximately 60 CPU
hours each.

In the first example, the effect of no-slip walls
on the roll-up of a perturbed shear layer is inves-
tigated. The functional form of the initial vorticity
distribution before projection is

@(x.y) = 6[sech®(5y) —cos x](1 -

Characteristic parameters for the simulations. The variables L. ». M. N and 8¢ designate the channel length, the viscosity, the

number of Chebyshev modes, the number of Fourier modes and the time step. respective!
accuracy checks are all obtained at the final time step of cach run. The

The values listed for the three different
check” measures the accuracy of circulation

conservation by integration of the vorticity ficld. The value for this parameter is given relative for run 1. and absolute for runs 2 and

3. The values of “dE/d# check™ and “df2/dr check™ are obtained by comparing the values obtained directl;
time centered differences among three consccutive values of E and £

these accuracy checks express relative deviations.

from code. based on
with the values obtained by evaluating (41) and (42). Both

Run 1

Run2 Run3

st
Time steps

C check
dE/dt check
d0/d: check

dipole. 80°
4
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T = 0.00 T =040

T = 0.80 T=120

Fig. 1. Contour plots of the vorticity distribution, w(x. ). at various times for the shear layer roll-up in run 1. Blue colors
correspond to negative values, red /orange colors to positive values. and the green color corresponds 1o vorticity values centered
around zero.
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which is projected onto a distribution satis
the no-slip boundary conditions by the scheme
described in section 2.2. The effect of this projec-
tion is mot noticeable on the contour plot of
wlx,y, t=0).

Fig. 1 contains contour plots showing the tem-
poral evolution of @(x,y). Red and blue colors
indicate regions of positive and negative vorticity,
respectively. Fig. 2 shows the corresponding evo-
lution of the normalized total energy, E/E(0)
(shown with a dashed line), and normalized total
enstrophy, 2/0(0).

From fig. 1, it is seen that the initial stage of
the roll-up process is fairly unaffected by the
presence of the no-slip walls. However, as the
positive vorticity. originally confined to the center
of the channel, starts approaching the walls, re-
gions of negative vorticity are generated in the
boundary layers. Fig. 2 shows that the energy in
the flow is continuously diminishing due to the
effect of viscosity, but that the total enstrophy, 2,
is greatly increased over its initial value. As dis-
cussed in section 2.3, the values of E and £ can
only increase due to the behavior of the flow at
the boundaries of the channel. The first bump on
the trace of (1) occurs at 7~ 1.3. At this time,
part of the negative vorticity region in the bound-
ary layer has slided over a region of positive
vorticity nearer to the wall, and a formation of a
dipolar structure is initiated. This dipolar struc-
ture has its propagation velocity directed into the
main flow, and subsequently starts a detachment
process from the wall. However, the strong shear
in the main flow opposes this detachment and a
complicated growth of dipole structure continues
in the boundary layer.

The next hump in £(1) occurs at 7 ~ 2.4, when
the dipolar structure in the boundary layer has
gained enough strength to start entering the main
flow. However, since the flow topology contains a
saddle point near the location of the structure,
the two parts of the dipolar structure are soon
torn apart, and only the negative vorticity part
continues into the central flow. The maximum

peak in () occurs at ¢ ~ 2.7, which is about the
time of this tearing event. After the splitting of
the dipolar structure, the negative vorticity part is
driven by the main flow to the other side of the
channel. Here it quickly finds a positive counter-
part, with whom it forms a new dipolar structure
and enters the main flow again. The subsequent
history of the evolution is rather chaotic, or tur-
bulent, with dipolar structures continuously col-
liding with each other or torn apart by stresses in
flow. At the same time new dipolar structures are
being created in the boundary layers and give rise
to sudden “bursting” increases of total enstrophy.

Although the flow in its later stages is turbu-
lent, at any instant it still contains only relatively
few vortical structures. However, contrary to the
numerical results by McWilliams [14] for freely
decaying two-dimensional turbulence in a doubly
periodic domain, these vortical structures cannot
be traced back to local extrema in the initial
vorticity distribution. The origin of the structures
in the present simulations are in the boundary
layers, and the formation processes require the
proximity of some other vortical structure in the
main flow to the boundary layer. The generation
of vortical structures in boundary layers caused
by other vortical structures has been observed by
Sommeria [9, 10] in experiments performed in
mercury subject to an external magnetic field.

As a numerical artifact, low amplitude, wave-
like structures in the x direction are seen to
appear in o(x,y) at t~24. These waves are
caused by numerical inaccuracies due to the finite
number of Fourier modes N and are propagated
in the simulations due to the dispersive character
of the error of the 3rd order Adams-Bashforth
scheme. These waves could be suppressed by
either increasing the viscosity, but this would
wash out the details of the flow, or by doubling N
and using half the time step, but this would lead
to more than a quadrupling of the total CPU
time. In any case, the evolution of the flow would
not change qualitatively, since the accuracy checks
listed in table 1 are rather good, even for this run.
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Fig. 2. Time evolution of the normalized total ecnergy.
E(1)/E(0) (dashed line), and the normalized total enstrophy.
£0(1)/9(0) (solid line), for the roll-up case shown in fig. 1.

It is clear from the results presented in figs. 1
and 2 that dipolar structures play an important
role in the evolution of two-dimensional turbu-
lence in a flow with no-slip walls. In order to
investigate the behavior of such structures in more

T =010

T = 0.30
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detail, some numerical calculations were per-
formed on the interaction of isolated dipoles with
no-slip walls. In these runs, the initial vorticity
before projection is

10y, Yur
=1y
RTo(vun) '( )

X[(x=2)cos 8, +ysinb,], if r<R,

=0, if r>R,
(49)
where r=/[(x=2)>+37], R=04, J, (1) are

the zero and first order Bessel functions, y,; is
the first zero of Jy(r), and 6, is the initial injec-
tion angle. As in the first run, @(x, y) is projected
onto the no-slip w(x, y) according to (40).

Figs. 3 and 4 are similar to figs. 1 and 2, but for
the case of a dipole injected perpendicularly to a
wall with 6,=90°. From the contour plots of
w(x, y), it is seen that the two parts of the origi-

Fig. 3. Same as fig. I for the dipole-wall collision at 90° in run 2.
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4. Same as fig. 2 for the dipole-wall collision at 90°
shown in fig. 3.

nal dipole split from each other when approach-
ing the wall. If the walls were free-slip, the two
parts would propagate away from each other along
the walls under the influence of their mirror
images. However. as seen in the previous exam-
ple. a coherent vortical structure near a boundary
layer at a no-slip wall generates a region of oppo-
site vorticity. In fig. 4, it is seen that (1) reaches
a maximum at ¢ ~ 0.25, which is the time of initial
detachment of the newly created dipolar struc-
tures from the wall.

These new dipolar structures do not have bal-
anced amounts of positive and negative vorticity
and consequently they have curved trajectories.
At 1~ 0.6, the two structures get close to each
other. and, as a result of this encounter, the two
dipolar structures exchange partners. Similar be-
haviour has also been seen in experiments [7, 8,
10] as well as in other numerical simulations [8,
25, 30].

After the splitting of the dipolar structures,
one small dipole, consisting entirely of material
originally close to the lower wall, propagates
straight up, while a larger dipolar structure con-
sisting of fluid from the original dipole starts a
downward motion again. The second hump in
(1), at 1 ~0.75, corresponds to detachment of
boundary layer vorticity at the second impact of
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dipolar structure at the lower wall. Although two
new dipolar structures are formed out of incom-
ing vortical structures and generated boundary
layer vorticity, the second impact between these
new dipolar structures out in the channel has a
different outcome than the first collision. The
second time there is no exchange of partners, and
the boundary layer material is squeezed down
again between the two major monopolar struc-
tures.

At 1~ 1.5, the small dipole has propagated all
the way to the upper wall, and a mirror process of
the original dipole collision with the lower wall is
initiated, only at a smaller scale. After 1~ 1.3,
the two parts of the original dipole seem to have
become pinned down at a distance from the lower
wall similar to their own diameters. If two
monopoles of equal strength and opposite vortic-
ity are isolated in an infinite fluid, they will move
together with a joint velocity determined by the
strength of their vorticity and their separation.
The more or less complete stop of the two parts
of the original dipole must be attributed to the
(incomplete) ring of vorticity originating from the
boundary layer and surrounding each monopolar
structure. As a result of these vorticity rings or
“halos”, the two monopolar structures are in
effect shielded from each other.

This behaviour is very similar to the results
obtained by Shebalin [40] from simulations of
vortex wake descent. It is known that an airplane
moving through air generates two counter-rotat-
ing cylindrical vortices aligned along the direction
of motion of the plane and with a vortex extend-
ing backwards from each wing tip. The directions
of rotation for a lifting wing are such that the
joint dipolar structure propagates downward. As
the plane approaches a landing field, the dipolar,
wing tip vortex system descends to the ground
after the plane. It is also known that wing tip
vortices can hover at some height over a landing
field for long periods after a plane has landed.
This is a behavior of great practical importance,
since it imposes a lower limit to the admissible
time separation between two landings.
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Fig. 5. Same as fig. 1 for the dipole—wall collision at 807 in run 3.

In the simulations of Shebalin. a rectangular
two-dimensional domain with no-slip walls on two
opposing sides was employed. The implementa-
tion of the no-slip boundary conditions was only
approximate (as also stated by the author), and
the resolution of the simulation was only 32 x 32
Fourier modes. Furthermore, the system of dy-
namical equations was slightly different from the
ones used in the present paper., due to inclusion
of temperature variation effects. Nevertheless, the
temporal evolutions of the total enstrophy in
Shebalin’s simulations are qualitatively very simi-
lar to the plot of Q(¢) in fig. 4. Furthermore, the
wing tip vortices in his simulations scttle down
near a constant height above the lower boundary
in connection with a process that resembles the
ring-like shielding discussed above, although the
details seen in fig. 3 are absent in his low resolu-
tion runs.

In order to test the stability of the shielding
process against changes in injection angle 6, a
run was performed with 6, = 80°. but otherwise
with the same parameters as in run 2. The results

G

B
<

Fig. 6. Same as fig. 2 for the dipole-wall collision at 80°
shown in fig. 5.

are shown in figs. 5 and 6, with the graphical
representations used above. The evolution of the
flow up to 1~ 0.6 is very similar to the case for
run 2. However, after this time, which corre-
sponds to the first collision between the two
dipolar structures, the evolution is quite different.
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Due to the oblique injection angle, the collision is
not symmetric, and no exchange of partners oc-
curs. In spite of the very different details of the
flow evolution after the first dipole collision, the
evolutions of total energy and enstrophy are qual-
itatively equivalent for the two runs. Also, in run
3 a new small dipolar structure, consisting of
boundary layer material and capable of escaping
into the upper part of the channel, is formed.
This dipolar structure can be seen on the contour
plot of w(x 1.7) in fig. 5. However, con-
trary to the case in run 2, this structure will not
propagate along a straight path due to the imbal-
ance of negative and positive vorticity.

5. Conclusion

In this paper, some fundamental interactions
of vortical structures with boundary layers in
two-dimensional flows have been investigated by
numerical simulations. An approximation method
in terms of Chebyshev—Fourier expansions of the
problem of no-slip boundary conditions for the
Navier—Stokes equations in the vorticity-stream
function formulation was described. The method
of enforcing the no-slip boundary conditions via
tau constraints appears to be new. It was dis-
cussed how this solution can be implemented
effectively in a numerical scheme.

The numerical code was used to simulate the
evolution of three different flows in a periodic
channel with no-slip walls. The first example was
a roll-up of a perturbed shear layer. initially
confined to the central part of the channel, while
the two other examples showed the collision with
no-slip walls of dipoles injected at 90° and 80° to
the wall, respectively.

The roll-up process showed strong enhance-
ment of the total enstrophy of the flow in sudden
“bursting” events. These events were connected
to the detachment of vorticity from the boundary
layers in the form of dipolar structures. The de-
tachments were caused by the proximity of vorti-

cal structures in the main flow to the boundary
layers. Although the development of the flow
became rather chaotic, only relatively few coher-
ent structures were present in the flow at any
instant. An interesting and open question is
whether decaying. two-dimensional turbulent
flows in a domain bounded by no-slip walls will
approach one of the equilibrium states of mini-
mum dissipation, which are known from studies
[41, 42] of two-dimensional flows without these
boundary conditions.

The interaction of a dipole injected perpendic-
ularly onto a no-slip wall was also found to gener-
ate vortical structures of opposite polarity in the
boundary layer. The generated vortical structures
formed two new dipolar structures together with
the original vortical structures in the impinging
dipole. These new dipolar structures detached
from the boundary layer, thereby enhancing the
enstrophy. and entered back into the channel. A
subsequent collision between these new dipolar
structures created yet a new, but smaller, dipolar
structure, this time entirely consisting of bound-
ary layer material. This small dipole progated
straight across the channel, initiating a new colli-
sion process on the other side. The original dipole
got pinned down by an effect called “shielding”.
This effect was caused by boundary layer vorti
continuously being pulled in a ring or “hal
around the two monopolar structures of the origi-
nal dipole. The relevance of this effect to the
practical problem of wing tip vortex pairs de-
scending from landing aircrafts and hovering for
long times over landing fields was discussed.

Finally, the role of injection angle on the inter-
action between a dipole and the boundary layer
was investigated by changing the angle to 80°.
Although details of the flow were very different
between the two dipole runs, similar qualitative
evolution of energy and enstrophy was observed.

It should be mentioned that the effects of
extending these flow simulations to three dimen-
sions are not known and need further investiga-
tion.
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Note added in proof

Prof. G.J.F. van Heijst has brought to our
attention the experimental work on dipole colli-
sions against solid walls by van Heijst and Flor,
in: Mesoscale /Synoptic Coherent Structures in
Geophysical Turbulence, eds. J.C.J. Nihoul and
B.M. Jamart (Elsevier, Amsterdam, 1989) pp.
591-608. Prof. van Heijst also communicated a
manuscript by P. Orlandi on numerical simula-
tions of vortex dipoles impinging on flat bound-
aries. This manuscript has recently been published
(P. Orlandi, Phys. Fluids A 2 (1990) 1429-1436).
The results reported in both these papers are in
close agreement with the results reported here.
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