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Iterative procedures related to relaxatioi~ methods for 
eigenvalue probleins 

BYS. H. CRANDALL 

Department of Mechanical Engineering, Massachusetts Institute of Technology 


(Communicaied by Sir Richard Southwell, 3lR.S.-Received 31 January 1951) 

Three iterative procedures for approximating to the solutions of linear eigenval~m problems 
for systems with a finite number of degrees of freedom are discussed. Two of the procedures 
are closely related to known iterative procedures while the third is original. The procedures 
are shown to possess quadratic, geometric and cubic convergence. All three procedures lie 
within the framework of the relaxation method, each representing a particular manner of 
fixing the freedom of choice existent in the relaxation method. The study was made to in- 
vestigate the convergence and behaviour in the large of the relaxation method and to provide 
guiding principles for the relaxation computer. One particular result of importance is that 
orthogonalizatioa of trial modes is not essential to the success of the relaxation method. 

The relaxation method developed by Southwell and others (Southwell 1940; Allen, 
Fox, Motz & Southwell 1941) provides a powerful approximate procedure for the 
solution of eigenvalue problcms in systems with a finite number of degrees of free- 
dom. A theoretical investigation of the procedure was recently made by Cooper 
(1948), who showed the convergence of the method for the extreme eigenvalues. 
For the intermediate eigenvalues, both Southwell, in his examples, and Cooper,* 
in his discussion, proceed by orthogonalizing the new trial modes with respect to 
those already determined. The present investigation has two objectives: first, to 
show that orthogonalization is not essential to the success of the method; and 
secondly, to investigate the overall behaviour of the process in order to provide 
guiding principles for the computer. 

A unique feature of relaxation methods is that they are approximate procedures 
which are not rigidly prescribed in advance. The precise procedure to be followed is 
not dictated but is left to the intuition and accumulated experience of the computer. 
The computer's intelligence is thus an active or dynamic link in the computational 
chain. It is this fact which has made relaxation so attra,ctive to many computers. 
The concept of convergence for such a flexible process is, however, somewhat lacking 
in precision. I propose to call a relaxation procedure convergent if within its frame- 
work a convergent iterative procedure can be constructed by inserting initially fixed 
criteria into all steps requiring judgement on the part of the computer. For eigenvalue 
problems three distinct convergent iterative procedures will be shown all related to 
the relaxation method which exhibit, respectively, quadratic convergence, geometric 
convergence and cubic convergence. (An iterative procedure, with error F after L 
steps, is said to have (a) geometric, ( b ) quadratic, (c) cubic convergence, if after 
lc + 1 steps the error is of order (a)Se, (b) e2,(c)c3, where Sis a constant, independent 
of E ,  satisfying 0 <S <  1). The behaviour in the large of the three methods is also 

* The orthogonalization device used by Cooper is called deflation by Aitkon (1937). 
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investigated. It is not suggested that any of the iterative procedures would be more 
useful to the computer than the original relaxation method, but rather it is hoped 
that a knowledge of the behaviour of these related methods will enable the com- 
puter to make more efficient use of the freedom of relaxation. 

We take the linear eigenvalue problem in the following form which includes both 
lumped parameter systems and the finite difference analogues of continuous systems. 
Let A and B be given real symmetric matrices of order n with elements aii and bij, 
and, moreover, let the bij be the coefficients of a positive definite quadratic form. 
Then the eigenvectors or modes X (x,, x,, ...,x,) and eigenvalues h are to be deter- 
mined from the equation A X  = ABX. (1) 

It is known that there are n eigenvalues hi (i .= 1,2, ...,n) and n corresponding modes 
Xi (i = 1,2, ...,n) which we will take to be orthonormal with respect to B; i.e. 

We also know that any vector V (v,, v,, ...,v,) may be expanded uniquely in terms of 
these eigenvectors in either of the following ways: 

In  the relaxation method for solving (1 )  residual vectors R (r,, r,, ...,r,) are asso- 
ciated with trial vectors V and trial eigenvalues A as follows: 

R = AV-ABV. (3) 

Starting from an initial trial vector, V, the first trial A is obtained by forming 
Rayleigh's quotient for V, i.e. V'AV 

it = --
V'BV ' 

where V' is the transpose of V. Now with this value of A fixed in (3), the vector V is 
altered with intent to reduce the residual vector R. This operation is facilitated by 
the use of relaxation operations tables. The amount of alteration in V and R is not -

specified, but when, in the opinion of the computer, the residual has been 'sufficiently 
reduced', Rayleigh's quotient is re-computed for the altered V and the process 
repeated as many times as the computer deems necessary. In  a large number of 
examples, engineering accuracy has been obtained with no more than two or three 
recomputations of A. In  these cases the computer was e~perienced and had some 
intuitional basis for choosing the initial trial V .  

In  the iterative procedures which follow we shall consider equation (3) to define 
the vector V for prescribed R and A. We note here that if A is not an eigenvalue, A, 
of (1), then there is a unique V for every R. In  fact, if in (3) the residual is expanded 
in the form w 

R = hiBXi, (4)
i= l 



and we assume for V the expression 
n 

it is possible to evaluate the c ,by premultiplying (3) with Xi ,  and by using (1) and 
(2) to get 

However, if A = AD, then there exist two possibilities. If in the expansion (4)h, +0, 
then there exists no finite solution to (3). On the other hand, if h, (and all hi asso-
ciated with A, if A, is a multiple root)* vanishes, then a multiplicity of solutions 
exist. Thus if we consider V to be expanded as in ( 5 ) ,the ci (i+p)  would be uniquely 
determined, but c, would be arbitrary. In  attempting to find V from (3), the occur- 
rence of the first-named possibility would indicate that A was an eigenvalue and 
hence the corresponding mode could be determined. We will assume that in the 
second case the multiplicity of solutions would not be noticed and hence the fact that 
A was an eigenvalue would not be discovered. 

2. AN ITERATIVE PROCEDURE WITH QUADRATIC CONVERGENCE 

The following method is a slight extension of one suggested by Rayleigh (1945) 
and recently re-suggested by Rohn (1949). We choose a fixed residual vector, R, 
and then use equation (3) to obtain vectors V corresponding to scalars A. The A are 
in turn obtained as the Rayleigh quotients of the preceding vectors V. The Rayleigh- 
Kohn'f method is the special case where the residual R (r,, r,, ...,r,) has the form: 
ri = 0, i S p  and r, = 1. In general, let the fixed residual R have the expansion (4). 
The process may be started with a choice of an initial vector 6,or of an initial scalar 
A,. The succeeding steps are described by the following recursion formulae: 

B=(A-Ak+lB)T$c+l (k=O7l,2,*. . ) .  (8) 

The scalars A, are obtained from (7) and the vectors V,are determined by (8). With 
the aid of (6) it is possible to give the more explicit forms of V,and Ak+l: 

" 
V,= ---

hi x,,
i=1hi-A, 

The quadratic convergence of the process can be seen from (10). If A, = A, +e, 
where 1 s 1 is small comparsd with the eigenvalue spacing, then i t  follows that if 
h, is non-zero, we have Ak+, = h, +O(e2)~ 

* In  what follows we assume the A, to be distinct. Obvious modifications in the statements 
would be required for multiple roots. 

-f Itmay benoted that the tabularprocedure of Holzer for torsionalvibration (seeDenHartog 
1947)and also Mykelstad'e (1944)tabular procedure for flexural vibrations are both of this type 
as regards computation of the vector V. However, it is not usual in these procedures to take the 
succeeding A as the Rayleigh quotient of the preceding V. Usually the succeeding A is chosen 
by intuition and the general principles of interpolation. 
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The behaviour of the process in the large (i.e. when A, is not in the immediate 
neighbourhood of an eigenvalue) is fairly complicated. Considerable insight may be 
obtained by studying the function 

f (A,) = Ak+l- A, = 

A sketch of this function is shown in figure 1. An elementary analysis reveals that if 
m of the h, are non-zero, then f (A,) has (2m - 1) zeros; the m eigenvalues, A,, corre- 
sponding to the non-zero h,, and (m- 1) values, pi, separating these A,. I t  is readily 
found that the slope off (A,) is -1 a t  each of these A,, and + I at  each of the pi 

A possible iterative sequence of A, converging on h,is indicated in the figure by 
the path abcdefg. It will be noted that the quadratic convergence in the neighbour- 
hood of the 4 is clearly indicated by the fact that f (A,) has slope -1 a t  each eigen- 
value. The fact that f (A,) has slope +1 at each of the p, indicates that the pi are 
unstable foci of the process, i.e. if A, = ,up+s, then A,,, z p D+26. However, it is 
possible to have a sequence of A, which converge to a pi as is shown by the path 
rstuvp, in figure 1. A little further study leads us to the following general conclusion. 
Starting from any initiad A,, the iterative procedure described in this section yields 
a sequence, A, (k= 1,2, . . .), which does one of the following: 

(1) Sequence terminates after a finite number of steps with A, equal to an 
eigenvalue. 

(2) Sequence terminates after a finite number of steps with A, equal to an unstable 
focus pi. 

(3) After a finite number of steps, sequence becomes monotonic, approaching an 
eigenvalue with quadratic convergence. 
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The first two possibilities above have zero probability. By tracing paths such as 
rstuvp, in reverse, it is clear that the set of values of A, for which these cases can occur 
is denumerable. In  general, then, we have the third possibility. To show that the 
sequence becomes monotonic we fix our attention on (10) which states that is 
a weighted average of the h,and note that if A,,, >A,, the weights will be so altered 
as to make A,,, >A,,, unless there are eigenvalues A,, A,,,, ..., A,,,, with non-zero 
hi located between A, and A,,,. In  this latter case we can argue that no future A, 
of the sequence will ever be less than A,, which is sufficient to assure that eventually 
two succeeding A cannot be separated by an eigenvalue. 

The following general remarks may be made in connexion with this procedure: 
(1) There is a neighbourhood about each eigenvalue A, (for which the corre- 

sponding h, is non-zero) such that if A, is taken in this neighbourhood, the iterative 
procedure described in this section will converge to A, and to the corresponding mode 
X,. The size of the neighbourhood depends on the eigenvalue spacing and the relative 
magnitude of h, compared with the other hi. 

(2) For those eigenvalues, A,, for which h, = 0 in the expansion of R, we note that 
there is no tendency toward convergence. If, by chance, A, = A,, this fact might 
easily not be recognized. See the remarks a t  the end of 3 1. 

(3) The unstable foci, pi, can be distinguished from the eigenvalues, A,, by noting 
that for A, =pi the corresponding vector V, is uniquely determined, while for 
A, = A, there is no finite solution for V,. 

We next examine two related procedures which exhibit somewhat simpler 
behavioiir in the large. 

In the method of the previous section we fixed the residual vector R and con- 
structed a sequence of A, and &, using (3) together with Rayleigh's quotient. We 
now turn to a procedure in which A is fixed and a sequence of residuals, R,,and 
vectors, G, is constructed from (3). 

Having fixed A, we start with a trial vector 6.The succeeding steps are described 
by the following recursion formulae: 

R,,, = (A -AB)&+, , ( k  = 0,1,2, . . .). (13) 

The residuals, R,,are determined by (12) and the vectors, &, are in turn obtained 
from (13). 

If the original trial vector, V,, is expanded as in ( 5 ) ,and we use (12) and (13) 
k times falling back on (6) to solve (13) each time, it is possible to give the followini 
explicit form for 5: 

C.
V' = 2 --'Lx 
i= (Ai -A)" '' 

The characteristics of this procedure are clearly illuminated by (14). If 
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then we can write 

where the accent on the summation indicates that i = p is omitted. We see that as 
k gets large, V,approaches a multiple of the mode, X,. The convergence is geometric, 
i.e. like terms of the geometric progression 6,62,63, ... . The rapidity of convergence 
depends essentially on how near A is taken to A,. The method produces an approxi- 
mation for the eigenvector, ,Y,, but no information is given directly about the 
eigenvalue. An auxiliary computation would be necessary. 

If A is taken so that A -A, = A, -A, and in the expansion of V,, c, =i= 0, c, =i= 0, and, 
moreover, there are no other eigenvalues, Ai with ci =i= and A,, then the 0 between A, 
method does not converge to an eigenvector but eventually oscillates between 
inultiples of X, + X ,  and X ,  -X,. Considering the n eigenvalues in pairs, there are 
i ( n-1)n values of A for which with suitable V, this oscillatory behaviour is possible. 
If A is taken close to an eigenvallxe, A,, for which c, = 0, there will be no tendency 
to converge toward X,. However, if A is taken exactly equal to A,, although c, = 0 
in the expansion of V,,the expansion of V, will in all probability contain a component 
of X,, and the fact that A was an eigenvalue would be discovered on trying to find V,. 
(See here the remarks a t  the conclusion of 5 1.) 

It may be noted that the iterative procedure of this section is closely related to the 
ordinary method of matrix iteration for the latent vectors of a matrix. We can, in 
fact, write our procedure as 

G,, = (A -All)-' BG, (16) 

which, as is well known, leads to convergence to a multiple of that eigenvector, X,, 
of (1) for which 1 A, -A 1 is a minimum. 

In  the foregoing procedures we fixed first the residuals, R, and then the scalars, A, 
in equation (3). We now investigate a combination procedure in which both R 
and A are adjusted a t  each step. The process is begun with a choice of initial vector 5. 
The succeeding steps are described by the following recursion formulae: 

V&AV, 
= -----

IT&BY, 

To study the convergence we take 

with 1 c,/c, 1 <E (i+p). Then from (17) and (18) and the well-known property of 
Rayleigh's quotient we have 

Ak+1= A*, + O(e2). (21) 



Inserting (21) into (19) and using (6)we find 

Thus if V,differs from X, by terms of order e, differs from a multiple of X ,  by 
terms of order e3. Their Rayleigh quotients have errors of order €2 and e6 respectively. 

The behaviour of this process in the large is fairly simple. The ordinary behaviour 
of the method results in sequences of A, and % which approach respectively an 
eigenvalue A, and its corresponding mode, X,. The sequence of A, becomes mono- 
tonic after a finite number of steps. This may be seen by considering that each 
succeeding Ahis a weighted average of the hi in which the weights for A,-, have been 
increased in proportion to the inverse square of the distance from A,-, to the corre- 
sponding hi. The argument is similar to that made in $2. 

I t  is possible that after a finite number of steps the sequence of A, may terminate. 
Although the probability of this is zero, there are several possibilities: (a)A, may 
be an eigenvalue A,, such that Vi_,BX, +0, in which case attempting to find 5 
would reveal that A,, was an eigenvalue. ( B )  A, may be midway between two eigen- 
values A, and A, and Yc-, has the form cXp rt cXq, in which case the sequence of Yc 
oscillates between mbltiples of X, +X, and X, -X, with no alteration in succeeding 
A,. For this case to arise it would be necessary to choose 6at the start in the special 
form cX, 2cX,. There are a t  most n(n- 1) normalized vectors having this form. 
These vectors may be considered as unstable foci for the process, for if V, is taken 
nearly, but not exactly, in the above form, the process diverges frorrL the oscillating 
behaviour and eventually converges in the normal fashion. (c) A, may be the common 
midpoint of rn + 1pairs of eigenvalues, i.e. 

with ~q+T-Ak=Ak-A,+r for r =  0 , 1 ,  ...,m 

and, furthermore, I$-, has the form 

In this case there would be no alteration in succeeding A,, but the sequence of & 
would show oscillating convergence toward multiples of X, +X, and X, -X,. In 
general, this behaviour occurs only if V, is initially of the above special form although 
the possibility exists that if VABX, = 0, some subsequent A, might be exactly A,, 
thereby introducing an arbitrary component of X, into K which might leave 5 in 
the above special form. (See the remarks a t  the conclusion of $ 1.) 

I have described three iterative procedures constructed within the framework 
of the relaxation method for eigenvalue problems. In contrast to some iterative 
procedures these methods exhibit identical convergence characteristics towards all 
modes. In  all three cases convergence can be obtained toward any mode, X,, of 
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(1)by appropriate choice of the initial values of A, V and R. For example, using the 
method of $3, it would only be necessary to choose A nearer to A, than to any other 
hi and to start with a trial vector T$ for which Vh B X ,  +0. In applying this particular 
method one way of ascertaining that there would be no tendency toward convergence 
back to previously determined modes is Lo orthogonalize the trial vector, G, with 
respect to these known modes. However, this is clearly unnecessary. For any initial 
trial vector (which is not simply a linear combination of the previously determined 
modes) a new eigenvector can always be isolated by trying a finite number of A's. 
In the methods of $$ 2 and 4, convergence to X, is expedited if 6is already a rough 
approximation to X,,but it is obviously unnecessary for T$ to be orthogonal to any 
of the other modes. 

The relaxation method differs from the iterative procedures described herein in 
that instead of using (3) to determine V from given A and R, in relaxation we control 
V directly and use (3) to define R. Instead of being bound to a fixed procedure, we 
are free to make alterations in V as we please. Prom the preceding analysis it is 
possible to infer the following guiding principles to aid the relaxation computer in 
choosing his tactics. During the early exploratory stages of the computation, the 
alterations in V should be aimed a t  making R and B V  roughly proportional ( V  is of 
course an eigenvector if R and BV are exactly proportional). When it becomes clear 
that this procedure is leading to a vector which is not one of the modes already 
known, i t  will probably pay to re-compute A and to  follow a course in which altera- 
tions of V to make R and B V  more nearly proportional are alternated with re- 
computations of A. This would achieve the same sort of convergence as our iterative 
procedure of $4. 
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