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Summary
Experimental observations of univariate rootfinding by generalised companion matrix pencils

expressed in the Lagrange basis show that the method can often give accurate answers. This current

paper, motivated in part by analogy with the Jenkins-Traub method for polynomial rootfinding,

applies a version of the Rayleigh quotient iteration to these generalised companion matrix pencils

for efficiency and explores the results for polynomial eigenvalue problems. The particular choice of

initial vectors that we use, parameterised by a scalar initial guess for the eigenvalue, guarantees that

convergence occurs for almost all initial guesses.

keywords: numerical linear algebra; Rayleigh quotients; matrix polynomials; La-
grange basis.

1. Introduction. There is a thread of recent research into polynomial compu-
tation using bases other than the standard monomial power basis. The investigations
in [1, 2, 3, 4] specifically focus on computation with polynomials expressed in the
Lagrange basis, or, in other words, polynomial computation directly by values. The
related works [5, 6] also use the Lagrange basis as an intermediate step in the com-
putation and analysis of polynomial roots.

The motivation for this interest in polynomial computation using alternatives to
the power basis is that conversion between bases can be unstable. Moreover, the insta-
bility increases with the degree [7]. The complications arising from such computations
motivate explorations of hybrid symbolic-numeric techniques for polynomial compu-
tation that are relevant to researchers interested in computer algebra and numerical
analysis.

Recent papers by Berrut & Trefethen [8] and Higham [9] show that working di-
rectly in the Lagrange basis is both numerically stable and efficient, more stable and
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efficient than had been heretofore credited widely in the numerical analysis commu-
nity. These recent results strengthen the motivation for examining algorithms for
direct manipulation of polynomials by values.

There is also a large body of work on matrix polynomials and their spectra (called
polynomial eigenvalues or latent roots or nonlinear eigenvalues in the literature).
The classic work [10] gives much of the theory and many applications; recent work
includes [11], [12] and [13].

In the present work, we examine the problem of computing polynomial eigenval-
ues coming from matrix polynomials given by their (matrix) values at certain nodes;
that is, the matrix polynomial is assumed to be expressed in the Lagrange basis.
The results of this paper complement those of [3] for the case of simple, finite gen-
eralised eigenvalues of the scalar companion matrix pencil arising from a polynomial
expressed in the Lagrange basis. This turns out to be related to the so-called secular
equation [14].

Without efficient and stable methods for computing generalised eigenvalues of
matrix pencils, this new companion matrix pencil would be a curiosity only. The stan-
dard QZ iteration works well, when the companion matrix pencil is well-balanced,
but takes O(n2) storage and O(n3) time, and one hopes that it would be possible
to do better. Motivated by the Jenkins-Traub iteration, which is equivalent to the
application of the Rayleigh quotient iteration to the standard (Frobenius form) com-
panion matrix [15], we search for a faster method, essentially undoing the linearization
given by the generalised companion matrix pencil. See, for comparison, the classic
work [16].

Our ultimate aim is to use an as-yet undiscovered variant of this approach to de-
termine roots of multivariate polynomial systems. Multiplication matrices associated
with resultants or Gröbner bases give multivariate polynomial roots using eigenvalue
computations. As such, Rayleigh quotient iteration can be interpreted as matrix poly-
nomial evaluation together with small matrix-vector products in the univariate case;
we expect this might also work in the multivariate case.

A very recent advance of Bini, Gemignani and Pan [17] shows great promise using
a structure-preserving (and thereby fast) variant of the QR algorithm to determine
eigenvalues of matrices of similar structure to the matrix pencils studied in the current
work. Although the work of [17] has as yet neither been extended to matrix polyno-
mials nor been extended to the present companion matrix pencils, there is no reason
to doubt that it could be so extended. Whether this approach could be extended to
multivariate polynomial systems is less clear.

In this present paper we pursue some specific numerical methods, which, even if
the structured QR algorithm of [17] can be used in general, may be used to find a
few selected polynomial eigenvalues in an efficient manner.

1.1. Potential Applications. The first application that we encountered was
a simple scalar rootfinding problem, where the polynomials were given by values.
The problem arose in the numerical continuation solution of the nonlinear equations
F (x, λ) = 0 via a predictor-corrector method, where the algorithm for adapting the
step-size used interpolation of the numerical solution at different λ-values, parame-
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terised by arclength. For certain stiff problems, warning messages were being gen-
erated because the conversion to monomial basis was suffering because the sample
points were close together, resulting in an ill-conditioned Vandermonde matrix. We
believe that the approach of this paper will be more robust and less susceptible to
such ill-conditioning (and at the same time, more efficient).

Common matrix polynomial eigenproblems such as vibration problems are usually
expressed most naturally in the monomial basis; moreover, typically s À n (n is often
2), and so in those cases we do not expect the methods of this paper to be useful.

Other applications are speculative at this point. We expect that there are circum-
stances where matrix functions are known at sampled times (or have been transformed
by the FFT to a situation where the matrix functions are so known), perhaps because
they arise by discrete dynamical systems, or by numerical methods applied to contin-
uous systems. It has been observed that rootfinding for scalar analytic functions can
be carried out by first approximating the function by its sampled values [3].

We also have some hope that this new family of linearizations of matrix polyno-
mials may have some application to the inverse eigenvalue problem: after all, we have
n + 1 more parameters to play with (the nodes).

1.2. Outline of the Paper. We begin, in Section 2, by reviewing the standard
Rayleigh Quotient Iteration (RQI) and one of its variants for generalised eigenvalue
problems. We provide in Section 3 a summary of the polynomial eigenvalue problem
and its relation to a block companion matrix as represented in the monomial basis.
We introduce in Section 4 the generalised companion matrix pencil relating to the
polynomial eigenvalue problem expressed in the Lagrange basis with formulas for the
corresponding eigenvectors. In Section 5, we derive two algorithms based on Rayleigh
quotients for the computation of eigenvalues and eigenvectors of these generalised
companion matrix pencils, that uses an efficient LU factorisation of the companion
pencil and a procedure for deflation. In Section 6, we give numerical experiments
based on implementations of these algorithms, and we present conclusions in Section 7.

Throughout the present work, boldface letters are used to denote vectors and
matrices. The superscript ()H denotes the Hermitian (complex-conjugate) transpose
of a matrix or vector while the superscript ()T denotes the transpose without complex
conjugation. Subscripts enclosed in parentheses (e.g., λ(k)) denote iterates within an
iterative algorithm.

2. Rayleigh Quotient Iteration and its variants. The Rayleigh quotient
iteration (RQI, [18]) is a well-known iterative method used to determine the eigen-
values of a matrix A ∈ CN×N . Starting with a normalised putative eigenvector
x(0) ∈ CN×1, a sequence of normalised approximate eigenvectors {x(k)}∞k=0 is gener-
ated with their associated Rayleigh quotients {λ(k)}∞k=0 = {xH

(k)Ax(k)}∞k=0 as shown
in Algorithm 2.1. The Rayleigh quotient iteration is well-known to be locally cubically
convergent given sufficiently accurate initial data [19, 20], i.e., the sequence {λ(k)}∞k=0

converges to some eigenvalue λ∗ of A with the vectors {x(k)}∞k=0 converging to the
corresponding eigenvector x∗

Algorithm 2.1 (Rayleigh Quotient Iteration).
Input: A ∈ CN×N , ξ(0) ∈ CN×1
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for k = 0, 1, 2, . . .
Normalise x(k) ← ‖ξ(k)‖−1

2 ξ(k)

Compute λ(k) ← xH
(k)Ax(k)

Solve
[
λ(k)I−A

]
ξ(k+1) = x(k) for ξ(k+1)

end for
Variants of Rayleigh quotient iteration include Ostrowski’s two-sided RQI [21] for
nonsymmetric eigenproblems, Parlett’s alternating RQI [22], O’Leary and Stewart’s
singular-value RQI [23], and Schwetlick and Lösche’s EMGRE algorithm [24].

A generalisation of Rayleigh quotient iteration for computing generalised eigen-
values of a matrix pencil λB − A is given in Algorithm 2.2 [25, 16]. Within this
generalised Rayleigh quotient iteration, given good starting guesses, the sequence
{λ(k)}∞k=0 converges to a generalised eigenvalue λ of the matrix pencil λB −A and
the sequence of vectors {(x(k),yH

(k))}∞k=0 converge to the corresponding right and left
eigenvectors (x,yH).

Algorithm 2.2 (Generalised Rayleigh Quotient Iteration).

Input: A,B ∈ CN×N , ξ(0), η(0) ∈ CN×1

for k = 0, 1, 2, . . .
Normalise x(k) ← ‖ξ(k)‖−1

2 ξ(k)

Normalise y(k) ← ‖η(k)‖−1
2 η(k)

Compute λ(k) ← yH
(k)Ax(k)[yH

(k)Bx(k)]−1

Solve
[
λ(k)B−A

]
ξ(k+1) = Bx(k) for ξ(k+1)

Solve
[
λ(k)B−A

]H
η(k+1) = BHy(k) for η(k+1)

end for

3. Matrix Polynomials and Polynomial Eigenvalue Problems. A matrix
polynomial P(z) is a polynomial function in a scalar argument z ∈ C with s × s
matrix coefficients [10, 26]. Conventionally, P(z) is expressed relative to a monomial
or power basis {1, z, . . . , zn}, i.e.,

P(z) =
n∑

k=0

zkAk = A0 + zA1 + · · ·+ znAn

where {Ak}n
k=0 ⊂ Cs×s are matrix coefficients and z ∈ C. The theory of matrix

polynomials is described extensively in [10].
Given a matrix polynomial P(z), the polynomial eigenvalue problem (also known

as the nonlinear eigenvalue problem) is as follows (see [19, 27, 10, 28]):

Find λ ∈ C such that P(λ) is singular. (3.1)

The polynomial eigenvalues are exactly those λ ∈ C satisfying det(P(λ)) = 0. If
det(P(z)) ≡ 0, the polynomial eigenvalue problem (3.1) is said to be singular; other-
wise, it is regular. Typically, when the monomial basis coefficients {Ak}n

k=0 of P(z)
are known a priori and when An is nonsingular, the polynomial eigenvalue problem
(3.1) is solved by “linearising” and solving an eigenvalue problem for the associated
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block companion matrix

C :=




0 −A−1
n A0

I 0 −A−1
n A1

. . . . . .
...

I 0 −A−1
n An−2

I −A−1
n An−1



∈ Cns×ns (3.2)

(see, e.g., [10]). Matlab’s polyeig routine solves the polynomial eigenvalue problem
(3.1) by computing generalised eigenvalues of a related block matrix pencil to avoid
explicitly finding A−1

n . In the case n = 1, the polynomial eigenvalue problem (3.1) is
precisely the generalised eigenvalue problem for the matrix pencil λA1 + A0. In the
case s = 1, the polynomial eigenvalue problem (3.1) reduces to a standard polynomial
root-finding problem with an equivalent eigenvalue problem for a companion matrix.

3.1. Essentially scalar matrix polynomials. To test algorithms for matrix
polynomials, it is useful to have a family of matrix polynomials whose exact polyno-
mial eigenvalues are known.

Definition 3.1. An essentially scalar matrix polynomial is a matrix polynomial
P(z) that can be written in the form

P(z) := p(zA) (3.3)

for some scalar polynomial p(z) and some s× s matrix A. Clearly, not every matrix
polynomial is essentially scalar. If a matrix A is invertible with known simple eigen-
values, the preceding definition permits the construction of many matrix polynomials
with known polynomial eigenvalues.

Proposition 3.2. Let p(z) be a scalar polynomial of degree n with distinct roots
ρj, 1 ≤ j ≤ n and let A ∈ Cs×s be an invertible matrix with simple eigenvalues µk,
1 ≤ k ≤ s. Suppose further that the ns quantities λjk := ρj/µk are all themselves
distinct (this is not true in general, even given distinct ρj and µk). Then, under these
circumstances, the matrix polynomial P(z) := p(zA) is regular and has ns distinct
eigenvalues λjk.

Proof. P(z) is regular because An is nonsingular. For each µk there exists an
eigenvector vk of A. We have Avk = µkvk and hence Amvk = µm

k vk. Expressing
P(z) in the monomial basis we see P(z)vk = p(zµk)vk. If z = λjk = ρj/µk, we have

P(λjk)vk = p(ρj)vk = 0.

As there are ns such eigenvalues and by construction P (z) is regular, we are done.
Example 1. Let p(z) = (z − 1)(z − 2)(z − 3)(z − 4) and

A :=




−2 1 0

1 −2 1

0 1 −2


 .
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Then, the matrix polynomial P(z) := p(zA) expressed in the monomial basis is

P(z) = p(zA) = z4A4 − 10z3A3 + 35z2A2 − 50zA + 24I

and its twelve polynomial eigenvalues are

−1
2
,−1,−3

2
,−2,−1± 1

2

√
2,−2±

√
2,−3± 3

2

√
2,−4± 2

√
2.

Example 2. Let p(z) = zn − 1 and

A =




µ1 1
µ2 1

µ3
. . .
. . . 1

µs




.

By choosing µk real and larger than one, we get polynomial eigenvalues of P(z) on
concentric circles inside the unit circle (at radii 1/µk). By choosing µk positive but
less than 1 we get eigenvalues of P(z) on concentric circles outside the unit circle.

4. Generalised Companion Matrix Pencils in the Lagrange basis. The
approach for solving the polynomial eigenvalue problem (3.1) described in Section 3
is based on the assumption that the matrix polynomial P(z) is specified by its co-
efficients {Ak}n

k=0 relative to the power basis. Assume instead that the matrix
polynomial is given by the values of P(z) at specific values of z. That is, let
{(zk,Pk)}n

k=0 ⊂ C × Cs×s be a collection of distinct3 nodes {zk}n
k=0 ⊂ C with asso-

ciated numerical matrices {Pk}n
k=0 ⊂ Cs×s. Then, there exists a unique family of s2

scalar polynomials {pij(z)}s
i,j=1 each of degree at most n such that pij(zk) = [Pk]ij

(i, j = 1, . . . , s; k = 0, . . . , n). This is more concisely written as

P(zk) = Pk ∈ Cs×s (k = 0, . . . , n).

Given the data {(zk,Pk)}n
k=0, the corresponding polynomial eigenvalue problem

(3.1) can be solved by determining the monomial basis coefficients {Ak}n
k=0 and sub-

sequently finding the eigenvalues of the block companion matrix (3.2) (using, e.g.,
Matlab’s polyeig). However, we would have to compute the monomial-basis coef-
ficients of s2 scalar polynomial interpolants with associated Vandermonde systems.
This procedure is not generally advisable due to possible sensitivity of the coeffi-
cients {Ak}n

k=0 to perturbations in the data {Pk}n
k=0. In particular, changing the

polynomial basis potentially worsens the conditioning of the associated eigenproblem.
For a concrete example, suppose the scalar data {pk}n

k=0 are obtained by ac-
curately sampling the Wilkinson polynomial at some reasonably distributed points

3As was done for the DPR1 matrix of Smith [6], the theory developed here can be modified for
the confluent case (i.e., when some of the nodes zk are repeated), but we ignore this case in the
present work.
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{zk}n
k=0. The polynomial eigenvalues in this case are the usual roots of the Wilkinson

polynomial. The monomial basis coefficients can be computed from the sampled data
and the roots can be found from the eigenvalues of the corresponding companion ma-
trix (e.g., with eig or polyeig). One finds, as expected, that the methods described
in Section 5 for determining the roots directly from the data, i.e., avoiding inter-
polation, give substantially more accurate answers. See [29] for some representative
results.

We can work with the data directly to circumvent such difficulties. If a matrix
polynomial is specifed by the data {(zk,Pk)}n

k=0 rather than the monomial basis
coefficients, it is natural to express P(z) in the Lagrange basis {`k(z)}n

k=0, where the
Lagrange polynomials `k(z) are defined by

`k(z) = wk

n∏

j=0
j 6=k

(z − zj), (k = 0, . . . n) (4.1a)

wk :=
n∏

j=0
j 6=k

1
(zk − zj)

(k = 0, . . . n). (4.1b)

The scalar factors wk in (4.1b) are the barycentric weights4. The matrix polynomial
P(z) expressed in the Lagrange basis {`k(z)}n

k=0 is

P(z) =
n∑

k=0

`k(z)Pk. (4.2)

Equivalently, P(z) can be expressed in one of two barycentric forms

P(z) = `(z)
n∑

k=0

wk

z − zk
Pk, or (4.3a)

P(z) =




n∑

j=0

wj

z − zj



−1

n∑

k=0

wk

z − zk
Pk, where (4.3b)

`(z) := (z − z0)(z − z1) · · · (z − zn). (4.3c)

To derive the second barycentric form (4.3b), interpolate the constant polynomial
P(z) = I and solve for `(z) [8].

With the notation (4.1) in hand, we define a generalised companion matrix pencil
associated with the matrix polynomial P(z) specified by data {(zk,Pk)}n

k=0 as in [3].
Definition 4.1. Given {(zk,Pk)}n

k=0 ⊂ C× Cs×s, define the block matrix

Z := diag[ z0I, . . . , znI ] =




z0I
. . .

znI


 ∈ CN×N , (4.4a)

4The notation here differs from that of [8]: what they call Lj we call `j ; we use the symbol L to
denote the lower triangular matrix in LU factorisation.
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where N := s(n + 1). Further, define the block matrices

π :=
[
PH

0 , · · · , PH
n

]H ∈ CN×s and (4.4b)

ωH :=
[
w0I, . . . , wnI

] ∈ Cs×N . (4.4c)

The generalised companion matrix pencil λC1 −C0 is given by

C0 :=
[

Z π
ωH 0

]
and (4.5a)

C1 :=
[
I

0

]
. (4.5b)

In terms of the notation in (4.4), the pencil C(λ) := λC1 −C0 is

C(λ) := λC1 −C0 =
[
Q(λ) −π
−ωH 0

]
, where (4.5c)

Q(λ) := λI− Z. (4.5d)

Remark 4.2. Using the notation in (4.4), the barycentric interpolation formula
(4.3a) is

P(z) = `(z) ωHQ(z)−1π for z 6∈ {z0, z1, . . . , zn}. (4.6a)

The apparent discontinuity as z → zk is removable because

P(zk) = lim
λ→zk

`(z)ωHQ(z)−1π = Pk (k = 0, 1, . . . , n). (4.6b)

Remark 4.3. The block row vector ωH defined in (4.4c) can also be written using
the Kronecker product as ωH = [w0, w1, . . . , wn] ⊗ I. Notice that the corresponding
block column vector ω has blocks scaled by the complex conjugates of the barycentric
weights. This distinction is important in the event that the data or the polynomial
eigenvalues are complex.

The relationship of the polynomial eigenvalue problem (3.1) to the companion
pencil (4.5) is made apparent in Theorem 4.4.

Theorem 4.4. For any λ ∈ C, det(λC1 −C0) ≡ det(P(λ)).
Proof. If λ 6∈ {z0, . . . , zn}, then Q(λ) is of full rank, so, using the barycentric

formula (4.6a), we obtain

det(λC1 −C0) = det
([

Q(λ) −π
−ωH

])

= det
([

I
ωHQ(λ)−1 I

] [
Q(λ) −π

ωHQ(λ)−1π

])

= det(Q(λ)) det(ωHQ(λ)−1π)
= `(λ)s det(ωHQ(λ)−1π)
= det(P(λ)).
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Furthermore, using (4.6b) in the limit as λ → zk, det(λC1 −C0) → det(Pk).

As an immediate consequence of Theorem 4.4, any finite polynomial eigenvalue of
(3.1) is also a generalised eigenvalue of the matrix pencil λC1 −C0.

The generalised eigenvalue problem associated with the companion matrix pencil
(4.5) has an additional s double eigenvalues at infinity. If ωHπ is not singular, these
are the only such [30]. In practice, these infinite eigenvalues do not disrupt numerical
computation, even if the QZ iteration is used; in the Rayleigh quotient methods
discussed here, they are automatically avoided.

Remark 4.5. Clearly, multiplying P(z) by any nonzero S ∈ Cs×s does not
alter the polynomial eigenvalues in (3.1). Hence, we may make the substitutions
Pk ← S Pk in all the rightmost blocks of C0 in (4.5) without changing the associated
generalised eigenvalues of the pencil λC1−C0. Similarly, multiplying the barycentric
formula (4.6a) by any scalar c implies that the substitutions wkI ← cwk I in all the
bottom blocks of C0 in (4.5) do not affect the generalised eigenvalues of the pencil.

Finally, we may scale all zk by a constant, say Z = max |zk| and ẑk = zk/Z. This
induces a scaling of the barycentric weights by Zn. If λ̂ij are the generalised eigen-
values of the pencil λĈ1− Ĉ0 formed with the scaled ẑk, then the original polynomial
eigenvalues λij are related by λ̂ij = λij/Z.

We assume henceforth that the values {Pk}n
k=0 are suitably scaled for compu-

tation by a person knowledgable about the particular application context (e.g., by
taking c = (max0≤k≤n ‖Pk‖)−1I). This corresponds to working with non-monic poly-
nomials in the monomial case. We do not yet know enough about this to recommend
any particular automatic scaling in what follows, though we do recommend that the
person doing the computation pay attention to this issue. For the RQI methods
discussed in this paper, some of these scalings are of lesser importance, but if the
standard QZ iteration is used, an incorrect scaling can lead to dramatically wrong
answers.

4.1. Eigenvectors of the Generalised Companion Matrix Pencil. If λ ∈
C is a finite polynomial eigenvalue of the matrix polynomial, the matrix P(λ) is
singular. Let u and vH be associated right and left null vectors of P(λ) respectively
for the polynomial eigenvalue λ. Then, λ is also a generalised eigenvalue of the
pencil C(λ) as Theorem 4.4 implies. Lemma 4.6 explicitly provides the right and left
generalised eigenvectors ξ(λ) and ηH(λ) of C(λ) in terms of the polynomial eigenvalue
λ and the null vectors u and vH of P(λ).

Lemma 4.6. Given the data {(zk,Pk)}n
k=0, let P(z) be the associated interpo-

lating matrix polynomial. Assume that λ ∈ C\{z0, . . . , zn} is a simple polynomial
eigenvalue of the matrix polynomial P(z) that is distinct from the interpolation nodes
{z0, . . . , zn}. If the associated right and left null vectors of P(λ) are u and vH respec-
tively, then the corresponding right and left generalised eigenvectors of the generalised
companion matrix pencil C(λ) = λC1−C0 from (4.5) are respectively ξ(λ) and η(λ)H ,
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where

ξ(λ) :=
[
Q(λ)−1πu

u

]
and (4.7a)

ηH(λ) :=
[
vHωHQ(λ)−1, −vH

]
. (4.7b)

Proof. Assume that λ 6∈ {z0, . . . , zn}, so `(λ) 6= 0 and Q(λ) is of full rank. If we
define ξ(λ) and η(λ) as in (4.7), we find

C(λ)ξ(λ) =
[
Q(λ) −π
ωH 0

] [
Q(λ)−1πu

u

]

=
[

0
ωHQ(λ)−1πu

]

=
[

0
(`(λ))−1 P(λ)u

]
(from (4.6a))

= 0,

because P(λ)u = 0 by hypothesis. A similar calculation yields ηH(λ)C(λ) = 0H .
Remark 4.7. In the event that one of the nodes zk happens to be a polynomial

eigenvalue of the matrix polynomial P(z), the formula (4.7a) for the right eigenvector
ξ(zk) cannot be used directly because Q(zk) is singular. Instead, the kth block row
of the right eigenvector ξ(zk) in (4.7a) is replaced by

P′(zk)u = − 1
wk

n∑

j=0
j 6=k

wjPju
zk − zj

. (4.8)

The corresponding left eigenvector in that case is ηH(zk) = eH
k ⊗ vH .

5. Algorithms for Generalised Companion Matrix Pencils. We wish to
solve the polynomial eigenvalue problem (3.1) represented in the Lagrange basis by
applying various methods for solving generalised eigenvalue problems to the gener-
alised companion matrix pencil (4.5c). We describe two techniques using sequences
of Rayleigh quotients. The first explicitly uses the structure of the eigenvectors in
Lemma 4.6 to update the putative eigendirections. The second uses explicit formulas
to solve the linear systems efficiently that determine the updated eigendirections; the
formulas are based on the structure of the companion matrix pencil C(λ) in (4.5c).

5.1. Constrained RQI for the Generalised Companion Matrix Pencil.
Lemma 4.6 provides the formulas (4.7) relating a simple eigenvalue λ of the gener-
alised companion matrix pencil C(λ) to its corresponding right and left generalised
eigenvectors ξ(λ) and ηH(λ) respectively. Thus, this basic form for the generalised
eigenvectors can be used as constraints that the tentative eigenvectors must satisfy
within an iteration based on Rayleigh quotients. Following [16], Algorithm 5.1 consists
of using λ(k) from Lemma 4.6 to explicitly update the eigendirections ξ(k) and η(k).
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The vectors u and vH can be chosen at random; convergence can still be achieved
provided that u and vH have nonzero components along the actual null directions of
P (λ) [16].

Algorithm 5.1 (Constrained RQI).
Input: λ(0) ∈ C, u,v ∈ Cs×1

for k = 1, 2, . . .
Compute ξ(k) ← ξ(λ(k−1)) as in (4.7a)
Compute η(k) ← ηH(λ(k−1)) as in (4.7b)

Compute λ(k) ←
ηH

(k)C0ξ(k)

ηH
(k)C1ξ(k)

end for
When s = 1, P(λ) = p(λ) is a scalar polynomial with scalar coefficients {pk}n

k=0.
In that case, Algorithm 5.1 reduces to the formula

λ(k) = λ(k−1) +

∑n
j=0(λ(k−1) − zj)−1wjpj∑n
j=0(λ(k−1) − zj)−2wjpj

, (5.1a)

which is Newton’s method for the rational function

r(z) =
n∑

j=0

wjpj

z − zj
=

p(z)
`(z)

. (5.1b)

This can be compared to the secular equation [14] used in some divide-and-conquer al-
gorithms for eigenvalue problems [31]. The dynamical behaviour of Newton’s method
is now well understood (see, e.g., [32]). The convergence is quadratic and the basin
of attraction of each root usually has fractal boundaries. Assuming that the inter-
polation nodes {zj}n

j=0 do not coincide with the roots of p(z), the zeros of r(z) and
p(z) are identical. When a root does coincide with an interpolation node zj , the
corresponding coefficient pj = 0, so the polynomial p(z) deflates trivially.

5.2. Unconstrained RQI for the Generalised Companion Matrix Pen-
cil. The constrained iteration in Algorithm 5.1 explicitly enforces an asymptotically
correct structure in the putative generalised eigenvectors ξ(k) and ηH

(k) before updat-
ing the Rayleigh quotients. By contrast, we can implement the generalised Rayleigh
quotient iteration in Algorithm 2.2 to specify how the eigendirections should be up-
dated. To solve the linear systems (λC1 −C0)ξ = C1x and (λC1 −C0)Hη = CH

1 y
efficiently, we present explicit formulas for the LU factors and inverse of the pencil
λC1−C0 in Theorem 5.2. Naturally, in computation, the inverse is not used, but the
particular formula (5.3) for C(λ)−1 is useful for the complexity analysis.

Theorem 5.2. Let C0 and C1 be given as in (4.5). Assume that λ is not
an eigenvalue of the pencil C(λ) = λC1 − C0 and that λ 6∈ {z0, . . . , zn}. Then,
C(λ) = L(λ)U(λ), where

L(λ) =
[

I
ωT Q(λ)−1 I

]
and (5.2a)

U(λ) =
[
Q(λ) −π

`(λ)−1P(λ)

]
. (5.2b)
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Furthermore, the matrix C(λ)−1 is given explicitly by

C(λ)−1 =
[
Q(λ)−1

0

]
+ `(λ)

[
Q(λ)−1π

I

]
P(λ)−1

[−ωT Q(λ)−1, I
]
. (5.3)

Proof. The LU factors can be verified by direct computation. Similarly, multiply
the expression in (5.3) on the left or right by (λC1 −C0) and expand out, using the
barycentric form (4.6a) to simplify.

Remark 5.3. The expression for C(λ)−1 in (5.3) is comparable to the formula

p(t)(tI−C)−1 =
n∑

k=1

Mktk−1 (5.4)

shown in [33] (from Gantmacher’s classic book [27]). In (5.4), the matrix C is the
companion matrix in (3.2) of the scalar monic polynomial p(t) = tn + an−1t

n−1 +
· · ·+a0 as represented in the monomial basis and the centraliser Mk =

∑n
j=k ajCj−k

resembles a Sylvester matrix.
Remark 5.4. When λ = zk ∈ {z0, . . . , zn}, the formulas for the LU factors

in (5.3) cannot be used. However, if zk is not a polynomial eigenvalue of P(z), then
Pk = P(zk) is invertible and the appropriate LU factors of C(zk) can be constructed.
If zk is a polynomial eigenvalue, then P(zk) = Pk is necessarily singular as is the pencil
C(zk), so no LU factors exist.

The LU factors in (5.2) provide efficient means for solving the linear systems
(λC1−C0)ξ = C1x and (λC1−C0)Hη = C1y. In particular, an immediate corollary
of Theoremm 5.2 is that the tentative eigendirections generated in Rayleigh quotient
iteration can be updated in O(n) operations.5 We use the explicit inverse C(λ)−1 in
(5.3) to establish the desired complexity result.

Corollary 5.5. Under the hypotheses of Lemma 5.2, the linear systems

(λC1 −C0)ξ = C1x and (λC1 −C0)Hη = CH
1 y

can be solved in O(ns2 + s3) operations using O(ns2) storage.
The unconstrained generalised Rayleigh quotient iteration proceeds starting from

tentative eigendirections ξ(1) and ηH
(1). In practice, the directions ξ(1) and ηH

(1) are
generated from an initial tentative eigenvalue λ(0) and random directions u,v ∈ Cs×1

and using (4.7) as in the first iteration of Algorithm 5.1. After normalising ξ(1) and
ηH

(1) to yield x(1) and yH
(1), the sequence of Rayleigh quotients are given by

λ(k) =
yH

(k)C0x(k)

yH
(k)C1x(k)

(k = 1, 2, . . .) (5.5a)

5That is, we think of a family of problems of constant s and varying n; as n increases, the cost
increases linearly with n. Sometimes we include the s factors, as in O(ns2), which gives a shorthand
for another limit, namely a constant n and a growing s. Finally, O(ns2 + s3) means O(ns2)+O(s3),
and in both cases we may think of either n →∞ or s →∞, but not both.
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After the first iteration, the vectors ξ(k) and η(k) are no longer generated from λ(k−1)

as in (4.7). Instead, the updated eigendirections are determined by solving the linear
systems

[
λ(k)C1 −C0

]
ξ(k+1) = C1x(k) and

[
λ(k)C1 −C0

]H
η(k+1) = CH

1 y(k)

using (5.3). The resulting eigendirections are normalised by x(k) = ξ(k)/‖ξ(k)‖2 and
y(k) = η(k)/‖η(k)‖2. Algorithm 2.2 is an adaptation of Algorithm 2.2 for the gener-
alised companion matrix pencil (4.5).

Algorithm 5.6 (Unconstrained RQI).
Input: λ(0) ∈ C, u,v ∈ Cs×1

Initialise ξ(1) ← ξ(λ(0)) as in (4.7a)
ηH

(1) ← ηH(λ(0)) as in (4.7b)
for k = 1, 2, . . .

Normalise x(k) ← ‖ξ(k)‖2−1
ξ(k)

Normalise yH
(k) ← ‖ηH

(k)‖2
−1

ηH
(k)

Compute λ(k) ←
yH

(k)C0x(k)

yH
(k)C1x(k)

Solve [λ(k)C1 −C0]ξ(k+1) = x(k) for ξ(k+1)

Solve [λ(k)C1 −C0]Hη(k+1) = y(k) for η(k+1)

end for
The Rayleigh quotients λ(k) in (5.5a) can be computed by a more stable formula.

λ(k) =
yH

(k)C0x(k)

yH
(k)C1x(k)

= λ(k−1) +
yH

(k)(C0 − λ(k−1)C1)x(k)

yH
(k)C1x(k)

= λ(k) −
yH

(k)C1x(k−1)

yH
(k)C1ξ(k)

(5.5b)

In the actual implementation of Algorithm 5.6, we use (5.5b) rather than (5.5a) to
calculate the Rayleigh quotients after the first iteration.

5.3. Global Convergence. It is well-known that convergence can fail for the
two-sided Rayleigh quotient iteration only if the initial left and right putative eigen-
vectors are each close to a left eigenvector for one eigenvalue and a right eigenvector
for another eigenvalue [22]. In this work, we use the asymptotically correct (known)
structures for the left and right eigenvectors of the companion matrix pencil, pa-
rameterised by the initial guess for the eigenvalue. If one of these is close to a true
eigenvector, then the other must also be close to an eigenvector, corresponding to
the same eigenvalue. Thus, for almost all initial guesses, the iteration converges.
Ultimately, it converges cubically, as is to be expected.
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5.4. Structured Deflation. Consider first the scalar case where s = 1, so
P(z) = p(z) is a scalar polynomial of degree n. Suppose we have identified a root λ
of p(z) and we wish to reduce the problem to determining the roots of a lower degree
polynomial. Then, there exists a polynomial p̂(z) of degree n− 1, such that:

p(z) = p̂(z)(z − λ) (5.6)

Making the substitutions z = zj into (5.6), we find

p̂(zj) =
p(zj)
zj − λ

(j = 0, . . . , n).

Moreover, as p̂(z) is of degree n − 1, n data points are sufficient to contruct an
interpolant, so one data point can be eliminated, say (zk, pk). One may need to apply
the “Nearest Polynomial of Lower Degree” process [34] in order to counter possible
instability issues. The barycentric weights wj also need to be revised appropriately
by the relation

ŵj = wj(zj − zk) (j = 0, . . . , n, j 6= k).

In summary, given a root λ of p(z), the deflation process is as follows:
1. Eliminate a node, say, the node that is closest to the root, i.e. choose zk such

that k = arg minj{|λ− zj | : j = 0, · · · , n}.
2. Eliminate the corresponding value pk.
3. Define p̂j = pj

zj−λ , (j = 0, . . . , n, j 6= k).
4. Update ŵj = wj(zj − zk), (j = 0, . . . , n, j 6= k).

The new companion matrix pencil is constructed using the updated values p̂j and
weights ŵj .

For the s × s matrix case, the corresponding pencil can be deflated in s × s
blocks [35]. This is most useful if n À s. The extension of the scalar algorithm to the
matrix case is as follows.

Theorem 5.7. To deflate an s×s matrix polynomial P(x) in the Lagrange basis:
1. Use Algorithm 5.1 or 5.6 to find s generalised eigenvalues λ0, . . . , λ` (` ≤

s− 1) (some eigenvalues may be repeated6).
2. Find s corresponding null vectors u0, u1, · · · , us−1 of P(λj) (j = 0, . . . , `).
3. Eliminate a node, say, the node that is closest to any root, i.e., choose zk

such that k = arg mink {minj{|λj − zk| : j = 0, . . . , `} : k = 0, . . . , n}.
4. Define the matrices

P̂j :=
(

1
zj−λ0

Pju0,
1

zj−λ1
Pju1, · · · , 1

zj−λ`
Pjus−1

)
(j = 0, . . . , n, j 6= k).

5. Update ŵj = wj(zj − zk), (j = 0, . . . , n, j 6= k).

6Note that repeated trials may be necessary, or heuristics such as discussed below, in order to
find s eigenvalues without deflation.
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The new companion matrix pencil is then constructed using the updated coefficients
P̂j and weights ŵj.

Proof. If u0, u1, · · · , us−1 are the right null vectors of P(z) corresponding to
λ0, λ1, · · · , λs−1 respectively, then there exist vectors p̂0(z), p̂1(z), · · · , p̂s−1(z) such
that:

P(z)u0 = (z − λ0)p̂0(z)
P(z)u1 = (z − λ1)p̂1(z)
...
P(z)us−1 = (z − λs−1)p̂s−1(z)

The above equations can be written in the following matrix form:

P(z)U = P̂(z)D(z) (5.8)

where U = [u0,u1, · · · , us−1], P̂(z) = [p̂0(z), p̂1(z), · · · , p̂s−1(z)] and D = diag[z −
λ0, z − λ1, · · · , z − λs−1]. U is invertible, because at this point, the eigenvalues are
supposed to be distinct. Therefore it can be observed that:

P̂(z) = P(z)UD−1(z) (5.9)

This means:

det P̂(z) =
detP(z) detU

detD(z)
(5.10)

which means that P̂(z) has the same eigenvalues as P(z) except for the ones eliminated
by D(z). Now (5.9) can be evaluated at the given n + 1 nodes.

P̂0 = P0UD−1(z0)

P̂1 = P1UD−1(z1)
...

P̂n = PnUD−1(zn)

and just like the scalar case, after polishing by NPLD [34], one node can be eliminated,
say zk, and the barycentric weights updated as

ŵj = wj(zj − zk) j 6= k .
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5.5. Multiple polynomial eigenvlaues. Multiple polynomial eigenvalues are
studied in the monomial case in, for example, [36]. An adaptation of that algorithm,
or something equivalent, seems to be necessary here. We first sketch some initial
ideas, which will be pursued in a future paper.

Here, if some of the eigenvectors are multiple, say (without loss of generality) λ0 is
multiple of order m ≤ s. In that case, instead of D, J = diag[zI−J0, z−λm, · · · , z−
λs−1] should be defined where J0 is the Jordan block corresponding to λ0. In that
case U = [u00,u01, · · · , u0,m−1, um, · · · ,us−1], where u0j , j = 0, · · · ,m−1 are the
generalised null vectors of P(z) corresponding to λ0. In that case, P̂ will be evaluated
as follows:

P̂0 = P0UJ−1(z0)

P̂1 = P1UJ−1(z1)
...

P̂n = PnUJ−1(zn)

We have tried this on a few examples with low multiplicity; even without special care,
the computation of multiple polynomial eigenvalues is surprisingly robust. More work
is clearly required, however.

6. Numerical Experiments. We report some numerical experiments to illus-
trate the theoretical results of Section 5. The computations are performed in Matlab
or Maple with standard hardware precision.

6.1. Direct vs Indirect Root-Finding. In this part, we want to compare the
direct method of root-finding with the indirect one i.e. finding the roots in Lagrange
Basis using the generalised companion matrix pencils versus converting the given data
to the monomial basis and finding the roots there.

We consider the scaled Wilkinson polynomial p(z) =
∏20

j=1(z− j/21) and sample
p(z) at points uniformly scattered over [0, 1]. We observed that the direct root-finding
technique is more accurate than the conversion method (Figure 6.1).

For a matrix polynomial example, we first consider a small matrix polynomial
of low degree: a matrix polynomial of size s = 2 and degree n = 2. The matrix
polynomial is

P(z) =
(

1
2 + z2 z + 0.8 iz

z 1
4 + z2

)

and the nodes are z0 = −0.24 − 0.41 i, z1 = 0, and z2 = 0.52 + 0.19 i. It turns
out that the direct computation of the polynomial eigenvalues and the conversion to
the monomial basis has about the same accuracy in this case. The infinity-norm of
absolute difference between the computed eigenvalues in both cases is 7.5 × 10−11

(Figure 6.2).
Next, we consider an essentially scalar matrix polynomial of size s = 4 and of

degree n = 8. Let Q(z) := z8T8 − I4, where T is the companion matrix associated
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Fig. 6.1. The roots of the scaled Wilkinson polynomial. Roots found directly through the
generalised companion matrix pencil are more accurate than the roots found through conversion to
monomial basis. Roots are double.
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Fig. 6.2. Small matrix polynomial example. The roots found directly through the generalised
companion matrix pencil are about as accurate as the roots found through conversion to monomial
basis.

with the of the Jacobi polynomial P 0,10
4 (z). From Proposition 3.2, we thus know the

polynomial eigenvalues of Q(z) exactly. The interpolation nodes {zk}8k=0 are 0 and
the eighth roots of unity. We observe that the computation of the polynomial eigen-
values of Q(z) directly from the sample data is more accurate than the polynomial
eigenvalues computed by first computing the monomial basis coefficients of Q(z) and
applying Matlab’s polyeig routine. The infinty-norm of the error of the computed
eigenvalues is in the former case is 3.12× 10−6 while it is 6.32× 10−5 (Figure 6.3).

6.2. Basin of Attraction: Constrained Method. We first considered the
polynomial z4−1, sampled at the symmetric points z = {0, 1+ i, 1− i,−1+ i,−1− i}.
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Fig. 6.3. An essentially scalar matrix polynomial with s = 4 and n = 8. The roots found
directly through the generalised companion matrix pencil are more accurate than the roots found
through conversion to monomial basis.

Fig. 6.4. The basins of attraction of constrained Rayleigh quotient iteration are shown. Note
the characteristic fractal nature of the boundary between the basins of attraction.

We observed that initial guesses exterior to a region defined by these points (something
like the convex hull, but with an apparently fractal boundary) do not converge to any
root in 30 iterations(Figure 6.4).

We then considered the polynomial (z − 1)2(z2 + 1), sampled at the symmetric
points z = {0, 1 + i, 1 − i,−1 + i,−1 − i}. We observe a behaviour similar to that
above. Therefore, in the multiple-root case for constrained iteration, again initial
guesses exterior to a region loosely defined by the nodes do not converge to any root
in 30 iterations(Figure 6.5). See [29] for a discussion of the condition number of
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Fig. 6.5. The basins of attraction of constrained Rayleigh quotient iteration are shown for the
multiple root case. Characteristic fractal nature of the boundary between the basins of attraction
can be observed again.

polynomial eigenvalues as affected by the node placement.

6.3. Basin of Attraction: Unconstrained Method. We first considered the
same polynomial again, i.e. z4−1, sampled at the symmetric points z = {0, 1+ i, 1−
i,−1 + i,−1 − i}. We observed that convergence with the unconstrained method,
unlike that of the constrained method, is almost always attained. Convergence is also
ultimately cubic, not quadratic, and hence though the cost per iteration is higher—
though still only O(n)—the number of iterations is quite a bit smaller, leading to an
overall faster computation(Figure 6.6).

We then considered the polynomial (z − 1)2(z2 + 1), sampled at the symmetric
points z = {0, 1 + i, 1 − i,−1 + i,−1 − i}. We observed the same thing as above.
Even in the multiple-root case, the convergence is cubic(Figure 6.7).

7. Conclusions. We have shown that two-sided Rayleigh Quotient Iteration is a
viable method for the computation of polynomial eigenvalues for matrix polynomials
given in the Lagrange basis, that is, by values. The method can be made to be fast, by
using the structure of the companion matrix pencil, and is convergent for almost all
starting guesses. The method takes O(ns2+s3) flops to get one polynomial eigenvalue,
using O(ns2) storage. For ns eigenvalues, the cost is O(n2s4).

The method is apparently numerically stable, and deflation can be stabilised by
applying the NPLD procedure of [34].

We have also shown that the use of the asymptotically correct form of the eigen-
vectors slows the iteration, making each iteration only quadratically, not cubically,
convergent, and destroys the global convergence as well.
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Fig. 6.6. The basins of attraction of unconstrained Rayleigh quotient iteration are shown. Note
that the boundary between the basins of attraction seems rather smoother than in the constrained
case.

Fig. 6.7. The basins of attraction of unconstrained Rayleigh quotient iteration are shown for
the multiple roots case. The boundary between the basins of attraction seems much smoother than
in the constrained case.
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