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RAYLEIGH QUOTIENT ITERATION 

FOR NONSYMMETRIC MATRICES 


STEVE BATTERSON AND JOHN SMILLIE 

ABSTRACT. Rayleigh quotient iteration is an iterative algorithm for the calcu- 
lation of approximate eigenvectors of a matrix. Given a matrix, the algorithm 
supplies a function whose iteration of an initial vector, uo ,produces a sequence 
of vectors, v, . If the matrix is symmetric, then for almost any choice of vo 
the sequence will converge to an eigenvector at an eventually cubic rate. In this 
paper we show that there exist open sets of real matrices, each of which pos- 
sesses an open set of initial vectors for which the algorithm will not converge 
to an eigenspace. The proof employs techniques from dynamical systems and 
bifurcation theory. 

One measure of the success of an iterative algorithm is the probability that 
a random choice of initial vector will produce a sequence that converges to a 
solution. We say that an algorithm succeeds provided the set of initial points for 
which the sequence of iterates converges to a solution is a set of full measure. 
An algorithm which does not succeed is said to fail. Rayleigh quotient itera- 
tion is an iterative algorithm for finding approximate eigenvectors of a matrix. 
If the matrix is symmetric, then Rayleigh quotient iteration succeeds (see [12, 
31). Parlett has asked whether the algorithm (or some modification) succeeds 
for nonsymmetric matrices. We will show that there exists an open set of non- 
symmetric real matrices for which the algorithm fails. Since the characteristic 
polynomials of our counterexamples will have both real and complex roots, we 
begin with a discussion of invariant subspaces that are reasonable targets for an 
eigenvector algorithm. 

Let A be an n x n matrix with real entries. Associated with each real eigen- 
value, A, of A is an eigenspace and a generalized eigenspace. The eigenspace 
is the largest invariant subspace on which the restriction of A can be repre- 
sented as AI . The generalized eigenspace is the maximal invariant subspace 
for which A is the only eigenvalue of the restriction. If a f bi  is a conju- 
gate pair of solutions to the characteristic equation, then there are analogous 
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maximal subspaces. Corresponding to the eigenspace there is the maximal in- 
variant subspace for which the restriction of A can be represented by a direct 
sum of copies of the 2 x 2 matrix [:b :I. Similarly, there is a subspace anal- 
ogous to the generalized eigenspace of the real case. 

Now suppose that we are given an iterative eigenvector algorithm. In de- 
creasing order of desirability we might hope that the algorithm would converge 
to: 

1R. an eigenvector, 
2R. the one-dimensional span of an eigenvector, 
3R. an eigenspace, or 
4R. a generalized eigenspace. 
For a symmetric matrix, Rayleigh quotient iteration succeeds with the solu- 

tion having the form 2R above. If the matrix is nonsymmetric and the charac- 
teristic polynomial has complex roots, then it is perhaps unreasonable to expect 
an eigenvalue algorithm to converge to one of the above types of solution. For 
each of the four types of solutions there is a complex analogue (IC-4C, where 
the space referred to in 2C is two-dimensional). An algorithm is said to weakly 
succeed for a matrix A provided that the set of initial points for which the 
sequence converges to either 4R or 4C is a set of full measure. An algorithm 
which does not weakly succeed is said to strongly fail. 

Now we shift the problem to projective space. Note that a nonzero vector is 
an eigenvector of A if and only if each element in its one-dimensional span is 
also an eigenvector. Thus, one can view projective space, Rpn-' , as providing 
a space of eigenvector candidates. An iterative algorithm which preserves one- 
dimensional subspaces induces a dynamical system on RP"-' . In the Rayleigh 
quotient iteration (RQI) algorithm the map FA is obtained from the map on 
Rn given by F: (x)  = (A - (x)I ) - '  (x) , where p, (x) = (Ax ,x )/ (x ,x )  . It 
is shown in [14] that FA is well defined and that RQI succeeds in the sense of 
2R for a 2 x 2 matrix with real eigenvalues. There is an incorrect argument 
in [14] for the case of a 2 x 2 matrix for which the roots of the characteristic 
polynomial are complex. In any event, the algorithm trivially succeeds in the 
sense of 2C for such a matrix. In 53 of this paper we prove the following 
theorem, which was announced in [4]. 

Theorem B. For each n 2 3 there is a nonempty open set of matrices for which 
Rayleigh quotient iteration strongly fails. 

In 52 it is shown that there is a one-parameter family of 2 x 2 matrices 
for which F, has a period doubling bifurcation. Theorem B is proved in 53 
using another bifurcation argument. Section 4 contains a discussion of further 
problems. 

In this section we will investigate the dynamics of 2 x 2 matrices whose char- 
acteristic polynomials have complex roots. Note that for these matrices, R2 is a 



171 RAYLEIGH QUOTIENT ITERATION 

subspace of type 2C, and thus the algorithm succeeds trivially regardless of the 
precise dynamics of FA . Nevertheless, an understanding of these dynamics is 
interesting and will be useful in 53. 

Define a one-parameter family of matrices by 

Note that the map is defined on RP' , which is homeomorphic to the circle. 
For the following theorem, let a = drfi/&!- .6 18 . Note that a < 

l/a- .707 and a is a root of c4 - 3c2 + 1 . 
Theorem A. F,, has a smooth inverse when 1 /a< c 5 1 , has a continuous in- 

verse which is not smooth when c = 1 /a,and is a (noninjective) endomorphism 
for c < 1 /a.The dynamics of FA<depend on c as follows: 

a. 	At c = 1 the map is a rotation of period two. 
b. 	If 1 /\/2 5 c < 1 the map has a periodic set consisting of a sink of period 

two and a source of period two. 
c. 	At c = a a period-two sink bifurcates into a period-four sink and a 

period-two source. 
d. 	If c is suficiently small ( c  < .271), then the map exhibits "chaos" in 

the sense that it has periodic points of infinitely many diferent periods. 

Note. In case (a), Ac is normal. 
The projective space RP' is covered by two standard coordinate charts. 

One chart is given by mapping y to the one-dimensional subspace spanned 
by ( I ,  y )  . We call this chart the y-chart. The image of this chart is the com- 
plement of the line spanned by ( 0 ,  I ) .  The x-chart is defined analogously. It 
is often convenient to describe functions on projective space in terms of these 
charts. 

Proof of Theorem A. The following computations are straightforward: 

In terms of the y-chart the map (suppressing the A in the notation) is given 
by 

When c = 1 , F, is the map y + - l l y  . This is a rotation of period two on 
RP' . This proves assertion (a). 
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The derivative of F, is given by 

The form of the graph of F, depends on whether c is greater or less than 
1/fi. Since F: t 0 and Fc has topological degree one, it follows that F, is a 
homeomorphism for 1 /&' 5 c 5 1 . For c < 1/fi, F, is not injective because 
F, has a change in sign. To determine whether Fc is a diffeomorphism in the 
former case, it remains to check the derivatives at 0 and oo. Note that these 
points are in a periodic orbit of period two. We have 

( F ~ ) ' ( o )is a strictly increasing function of c for 0 < c 5 1. It assumes the 
value -1 at c = a ,  the value 0 at c = l / f i ,  and the value 1 at c = 1 .  This 
shows that F, is a diffeomorphism precisely when c > 1 / f i .  Furthermore, 0 
changes from a period-two sink to a period-two source as c decreases through 
a .  Figure 1 shows the behavior of F, for c in the range 1 / f i  < c < 1 .  

FIGURE1. F, for 1/fi< c < 1 
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Figure 2 shows the behavior of F, for c in the range 0 < c < I/&'. The 
figures on the left are the graphs of F, with respect to the coordinates given by 
the y-chart. The figures on the right show the topological behavior of F, as 
a map from the inner circle to itself. The map is obtained by identifying the 
inner circle homeomorphically with the outer curve and then radially projecting 
back onto the inner circle. 

If 1 > c 2 1 / d ,  then we know that F, is a homeomorphism with a sink 
of period two. It can be shown that an orientation-preserving homeomorphism 
of the circle cannot have periodic orbits of different periods. An analysis of the 
equation F:(~)= y shows that there is precisely one additional orbit of period 
two. The theory of homeomorphisms of the circle implies that this orbit must 
be a source. The proof of assertion (b) is now complete. 

By a standard result in one-dimensional bifurcation theory, in order to prove 
assertion (c) of the theorem it suffices to show that 

(F:)'I1(0) > 0 and ( d ' ( ~ , ~ ) / d c d ~ ) ( ~= 0 ,  c = a) < 0 

(see [6, p. 891). We have, indeed, 

a 2 ( C )  5 8 6 2(y = 0 ,  c = a )  = 80- [2a - 50 + 50 - 21 = - 8 6 ~ - '- -28.944.
dcdy 

Before proving assertion (d), we introduce some notation for the positive 
critical value and singularity of F, . Let m, = [(2 - c2)/(1- 2c2)l3I2and 

2 112tc= c-'(1 -2c ) . For c small, m,< t, . Assume that c is sufficiently small 
that this inequality holds (c < .271). On RP' consider the closed arc, I,, 
whose endpoints are represented by 0 and &.  We have F;(I,) 1I,. A careful 
analysis shows that F, has a point of period three. Assertion (d) now follows 
from the existence of points of period two and three (see [5]). 

In this section we will prove Theorem B. Let 

and let Fcd be the associated map. For each matrix BCd the z-axis is an 
eigenspace. The xy-plane is a subspace of type 2C. We wish to find a sink orbit 
which does not lie on either subspace. 

The projective space RP2 is covered by three standard coordinate charts. 
One of these charts is given by mapping (y , z )  to the one-dimensional subspace 
spanned by (1 ,  y ,  z)  . We call this chart the yz-chart. With respect to this 
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chart, the xy-plane corresponds to the y-axis, and the z-axis corresponds to a 
point at infinity. In the coordinate system given by this chart we want to find a 
sink orbit which does not lie on the y-axis. 

The map Fed commutes with the reflection through the z-axis and with 
reflection through the y-axis. Both these axes are invariant. The restriction of 
the map Fedto the y-axis is the map Fc considered in the previous section. 
The origin is a point of period two. The derivative of F:~ in the y-direction 
is controlled by the c-parameter. It is -1 when c = a ,  and decreases as c 
decreases. The derivative at the origin in the z-direction is given by d-2 . 

An obvious approach to creating a sink orbit is to choose the c-parameter 
so that the z-axis is normally attracting and then to choose the d-parameter to 
create a "pitchfork bifurcation", making the origin into a saddle and creating 
two nearby sinks. Unfortunately, this does not succeed. The bifurcation on the 
z-axis is degenerate and does not create new sinks. When the origin becomes 
repelling, all points on the z-axis are attracted to infinity. 

The approach we use is slightly more complicated. We adjust the c-parameter 
to create a period doubling bifurcation on the y-axis. Let (ye,  0) and (-ye, 0) 
be the period-four points created. We adjust the d-parameter to make the 
points (fy,, 0) neither attracting nor repelling in the normal direction (i.e., 
the z-direction). (Actually, we make these two adjustments in a single step.) 
We appeal to the center stable manifold theorem to create an invariant curve 
through (fye ,  0) transverse to the y-axis. We then adjust the d-parameter to 
create pitchfork bifurcations along these invariant curves. 

Let R, denote the map obtained by composing FA with the projection onto 
the z-coordinate. We will produce a path in parameter space passing through 
the point (a, 1,) such that for each (c , d )  on the path, (dRCd /a z)(y, , 0) = 1 . 
Applying the implicit function theorem to the function 

at (y = 0 ,  c = a ,  d = 1), we obtain a function d(y , c) and a curve in param- 
eter space given by y (c) = (c , d (ye , c)), which will be defined for c slightly 
less than a . Using the chain rule, it follows that $(a)  is parallel to the c-axis. 
At any point y(c) the derivative of FAc, at (ye, 0) is [ iy ] . 

The off-diagonal elements are zero because of symmetry and the invariance 
of the y-axis. Now r = (F:)'(~,). Since c < a ,  it follows that r < 1 ,  
where r depends on c .  Consider a path in parameter space that begins at a 
point y (c) and decreases the d-parameter while fixing the c-parameter. Since 
(a2RCd/adaz) (0 ,0) is negative when d = 1 , the effect of a decrease in d on 
the derivative of F4 at (ye,  0) is to increase the lower diagonal entry in the 
above matrix and create a saddle (see Figure 3).  

For each c , consider the product of a neighborhood of d (yc ,  c) with R' . 
4Applying the center manifold theorem to the map Zc(t ,  W )  = ( t ,  FCd(w)) at 
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FIGURE3. After the period doubling bifurcatio~z. 

the point (d  (y, , c) , (J.: , 0)) yields a one-parameter family of F:-invariant one-
dimensional submanifolds (see [ l  11). For each of these one-dimensional sub- 
manifolds the tangent vector to the submanifold at (y,, 0) is parallel to the 
z-axis. Thus, for any fixed c we can coordinatize the one-parameter family by 
(h,(z), z) , where t is defined on some neighborhood of d(y, , c) . Restricting 
the map F: to the family of submanifolds yields a one-parameter family of 
maps, f;(z) , for any fixed c .  To obtain the bifurcation in the family f;(z) , 
we will employ the following result, which is discussed in [7, p. 1501. 

Pitchfork bifurcation. If f (t , z)  = f;(z) is a one-parameter family of mappings 
with the following properties: 

then there is a bifurcation at to.  If t > to ,  f ;  has a sink at z = 0 .  If t < to,  
there is a source at z = 0 and f ,  has sinks on each side of 0. 

Letting to = d(y, , c) , conditions (a), (b), and (d) follow from the previous 
discussion. Condition (c) follows from the symmetry f;(-z) = -f;(z). To 
establish condition (e), it suffices to show that the third Maclaurin coefficient 
of f, is negative. We begin with the first-degree Taylor approximation of our 
iteration map at (y, , 0) . We assume that c has been fixed and d = d(yc, c) . 
Then 
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The functions have the following symmetries in z : 

p ( x ,  y ,  -2) = p ( x ,  y ,  z ) ,  R ( y ,  -z) = R(y ,  z ) ,  S ( y ,  -z) = -S(y,  z). 

From these symmetries it follows that the powers of z in Taylor polynomials 
will be odd for both S and fd , and even for both R and hd . Denote the 
coefficients as follows: 

From the invariance of the submanifold (hd(z) ,  Z) we obtain 

Computing the z2 coefficient yields 

a[z + S(hd(z) ,  z)] 
2 
= 7az

2 + bz
2 
, a = b/ ( l  - 7). 

Since 

f d ( 4  = Z + S ( h d ( ~ )z) 7
7 

the third-degree Maclaurin polynomial of fd is given by 

z + (au + e)z3= z + (bu/(l  - 7) + e)z3 . 

It remains to show that if c is sufficiently close to o , and d is sufficiently 
close to d(y, , c) , then bu/(l - 7) + e < 0 .  To prove this, we will consider 
the corresponding coefficients in the Taylor expansion of FA at the origin. 
All three of these coefficients are 0 when the parameters are given by y(o) . 
We now examine how these coefficients change as we move along a path in 
parameter space in the direction of the negative c-axis from y(o) . To do this, 
we evaluate at y(o) the partial derivative with respect to c of the coefficients 
which correspond to b , u , and e : 

2 4b - -cF3dP5[(2c6- 9c4+ 12c2- 4)d6+ (-2c6 + 5c4- 2c )d  

+ (2c2- c4)d2+ c4], 

Calculations reveal that the signs of the c-partials at y(o) are - , + , and + , 
respectively. Thus, the derivatives in the direction of the negative c-axis are 
+, - , and - , respectively. From continuity we conclude that if c is slightly 
smaller than a ,  then b > 0 ,  u < 0 ,  and e < 0 ;hence bu/(l  - T)+ e < 0 ,  and 
there is a pitchfork bifurcation (see Figure 4). 

The pitchfork bifurcation produces a point of period four which is contract- 
ing in the z-direction and has positive y- and z-coordinates. Using continuity 
again, we can obtain parameter values for which the point is also contracting 
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FIGURE4. After the pitchfork bifurcation. 

in the y-direction. Thus, we have a hyperbolic sink of period four which does 
not lie in a subspace of type 4R or 4C. Since hyperbolic sinks persist under 
perturbation of the map, the theorem is proved for n = 3 .  

To prove the theorem for n > 3 , take a direct sum of BCd with K I  , where 
K is chosen sufficiently large. 

Note. While the above proof does not provide specific values of c and d ,  
failure of the algorithm can be observed numerically with parameter values 
c = .56 and d = 1.1 and the point x = -0.104, y = -0.995, and z = 0.107. 

We conclude with some questions concerning the Rayleigh quotient iteration 
algorithm. It may be relevant to compare Rayleigh quotient iteration with New- 
ton's method. Newton's method may succeed or fail on a polynomial with real 
coefficients (see [15, 9, 101). If all of the roots of the polynomial are real, then 
it succeeds [ l ,  21. 

Problem 1. Does Rayleigh quotient iteration always succeed when all of the 
zeros of the characteristic polynomial are real? 

Problem 2. Do there exist parameter values of c and d for which FCd dis-
plays "chaotic" behavior on a set of positive measure? (Preliminary numerical 
investigations suggest that this might be the case for c = .5 and d = 1.1 .) 

Finally, one can define an analogous algorithm over C .  For an n x n 
complex-valued matrix B , the Rayleigh quotient iteration formula induces a 
map of cpn-'. This map has been studied in [13], and a related map is studied 
in [8]. Note that if B has real entries, then RP"-'is an invariant submanifold. 
Thus, the example of the previous section produces a map which has a periodic 
point which is attracting in this submanifold. However, this point would appear 
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to be a saddle point in the higher-dimensional setting of CP"-' ,and thus our 
counterexample construction does not seem to work in the complex case. 

Problem 3. Does Rayleigh quotient iteration (over C ) succeed for all matrices? 

The authors would like to thank Michael Shub and Stephen Smale for useful 
discussions. Some of the calculations in this paper were done with MACSYMA. 
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