Matrix Theory, Fall 2009
 Midterm 1

October 22, 2009

Instructions: There are six (6) questions on this examination.
Grads: work problems $\mathbf{1 , 2 , 3}$ and any two of problems 4,5,6
Undergrads: work problems $1,2,3$ and any one of problems $4,5,6$
UG's get 20 bonus points. The maximum points possible are 100

1. (15 points)
(i) Solve by elimination and back substitution:

(ii) Factor the above matrices into $A=L U$ or $P A=L U$.
2. (15 points)
(i) If A is square, show that the nullspace of A^{2} contains the nullspace of A.
(ii) Show also that the column space of A^{2} is contained in the column space of A.
(iii)If e_{1}, e_{2}, e_{3} are in the column space of a 3×5 matrix, does it have a right inverse?
3. (30 points) Suppose the matrices in $P A=L U$ are:

$$
\begin{aligned}
& {\left[\begin{array}{llll}
0 & 1 & 0 & 0 \\
1 & 0 & 0 & 0 \\
0 & 0 & 0 & 1 \\
0 & 0 & 1 & 0
\end{array}\right]\left[\begin{array}{rrrrr}
0 & 0 & 1 & -3 & 2 \\
2 & -1 & 4 & 2 & 1 \\
4 & -2 & 9 & 1 & 4 \\
2 & -1 & 5 & -1 & 5
\end{array}\right]} \\
& =\left[\begin{array}{llll}
1 & 0 & 0 & 0 \\
0 & 1 & 0 & 0 \\
1 & 1 & 1 & 0 \\
2 & 1 & 0 & 1
\end{array}\right]\left[\begin{array}{rrrrr}
2 & -1 & 4 & 2 & 1 \\
0 & 0 & 1 & -3 & 2 \\
0 & 0 & 0 & 0 & 2 \\
0 & 0 & 0 & 0 & 0
\end{array}\right] .
\end{aligned}
$$

(i) What is the rank of A ?
(ii) What is a basis for $\mathcal{C}\left(A^{T}\right)$?
(iii) TRUE or FALSE: Rows 1, 2, 3 of A are linearly independent.
(iv) What is a basis for $\mathcal{C}(A)$?
(v) What is the dimension of $\mathcal{N}\left(A^{T}\right)$?
(vi) What is the general solution to $A x=0$?
4. (20 points)

The Sherman-Morrison-Woodbury formula:
(i) Let A be $n \times n$, nonsingular. Show that if the $m \times m$ matrix T defined by

$$
T=I+V^{T} A^{-1} U
$$

is nonsingular, then

$$
\left(A+U V^{T}\right)^{-1}=A^{-1}-A^{-1} U T^{-1} V^{T} A^{-1}
$$

What are the dimensions of the matrices V and U ?
(ii) If the assumptions of part (i) are satisfied, what are the relative sizes of m and n (i.e. for all formulas above to make sense can we have $m<n$ or $m>n$ or $m=n$)?
5. (20 points)

Consider the overdetermined problem

$$
\left(\begin{array}{rr}
1 & -1 \\
1 & 2 \\
0 & 1 \\
-1 & 3
\end{array}\right) x=\left(\begin{array}{l}
0 \\
0 \\
1 \\
0
\end{array}\right)
$$

Find the Least Squares solution by using the QR factorization.
6. (20 points) If A is a 12×7 incidence matrix from a connected graph, what is its rank? How many free variables in the solution to $A x=b$? How many free variables in the solution to $A^{T} y=f$? How many edges must be removed to leave a spanning tree?

