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Chapter 4 An Introduction to Probability and Statis-
tics

4.1 The Role of Probability in Inverse Problems

So far in this course, we have looked at the deterministic part of inverse problem theory, which involves
examining how an “image” is transformed into the “data” via the physics of the measurement process. When
this transformation is linear, the methods considered so far allow us to understand how various aspects of
the image (namely the components along the appropriate singular vectors) are emphasized, de-emphasized
or even obliterated within the data. When attempting to invert the data to reconstruct the image, the e¤ect
of noise and uncertainties on the measured data is to make it di¢cult to determine reliably the components
along singular vectors with small singular values, since the naïve reconstruction method leads to a noisy
quantity being divided by a small number.

The other important aspect of inverse problem theory which we have also seen is that when the data fail
to tell us about some aspects of the image, it is necessary to introduce additional information in order to
produce a sensible reconstruction. This can be done via regularization methods which attempt to select
solutions which are good in some well-de…ned sense, such as having a small sum-squared norm, or are smooth,
or are similar to what we believe the answer should be. In the framework of Tikhonov regularization, for
example, we may regard solving the inverse problem as a competition between two con‡icting desires, …rstly
the desire to minimize the residual (i.e., the mis…t from the data) and secondly the desire for the solution
to have a large “…gure of merit”. Depending on the value of the regularization parameter, we change the
relative strengths of these desires.

We now wish to consider more carefully the idea that when we reconstruct an image in an inverse problem,
we have no way of being sure that the reconstruction is correct. Rather, we need a way of representing our
belief that some images are more likely to be closer to the truth than others. This may either be because the
data they would generate are closer to the data measured or because they more closely …t our preconceptions
as to what the truth should be like. A mathematical framework which enables us to quantify the idea of the
“degree of reasonable belief” is that of subjective probability. In this framework, probability densities
represent states of knowledge over the space of possibilities and it becomes possible to formulate the general
theory of inverse problems as one of statistical inference. As the data is measured, we learn more and more
about the image we wish to reconstruct and at each stage, we wish to best represent our state of knowledge
of the image given the available data and our preconceptions. Within this very general framework, it is
possible to consider non-linear forward problems and non-additive noise processes but the size of problems
which can be treated fully in this way may be rather small. Nevertheless the ideas are often very useful in
the analysis of experimental data.

We begin in this chapter with a review of some of the main ideas of probability and statistics which we shall
need.

4.2 Probability density functions

The probability density function pX(x) of a real random variable X expresses the probability that X
lies in the range a · X < b in terms of the integral of the function between a and b. i.e.,

Pr(a · X < b) =

Z b

a

pX(x) dx (4.1)

Probability density functions are real, non-negative and normalized so thatZ 1

¡1
pX(x) dx = 1 (4.2)
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If we allow the probability density to be a generalized function, it is possible to use the same formalism for
discrete random variables. If pk is the probability that X = k where k comes from a discrete set K, the
probability density function for X is

pX(x) =
X
k2K

pk±(x¡ k) (4.3)

The generalization to several random variables is immediate. For example if X1, X2, ..., Xn are random
variables, the probability density pX1X2:::Xn is de…ned so that an integral over a n-dimensional region gives
the joint probability that the point (X1;X2; :::;Xn) lies in the speci…ed region. i.e.,

Pr(a1 · X1 < b1 and a2 · X2 < b2 and ::: and an · Xn < bn) =Z b1

a1

dx1

Z b2

a2

dx2:::

Z bn

an

dxn pX1X2:::Xn(x1; x2; :::; xn) (4.4)

We often use a vector notation, writing X for the random variable and pX(x) for the probability density.

Starting from a joint probability density, we can …nd the probability density of a subset of the variables by
integrating over all possible values of the variable(s) we do not want, e.g.,

pX(x) =

Z 1

¡1
dy

Z 1

¡1
dz pXYZ(x; y; z) (4.5)

This process is called marginalization and pX(x) is called a marginal probability density.

Given random variables X and Y , the conditional probability of X given Y is de…ned by

pXjY (xjy) = pXY (x; y)

pY (y)
(4.6)

In the joint space of possible values of X and Y , we are e¤ectively restricting our attention to cases in which
Y = y. Out of these, we are interested in the probability that X is equal to x.

From the de…nition, it is easy to see that

pXY (x; y) = pXjY (xjy)pY (y) = pY jX(yjx)pX(x) (4.7)

This gives a relationship between the two conditional probabilities pY jX and pXjY . As we shall see later,
this is a result of fundamental importance which is called Bayes’ theorem.

4.3 Cumulative distribution functions

The cumulative distribution function PX(x) of a single real-valued random variable X gives the probability
that X is less than some speci…ed value, i.e.,

Pr(X < x0) = PX(x0) (4.8)

This is related to the probability density function pX(x) by

PX(x) =

Z x

¡1
pX(») d» (4.9)

It is then easy to see that

1. PX(¡1) = 0
2. PX(1) = 1
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3. PX is a monotonically non-decreasing function

4. pX(x) = dPX(x)=dx

For discrete valued random variables, the cumulative distribution function has step discontinuities. This is
consistent with the delta functions in the probability density function.

In several dimensions, the cumulative distribution function PX1X2:::Xn
(x1; x2; :::; xn) is simply the probability

that X1 < x1 and X2 < x2 and ::: and Xn < xn. Thus

pX1X2:::Xn(x1; x2; :::; xn) =
@nPX1X2:::Xn

@x1@x2:::@xn
(4.10)

4.4 Expected values

The expected value of a function f of the random variable X is an average of the function values f(x)
weighted by the probability that X takes on the value x, i.e.,

E[f(X)] =
Z 1

¡1
pX(x)f(x) dx (4.11)

Similarly, if we have a function of more than one random variable, the weighted average is taken over the
joint probability density of the variables, i.e.,

E[f(X1;X2; :::;Xn)] =
Z 1

¡1
dx1

Z 1

¡1
dx2:::

Z 1

¡1
dxn pX1X2:::Xn(x1; x2; :::; xn)f(x1; x2; :::; xn) (4.12)

For example, the expectation value of the product of two random variables X and Y is

E[XY ] =
Z 1

¡1

Z 1

¡1
xypXY (x; y) dxdy (4.13)

The expected value of a random variable X is called themean of X, and is denoted ¹X . The expected value
of (X ¡ ¹)2 is called the variance of X and is denoted ¾2X . The n’th moment mn of X is the expected
value of Xn, i.e.,

mn = E[Xn] =

Z 1

¡1
xnpX(x) dx (4.14)

We see that m0 = 1, m1 = ¹ and m2 = ¾
2 + ¹2.

The operation of taking the expected value is linear, hence

E[af(X) + bg(Y )] = aE[f(X)] + bE[g(Y )] (4.15)

This follows directly from the linearity of the integral.

4.5 Independent and uncorrelated random variables

Two random variables are said to be independent if their joint probability density is equal to the product
of the individual probability densities. Thus random variables X and Y are independent if and only if

pXY (x; y) = pX(x)pY (y) (4.16)
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From the de…nition of conditional probability, X and Y are independent if and only if

pY jX(yjx) = pY (y) (4.17)

Physically, this means that knowledge of the value of one of the random variables X gives no information
about the value of the other random variable Y since our state of knowledge of Y conditional on knowing
that X = x is the same as if we had no information about X.

Similarly, a collection of random variables X1;X2; :::;Xn is said to be independent i¤ their joint probability
density function factorizes

pX1X2:::Xn(x1; x2; :::; xn) = pX1(x1)pX2(x2):::pXn(xn) (4.18)

Theorem: If X and Y are independent random variables, E[XY ] =E[X]E[Y ]

Proof: Do as an exercise.

Two random variables X and Y are said to be uncorrelated if E[XY ] =E[X]E[Y ]. Thus independent
random variables are uncorrelated, but the converse is not true.

Exercise: Construct two uncorrelated random variables which are not independent.

4.5.1 Example: The maximum of N independent random variables

Suppose that X1; :::; XN are a set of N independent identically-distributed random variables each with
probability density pX (x) and suppose that Y = max (X1; :::;Xn) : Find the probability density of Y:

It is easiest to consider the cumulative distribution function. The probability that Y < y is the probability
that all of X1; X2; :::;XN are less than y. Thus

PY (y) = PX1
(y)PX2

(y) :::PXN
(y)

=

µZ y

¡1
pX (x) dx

¶N
(4.19)

Di¤erentiating to get the probability density,

pY (y) = P
0
Y (y) = NpX (y)

µZ y

¡1
pX (x) dx

¶N¡1
(4.20)

4.6 Characteristic functions

The characteristic function of a real continuous random variable X is de…ned by

ÂX(s) = E[exp(jsX)] =
Z 1

¡1
exp(jsx) pX(x) dx (4.21)

This is almost the same as the Fourier transform of pX(x) except for the sign of the exponent. The inverse
transform relationship is

pX (x) =
1

2¼

Z 1

¡1
exp(¡jsx)ÂX(s) ds: (4.22)

If we di¤erentiate ÂX(s) with respect to s, the e¤ect in the integral is to multiply the integrand by jx. Thus,

Â0X(s) =
Z 1

¡1
jx pX(x) exp(jsx) dx (4.23)

Â0X(0) =
Z 1

¡1
jx pX(x) dx = jm1 (4.24)
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Evaluating the derivative at s = 0 gives j times the mean (the …rst moment) of X. Successive di¤erentiation
leads to the rule

Â
(k)
X (0) = jkmk (4.25)

Thus all the moments of the random variable can be derived from the characteristic function. We can also
see this by expanding the exponential in the de…nition of the characteristic function as a power series.

ÂX(s) = E[exp(jsX)] = E

" 1X
k=0

(jsX)k

k!

#
(4.26)

=
1X
k=0

jkE
£
Xk
¤

k!
sk (4.27)

=
1X
k=0

jkmk

k!
sk (4.28)

This is the Taylor series expansion of ÂX(s) about s = 0. The coe¢cient of sk is Â(k)X (0)=k! which again
leads to the relationship (4.25).

Some important pathological cases:

² It is not always the case that the moments of a probability density exist and are …nite. A simple
example is the Cauchy probability density

pi(x) =
a

¼ (a2 + x2)
(4.29)

The second moment of this probability density is in…nite.

² It is not the case that a complete set of moments de…nes the characteristic function uniquely. This
is because two characteristic functions can di¤er by a function whose derivatives of all orders vanish
at zero. Indeed it is possible to …nd two di¤erent probability densities which have exactly the same
(…nite) moments of all orders.

4.7 Probability density of the sum of independent random vari-
ables

Let X and Y be random variables with joint probability function pXY (x; y):We wish to …nd the probability
density pZ (z) of the random variable Z which is the sum of X and Y:

Consider …rst the cumulative distribution function PZ (z) : By de…nition,

PZ (z) = Pr (Z < z) = Pr (X + Y < z) =

Z 1

¡1
dx

Z z¡x

¡1
dy pXY (x; y) (4.30)

where the double integral is taken over the portion of the (x; y) plane for which x + y < z: Substituting
y0 = x+ y in the second integral yields

PZ (z) =

Z 1

¡1
dx

Z z

¡1
dy0 pXY (x; y0 ¡ x) (4.31)

Di¤erentiating with respect to z yields the desired probability density function

pZ (z) =

Z 1

¡1
dx pXY (x; z ¡ x) : (4.32)
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If X and Y are independent, the joint density function factorizes and so

pZ (z) =

Z 1

¡1
dxpX (x) pY (z ¡ x) = (pX ¤ pY ) (z) (4.33)

which we recognize as the convolution of the probability density functions. The characteristic function of Z
is thus the product of the characteristic functions of X and Y

ÂZ(s) = ÂX(s)ÂY (s): (4.34)

This result generalizes to the situation of more than two independent variables.

Another way of seeing that this result holds is by considering the algebra of expectation values

ÂZ(s) = E [exp (isZ)] = E [exp (is (X + Y ))]

= E [exp (isX) exp (isY )] = E [exp (isX)]E [exp (isY )]

= ÂX(s)ÂY (s): (4.35)

where the factorization of the expectation value is possible because of the independence of the random
variables.

Similarly if we consider Z = aX + bY; you should check that ÂZ(s) = ÂX(as)ÂY (bs) and that the inverse
transform of this characteristic function yields the probability density

pZ (z) =
1

jabj
Z
pX

³u
a

´
pY

µ
z ¡ u
b

¶
du (4.36)

4.8 The Gaussian probability density

The random variable X is said to be Gaussian or normally distributed if its probability density is of the
form

pX(x) =
1

¾
p
2¼
exp

µ
¡(x¡ ¹)

2

2¾2

¶
(4.37)

where ¹ and ¾2 are the mean and variance of X respectively. The corresponding characteristic function is

ÂX(s) = exp(js¹) exp

µ
¡1
2
¾2s2

¶
(4.38)

For a Gaussian random variable, the probability density is completely speci…ed once we know the mean and
the variance.

Now consider the sum of two Gaussian distributed random variables. If ¹X , ¹Y , ¾2X and ¾2Y are the means
and variances of X and Y respectively, the characteristic function of the sum Z = X + Y is the product of
the individual characteristic functions. That is,

ÂZ(s) = exp(js¹X) exp

µ
¡1
2
¾2Xs

2

¶
exp(js¹Y ) exp

µ
¡1
2
¾2Y s

2

¶
(4.39)

= exp[js(¹X + ¹Y )] exp

·
¡1
2
(¾2X + ¾

2
Y )s

2

¸
(4.40)

It is easy to see that Z is also Gaussian distributed. The mean of Z is ¹X + ¹Y and the variance of Z is
¾2X + ¾

2
Y . Similarly, the sum of more than two independent Gaussian distributed random variables is also

Gaussian distributed. The mean of the sum is the sum of the means and the variance of the sum is the sum
of the variances.

Exercise: Note that this last result is more generally true. By linearity of the expectation value, it is
easy to see that the mean of the sum of two random variables is always the sum of the individual means,
whether or not the random variables are independent. Show that the variance of the sum of two random
variables is equal to the sum of the variances of the individual variables, provided that the random variables
are uncorrelated.



453.707 Inverse Problems, S.M. Tan, The University of Auckland 4-7

4.9 Cumulants of a random variable

When independent random variables are added together, the mean of the sum is the sum of the means and
the variance of the sum is the sum of the variances. The mean and variance are the …rst two of a set of
quantities called cumulants which add together when independent random variables are added together.

The cumulants ·n of a random variable X with probability density PX(x) are de…ned by

logÂX(s) =
1X
n=1

·n
(js)n

n!
(4.41)

They are just the coe¢cients of the power series expansion of the natural logarithm of the characteristic
function. When two independent random variables are added together, we multiply together their charac-
teristic functions. This corresponds to the addition of the logarithms of the characteristic functions. Thus
the n’th cumulant of the sum is simply the sum of the n’th cumulants of the individual probability densities.

The …rst few cumulants are related to the moments as follows

·1 = m1 (4.42)

·2 = m2 ¡m2
1 (4.43)

·3 = m3 ¡ 3m2m1 + 2m
3
1 (4.44)

·4 = m4 ¡ 3m2
2 ¡ 4m3m1 + 12m2m

2
1 ¡ 6m4

1 (4.45)

These expressions are considerably simpler for random variables with zero means (m1 = 0). To gain a
physical picture of the signi…cance of the …rst four moments, ·1 is the mean, ·2 is the variance, ·3=·

3=2
2

is the skewness and ·4=·22 is the excess or kurtosis which measures whether the “skirts” of the probability
density are broader (·4 > 0) or narrower (·4 < 0) than for a Gaussian of the same mean and variance.

Important note: For a Gaussian probability density, only the …rst two cumulants are non-zero since the
logarithm of the characteristic function is a quadratic in s.

Exercise: Show that if X is a random variable and Y = aX for some a > 0, the n’th cumulant of Y is an

times the corresponding cumulant of X.

(Hint: First show that the probability density of Y is pY (y) = (1=a)pX(y=a).)

4.10 The central limit theorem

Let us now consider what happens when we add together N zero-mean independent identically distributed
random variables. We shall assume that each of the random variables possesses n’th cumulants ·n for every
n.

Let Z = X1 +X2 + :::+XN . It is clear that this has zero mean and that the n’th cumulant of Z is N·n. In
particular, the variance of Z is ¾2Z = N·2. Consider the normalized random variable Z=¾Z . This has unit
variance and its n’th cumulant is

N·n
¾nZ

= N1¡n
2
·n

·
n=2
2

(4.46)

As N becomes large, we see that the n’th cumulant of the normalized random variable tends to zero for all
n > 2. We thus conclude that for large N , Z=¾Z tends to a Gaussian random variable with zero mean and
unit variance. This is a special case of the central limit theorem. In its more general form which applies
to non-identically distributed random variables, it essentially states that
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The probability density of the sum of N well-behaved independent random variables tends
to a Gaussian distribution whose mean is the sum of the individual means and whose variance is
the sum of the individual variances

More precisely if Z = X1+X2+:::+XN , ¹ = ¹1+¹2+:::+¹N is the sum of the means and ¾2 = ¾21+¾
2
2+:::+¾

2
N

is the sum of the variances of X1;X2; :::;XN , then the probability density of (Z¡¹)=¾ tends to a zero-mean
Gaussian distributed variable of unit variance as N becomes large.

Note that the individual probability density functions need not be Gaussian nor identically distributed.

To make this more general statement true, it is necessary to restrict the individual random variables so that
each has a …nite variance and that the probability for jXij to be large is very small. These are contained in
the Lindeberg condition which requires that for all t > 0,

lim
N!1

1

¾2

NX
i=1

Z
jx¡¹ij>t¾

dx (x¡ ¹i)2pi(x¡ ¹i) = 0 (4.47)

where pi is the probability density of the i’th random variable and ¾2 is the sum of the N variances.

A rigorous proof of the central limit theorem under these general conditions is quite di¢cult since we do not
even assume the existence of the cumulants.

Notes:

1. It is interesting to repeatedly convolve a uniform probability density with itself repeatedly to see
how the probability density of the sum approaches a Gaussian. If we add together 12 independent
random numbers each generated from a uniform distribution in the range

£¡1
2 ;

1
2

¤
, the sum closely

approximates a zero-mean unit variance Gaussian distributed variable. (This is sometimes used for
computer generation of normal random variables, but the method is quite slow).

2. As an example showing how the central limit theorem can fail (through violation of the Lindeberg
condition), consider the sum of N identical independent Cauchy distributed random variables with

pi(x) =
a

¼ (a2 + x2)
(4.48)

Show (as an exercise) that the variance of the Cauchy distribution is in…nite and that the sum of any
number of such distributions is also a Cauchy distribution and does not tend to the normal distribution.

4.11 Vector-valued random variables

A vector-valued random variable X with n components is simply a convenient notation for a collection of n
random variables. The probability density pX(x) is a joint probability density as de…ned above.

The mean vector (denoted by ¹X) is simply the vector of the mean values of the components of X. This
is the …rst moment of X

¹X = E[X] =
Z
x pX(x) d

nx (4.49)

The k’th component of E[X] is E[Xk].

The second moment of X is the expectation value of products of pairs of components of X. For an n
component random vector, there are n2 pairs which can be conveniently arranged in an n£ n matrix called
the correlation matrix ©XX

©XX = E[XX
t] =

Z
xxt pX(x) d

nx (4.50)
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The kl’th component of ©XX is E[XkXl]. It is clear that the correlation matrix is symmetric.

Just as we de…ned the variance in the case of a scalar-valued random variable, we de…ne the covariance
matrix of a vector-valued random variable. This is also an n£ n matrix ¡XX

¡XX = E[(X¡ ¹X)(X¡ ¹X)t] = ©XX ¡ ¹X¹tX (4.51)

The kl’th component of ¡XX is E[XkXl]¡E[Xk]E[Xl]. Like the correlation matrix, the covariance matrix is
also symmetric. The diagonal elements of the covariance matrix are the variances of the random variables.

Higher order moments are more complicated to write down as the m’th moment is a rank m tensor with nm

components. The k1k2:::km’th component of the m’th moment tensor is E[Xk1Xk2 :::Xkm ].

The multivariate form of the characteristic function is a scalar-valued function of the n dimensional vector
variable s de…ned by

ÂX(s) = E[exp(jstX)] (4.52)

If we expand the exponential as a power series as in the scalar case, we see the successive moments appearing
in the expansion. The …rst three terms are

ÂX(s) = 1 + js
t¹X ¡ 1

2!
st©XXs¡ ::: (4.53)

The inverse relationship which expresses the probability density of X in terms of ÂX(s) is

pX(x) =
1

(2¼)n

Z
ÂX(s) exp(¡jstx) dns

=
1

(2¼)n

Z 1

¡1
ds1:::

Z 1

¡1
dsn ÂX(s1; :::; sn) exp[¡j(s1x1 + s2x2 + :::+ snxn)] (4.54)

This is essentially an n dimensional inverse Fourier transform (except for the sign of the exponent).

If the components of the vector-valued random variable X are independent, the joint probability factorizes

pX(x) = pX1(x1)pX2(x2):::pXn(xn) (4.55)

As a consequence E[XkXl] =E[Xk]E[Xl] if k 6= l. The covariance matrix ¡XX is then diagonal with the
variances on the diagonal. The characteristic function also factorizes as

ÂX(s) = ÂX1(s1)ÂX2(s2):::ÂXn(sn) (4.56)

4.12 Linear transformations and correlations

In this section we consider the generalization of the result that the characteristic function of the sum of two
independent random variables is the product of the two characteristic functions. We shall see that the e¤ect
of a linear transformation is to change the correlations between the various components of a vector-valued
random variable.

Theorem: If ÂX(s) is the characteristic function of the n dimensional vector-valued random variable X and
the m dimensional vector-valued random variable Y is related to X by the linear transformation

Y =AX (4.57)

where A is an m by n matrix, the characteristic function of Y is given by

ÂY(s) = ÂX(A
ts) (4.58)
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Proof:

ÂY(s) = E[exp(jstY)] = E[exp(jstAX)] = E[exp(jfAtsgtX)]
= ÂX(A

ts) (4.59)

It is worthwhile to consider in more detail the consequences of this deceptively simple result. We …rst note
that it is a generalization of the result for the sum of two independent random variables in two ways. Firstly,
there can be an arbitrary number of random variables contained in X and these need not be independent.
Secondly, instead of a simple summation, we can now handle an arbitrary linear combination which can
result in several random variables contained in Y.

To see how this reduces to the previous result, suppose that n = 2, m = 1 and that A = (1 1). Then
Y =AX becomes Y = X1 +X2. By the theorem,

ÂY (s) = ÂX(A
ts) = ÂX

µµ
s
s

¶¶
(4.60)

Since the components of X are independent, the characteristic function factorizes, i.e.,

ÂX

µµ
s1
s2

¶¶
= ÂX1(s1)ÂX2(s2) (4.61)

Hence

ÂY (s) = ÂX1(s)ÂX2(s) (4.62)

which is just the product of the two characteristic functions. The probability densities are thus related by a
convolutional relationship.

Another important consequence of this theorem may be seen by expanding the characteristic functions as
power series in s just as in (4.53). On the left-hand side we have

ÂY(s) = 1 + js
t¹Y ¡ 1

2!
st©YYs¡ ::: (4.63)

and on the right-hand side,

ÂX(A
ts) = 1 + j(Ats)t¹X ¡ 1

2!
(Ats)t©XX(A

ts)¡ ::: (4.64)

= 1 + jst(A¹X)¡
1

2!
st(A©XXA

t)s¡ ::: (4.65)

Comparing these two expansions we see that

¹Y =A¹X (4.66)

©YY =A©XXA
t (4.67)

These results can also be seen more directly from the de…nitions. For example, if Y = AX,

©YY = E
£
YYt

¤
= E

h
AX (AX)t

i
= E

£
AXXtAt

¤
=AE

£
XXt

¤
At = A©XXA

t:

Exercise: Show that the covariances are also related by

¡YY =A¡XXA
t (4.68)

Thus we see precisely how a linear transformation a¤ects the moments of the random variables. The rela-
tionship for the mean is exactly as we would expect since the process of taking an expected value is linear.
Higher-order moments are similarly related via further terms in the expansions.

Exercise: Show that if X1;X2; :::;Xn are independent random variables with means ¹1; ¹2; :::; ¹n and
variances ¾21 ; ¾

2
2; :::; ¾

2
n, then if Z = c1X1+ c2X2 + :::+ cnXn, the mean of Z is c1¹1 + c2¹2+ :::+ cn¹n and

the variance of Z is c21¾
2
1 + c

2
2¾
2
2 + :::+ c

2
n¾

2
n.
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4.12.1 Physical meaning of the covariance

In order to more fully appreciate the above result, we pause to consider what the covariance matrix is telling
us about the random variables that make up the vector X. For simplicity suppose that n = 2 so that the
pair of random variables (X1;X2) may be represented by a point on a plane. On successive trials, we obtain
a scatter of points whose density on the plane is given by the probability density. The mean (¹1; ¹2) is the
centroid of these points. The variance of Xi is ¡ii =E[(Xi ¡ ¹i)2] which is (proportional to) the moment of
inertia of the points when the plane is rotated about the axis Xi = ¹i. These give the diagonal terms of the
covariance matrix.

The o¤-diagonal covariance term ¡12 is E[(X1¡¹1)(X2¡¹2)]. For a given point, the product (X1¡¹1)(X2¡
¹2) is positive in the …rst and third quadrants (respectively negative in the second and fourth quadrants)
where the two deviations (X1¡¹1) and (X2¡¹2) have the same (respectively opposite) signs. The variables
are uncorrelated and ¡12 = 0 if on average the deviations are as likely to have the same signs as opposite
signs. ¡12 > 0 and we say the variables are positively correlated if on average the points lie in the …rst
and third quadrants rather than in the second and fourth quadrants. This means that if one of the variables
is on one side of its mean (say X1 > ¹1), on average we expect the other variable to be on the same side of
its mean (i.e., X2 > ¹2). We are not certain that this will be the case, only that as the variables become
more highly positively correlated, the sign of the deviation of one of the variables becomes a more reliable
indication that the sign of the other deviation is the same. The opposite holds true if ¡12 < 0 and the
variables are negatively correlated. In this case, the sign of one deviation makes it likely that the other
deviation is of the opposite sign.

Exercise: By expanding E
£
((X1 ¡ ¹1) + ®(X2 ¡ ¹2))2

¤
as a quadratic in ® show that ¡212 · ¡11¡22 where

¡ij =E[(Xi ¡ ¹i)(Xj ¡ ¹j)] are the components of the covariance matrix.
(Hint: For all ® the expectation value must be non-negative. This leads to a condition on the discriminant
of the quadratic in ®.)

Exercise: Show that the correlation and covariance matrices of a vector-valued random variable are positive
de…nite matrices. (Note: A real-valued n by n matrix A is positive de…nite if it is symmetric and for all
non-zero n dimensional column vectors x, xtAx is positive.)

4.13 The multivariate Gaussian and its characteristic function

First let us consider the probability density and characteristic function of n independent identically dis-
tributed Gaussian random variables with zero mean and unit variance. The probability density and charac-
teristic function of the k’th random variable Xk are

pk(xk) =
1p
2¼
exp

µ
¡1
2
x2k

¶
(4.69)

Âk(sk) = exp

µ
¡1
2
s2k

¶
(4.70)

Since the random variables are independent, the joint probability density and characteristic function are the
product of those for the individual variables

pX(x) =
1

(2¼)n=2
exp

µ
¡1
2
(x21 + x

2
2 + :::x

2
n)

¶
(4.71)

ÂX(s) = exp

µ
¡1
2
(s21 + s

2
2 + :::+ s

2
n)

¶
= exp

µ
¡1
2
sts

¶
(4.72)

The mean vector is ¹X = 0 and the correlation and covariance matrix are ¡XX = ©XX = I the n by n
identity matrix. Now consider applying the linear transformation de…ned by the non-singular n by n matrix
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A. i.e., we consider Y = AX. The mean and correlation matrix of Y are given as above by

¹Y = 0 and ¡YY = ©YY = AA
t (4.73)

By the theorem the characteristic function of Y is

ÂY(s) = exp

µ
¡1
2
(Ats)t(Ats)

¶
= exp

µ
¡1
2
st¡YYs

¶
(4.74)

The probability density is found from the characteristic function by calculating (4.54). As shown in the
appendix, the result is

pY(y) =
1p

(2¼)n det(¡YY)
exp

µ
¡1
2
yt¡¡1YYy

¶
(4.75)

Notice how the covariance matrix appears in the expression for the characteristic function while the inverse
of the covariance matrix appears in the probability density.

The exponent of a multivariate Gaussian is a quadratic form in the variable y. We may write

pY(y) =
1p

(2¼)n det(¡YY)
exp

µ
¡1
2
Q(y)

¶
(4.76)

where Q(y) = yt¡¡1YYy. Since the matrix ¡
¡1
YY is positive de…nite (being the inverse of a positive de…nite

matrix), the contours Q(y) =const form ellipsoids whose principal axes are along the eigenvectors of ¡YY
and whose principal axis lengths are proportional to the square roots of the eigenvalues of ¡YY. These
contours join points of equal probability density.

If the mean of Yk is ¹k rather than zero, the probability density and characteristic function become

pY(y) =
1p

(2¼)n det(¡YY)
exp

µ
¡1
2
(y¡ ¹Y)t¡¡1YY(y¡ ¹Y)

¶
(4.77)

ÂY(s) = exp

µ
jst¹Y ¡ 1

2
st¡YYs

¶
(4.78)

These describe a general multivariate Gaussian random variable.

Exercise: If we start from an n dimensional multivariate Gaussian random variable Y and take a linear
combination Z = AY, show that Z also has the form of a multivariate Gaussian. Thus an arbitrary linear
combination of Gaussian variables is Gaussian.

4.14 Appendix: Inversion of a Gaussian characteristic function

We need to calculate the integral

pY(y) =
1

(2¼)n

Z
exp

µ
¡1
2
st¡s¡ jsty

¶
dns (4.79)

The …rst step is to complete the square in the exponent. Consider the matrix analogue of a perfect square

1

2
(s¡ s0)t¡(s¡ s0) = 1

2
st¡s¡ st¡s0 + 1

2
st0¡s0 (4.80)

where we have used the fact that st¡s0 = s0t¡s since they are both scalars. Rearranging this gives

¡1
2
st¡s+ st¡s0 = ¡1

2
(s¡ s0)t¡(s¡ s0) + 1

2
st0¡s0 (4.81)
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This can be made equal to the exponent in the integrand if we set ¡jy = ¡s0 or s0 = ¡j¡¡1y. The integral
thus becomes

pY(y) =
1

(2¼)n

½Z
exp

µ
¡1
2
(s¡ s0)t¡(s¡ s0)

¶
dns

¾
exp

µ
¡1
2
yt¡¡1y

¶
(4.82)

We …nally consider the integral in the braces. Remembering that ¡ = AAt where A is non-singular, we
introduce the new variables

u = At(s¡ s0) (4.83)

The integral is over all of s space which maps to all of u space. The Jacobian determinant for the transfor-
mation relating the volume elements in the two spaces is

dnu = det(At)dns (4.84)

Hence Z
exp

µ
¡1
2
(s¡ s0)t¡(s¡ s0)

¶
dns =

Z
exp

¡¡1
2(u

tu)
¢

det(At)
dnu

=
(2¼)n=2

det(At)
(4.85)

Since det(A) = det(At) and det(A) det(At) = det(¡), we see that det(At) =
p
det(¡). Hence

pY(y) =
1p

(2¼)n det(¡)
exp

µ
¡1
2
yt¡¡1y

¶
(4.86)

as claimed.

4.15 Appendix: Transformation of random variables

Suppose that X is a random variable and that Y = f (X) is the random variable which is obtained by
applying the function f to X: Given the probability density pX (x) ; we wish to determine the probability
density pY (y) of Y: It is easy to …nd the cumulative distribution function of Y since

Pr (Y < y) = Pr (f (X) < y) (4.87)

=

Z 1

¡1
u (y ¡ f (x)) pX (x) dx; (4.88)

where u (x) is the unit step. The probability density of Y is found by di¤erentiation

pY (y) =
@

@y

µZ 1

¡1
u (y ¡ f (x)) pX (x) dx

¶
(4.89)

=

Z 1

¡1
± (y ¡ f (x)) pX (x) dx: (4.90)

In order to be able to apply this result, we need to be able to handle ± functions with non-trivial arguments.
Recall that in distribution theory, the idea is to de…ne the action of a distribution on a test function in such
a way that the usual formal algebraic manipulations can still be carried out. Let us consider the meaning
of ± (g (x)) where g (x) is di¤erentiable and has a single zero at x0 at which g0 (x0) is non-zero. Given a test
function Á (x) ; we require that

h± (g (x)) ; Á (x)i = lim
h!0

h±h (g (x)) ; Á (x)i = lim
h!0

1

h

Z
fx:jg(x)j<h=2g

Á (x) dx (4.91)
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where ±h (x) is equal to 1=h in the interval jxj < h=2 and is zero elsewhere. Since g has an isolated zero at
x0; for su¢ciently small h; the only values of x of interest are those in a small interval around x0: Within
this interval we may approximate g (x) by its Taylor series about x0; namely

g (x) ¼ g (x0) + (x¡ x0) g0 (x0) = (x¡ x0) g0 (x0) (4.92)

and so to this order of approximation

jg (x)j < h

2
i¤ jx¡ x0j < h

2 jg0 (x0)j (4.93)

Thus

h± (g (x)) ; Á (x)i = lim
h!0

1

h

Z
jx¡x0j< h

2jg0(x0)j
Á (x) dx =

Á (x0)

jg0 (x0)j ; (4.94)

and so under these conditions,

± (g (x)) =
± (x¡ x0)
jg0 (x0)j : (4.95)

If we …nd that g (x) has several zeros fxig within the interval of integration, this readily generalizes to

± (g (x)) =
X
i

± (x¡ xi)
jg0 (xi)j (4.96)

Examples

1. Suppose that the random variable £ is uniformly distributed in the range [0; 2¼) and that X = tan£:
Find the probability density for X and check that it is properly normalized.

Since £ is uniformly distributed, we see that p£ (µ) = (2¼)
¡1
: By the above result,

pX (x) =

Z 2¼

0

± (x¡ tan µ) p£ (µ) dµ (4.97)

=
1

2¼

Z 2¼

0

± (x¡ tan µ) dµ (4.98)

For a given value of x > 0; there are two values of µ within the range [0; 2¼) which satisfy x¡tan µ = 0;
namely µ1 = tan¡1 x and µ2 = ¼ + tan¡1 x: If we set g (µ) = x¡ tan µ; we …nd that

g0 (µ) = ¡ sec2 µ (4.99)

and so

jg0 (µ1)j = jg0 (µ2)j = sec2
¡
tan¡1 x

¢
= 1 + x2 (4.100)

Thus

± (x¡ tan µ) = ±
¡
µ ¡ tan¡1 x¢
1 + x2

+
±
¡
µ¡ ¼ ¡ tan¡1 x¢

1 + x2
: (4.101)

Substituting into the integral (4.98) yields

pX (x) =
1

2¼

Z 2¼

0

"
±
¡
µ ¡ tan¡1 x¢
1 + x2

+
±
¡
µ ¡ ¼ ¡ tan¡1 x¢

1 + x2

#
dµ (4.102)

=
1

¼ (1 + x2)
(4.103)

Similarly, it is easy to check that this expression also gives the probability density for x < 0: The
integral of pX (x) over all x yields unity, indicating that it is properly normalized.
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2. Suppose that X is distributed with probability density

pX (x) =
1

¾
p
2¼
exp

µ
¡ x2

2¾2

¶
(4.104)

and Y = X2; determine the probability density of Y:

By the theorem,

pY (y) =

Z
±
¡
y ¡ x2¢ 1

¾
p
2¼
exp

µ
¡ x2

2¾2

¶
dx (4.105)

For y > 0; we see that there are two values of x; namely §py which satisfy y ¡ x2 = 0: Furthermore
we …nd that ·

@

@x

¡
y ¡ x2¢¸

x=§py
= [¡2x]x=§py = ¨2

p
y (4.106)

Hence

±
¡
y ¡ x2¢ = ±

¡
x¡py¢¯̄¡2py¯̄ +

±
¡
x+

p
y
¢¯̄

2
p
y
¯̄ : (4.107)

Substituting into (4.105) yields

pY (y) =

Z Ã
±
¡
x¡py¢+ ± ¡x+py¢

2
p
y

!
1

¾
p
2¼
exp

µ
¡ x2

2¾2

¶
dx

=
1

¾
p
2¼y

exp
³
¡ y

2¾2

´
: (4.108)

Exercise

Show that if PX (x) is the cumulative distribution function of a random variable X, it is possible to generate
samples of X by starting with a random variable Y which is uniformly distributed within the range [0; 1]
and setting X = P¡1X (Y ) :

4.15.1 Extension to Multivariate Case

If we have a set of random variables X1;X2; :::;Xn and a tranformation f : Rn ! Rm; we can …nd the joint
probability density of Y1; Y2; :::; Ym where Yi = fi (X1;X2; :::;Xn) by computing

pY1:::Ym (y1; :::; ym) =

Z
:::

Z
± (y1 ¡ f1 (x1; :::; xn)) :::± (ym ¡ fm (x1; :::; xn))

£ pX1:::Xn (x1; :::; xn) dx1:::dxn (4.109)

An important example of the use of this theorem is to …nd the probability density of the sum of two random
variables, i.e., when Y = X1 +X2: In this case

pY (y) =

Z Z
± (y ¡ (x1 + x2)) pX1X2 (x1; x2) dx1 dx2

=

Z
pX1X2 (x1; y ¡ x1) dx1 (4.110)

where we have carried out the integration over x2 which collapses due to the presence of the ± function. If
further we assume that the random variables are independent, so that pX1X2 (x1; x2) = pX1 (x1) pX2 (x2) ;
this reduces to

pY (y) =

Z
pX1 (x1) pX2 (y ¡ x1) dx1 (4.111)

which is seen to be the convolution of the two probability densities.
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4.15.2 Example: The Â2 probability density

Consider the probability density of Y = X2
1 +X

2
2 where

pX1X2
(x1; x2) =

1

2¼
exp

µ
¡1
2

¡
x21 + x

2
2

¢¶
(4.112)

By the transformation rule,

pY (y) =
1

2¼

Z 1

¡1

Z 1

¡1
±
¡
y ¡ x21 ¡ x22

¢
exp

µ
¡1
2

¡
x21 + x

2
2

¢¶
dx1dx2 (4.113)

It is convenient to change to polar coordinates. This yields

pY (y) =
1

2¼

Z 2¼

0

Z 1

0

±
¡
y ¡ r2¢ expµ¡r2

2

¶
r dr dµ (4.114)

Converting the delta function, we see that there the argument is zero if r =
p
y. At this point

@

@x1

¡
y ¡ r2¢ = ¡2r (4.115)

Hence

±
¡
y ¡ r2¢ = ±

¡
r ¡py¢
2
p
y

(4.116)

and so

pY (y) =
1

2¼

Z 2¼

0

Z 1

0

±
¡
r ¡py¢
2
p
y

exp

µ
¡r

2

2

¶
r dr dµ

=
1

2
exp

³
¡y
2

´
for y > 0 (4.117)

This is called the Â2 probability density with two degrees of freedom, being the sum of squares of two
independent zero-mean unit-variance Gaussian distributions. In more dimensions, the sum of squares of
N independent zero-mean unit-variance Gaussian distributions has probability density

pY (y) =
1

2N=2¡ (N=2)
y
N
2 ¡1 exp

³
¡y
2

´
(4.118)

which is the Â2 probability density with N degrees of freedom. This may readily be derived from the fact
that the volume element in N dimensions for integrands with spherical symmetry may be written as

dx1dx2::::dxN =
2¼N=2

¡(N=2)
rN¡1 dr: (4.119)

4.15.3 Characteristic function of the Â2 probability density

Let us consider …rst the Â2 density with one degree of freedom. This is the probability density of the square
of a zero-mean unit-variance Gaussian distribution which is

pY (y) =
1p
2¼y

exp
³
¡y
2

´
for y > 0 (4.120)
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We wish to calculate the characteristic function which is

E [exp (jsY )] =
Z 1

0

1p
2¼y

exp
³
¡y
2

´
exp (jsy) dy

=

r
1

2¼

Z 1

¡1
exp

µ
1

2
(2js¡ 1)u2

¶
du

=

r
1

2¼

r
2¼

1¡ 2js =
1p

1¡ 2js : (4.121)

where we have used the change of variable y = u2 and the fact that the integrand is even in the second line.
For the Â2 distribution with N degrees of freedom, we simply take the sum of N independent variables, each
distributed as Â2 with one degree of freedom. By the rule for the sum of random variables, the characteristic
function is

ÂY (s) =
1

(1¡ 2js)N=2
(4.122)

Exercises

1. Show that if Y = aX1 + bX2; then

pY (y) =
1

jabj
Z
pX1X2

µ
u

a
;
y ¡ u
b

¶
du: (4.123)

Hence …nd the probability density function of 3X1 + 4X2 when each of X1 and X2 is uniformly
distributed in the range [0; 1] :

2. Find the probability density of Z = X=Y if X and Y have joint probability density

pXY (x; y) =
1

2¼
exp

µ
¡x

2 + y2

2

¶
: (4.124)

Answer: pY (y) = 1
¼(1+y2) .

3. Find the probability density of R =
p
X2 + Y 2 if X and Y are distributed according to the density

(4.124). Answer: pR (r) = r exp
¡¡r2=2¢ ; or r > 0:


