
Homework 5
MA/CS 375, Fall 2005

Due December 1

1. (20 pts.) In this problem we explore the volume of a random parallelepiped in 4-dimensional space
whose sides are unit vectors and its connection to the condition number. Using a well-known result
of analytic geometry, the volume of a parallelepiped is found as the determinant of the matrix formed
by the vectors describing all of its sides originating at a given (any) vertex. Your program should:

(a) Generate 4 random column vectors of size 4× 1

(b) Normalize these veectors so their length is unity.

(c) Compute the volume of the parallelepiped they define. You must use the LU factorization for
computing the determinant of the matrix A whose columns are the 4 random vectors (that is
DO NOT use the command det(A) here!).

(d) compute the condition number of A, κ(A).

(e) Repeat the process 1000 times and produce a scatter plot of det(A) vs 1
κ(A)

.

What are the maximum and minimum values of det(A)? What is the condition number for these
values? How can you explain the extreme values of the condition number and the corresponding
values of the determinant?

Solutions:

(a) >>A=rand(4);

A =


0.1389 0.2722 0.4451 0.8462
0.2028 0.1988 0.9318 0.5252
0.1987 0.0153 0.4660 0.2026
0.6038 0.7468 0.4186 0.6721


(b) >>A=A*diag(1./sum(A))

A =


0.1214 0.2207 0.1968 0.3767
0.1772 0.1612 0.4120 0.2338
0.1737 0.0124 0.2061 0.0902
0.5277 0.6056 0.1851 0.2992
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(c) [L,U]=lu(A); vol=abs(prod(diag(U)));

L =


0.23003 −0.43557 0.68563 1
0.33582 0.22546 1 0
0.32912 1 0 0

1 0 0 0

 , U =


0.52771 0.60564 0.18512 0.29924

0 −0.18694 0.14512 −0.0082667
0 0 0.31714 0.13517
0 0 0 0.21163


vol = 0.006621...

(d) >>cond(A)

κ(A) = 12.701...

(e) >> d=zeros(1000,1); kappa=d;

>> for j=1:1000

A=rand(4); A=A*diag(1./sqrt(sum(A.^2)));

[L,U]=lu(A); d(j)=prod(diag(U)); kappa(j)=cond(A);

end

>>loglog(abs(d),kappa,’.’)

>>[dmin,mindex]=min(abs(d)); kappamin=kappa(mindex);

>>[dmax,maxdex]=max(abs(d)); kappamax=kappa(maxdex);

The minimum determinant was 8.2691e-05 and the corresponding condition number was
3.7498e+03. The maximum determinant was 0.4247 and the corresponding condition number
was 3.6281
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Using polyfit to find the regression line, we get that

log κA = −0.96433 log(| det(A)|)− 0.73128
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such that κA ∼ | det(A)|−1. Therefore, when the determinant becomes small, the condition
number becomes large.

2. (20 pts.) Given an n-vector, x, of distinct elements, xi 6= xj for i 6= j, the Cauchy matrix, C(x), is
the n× n matrix whose ijth entry is:

cij =
1

xi + xj

.

Write a program which generates Cauchy matrices of size n = [4 8 12 16] with random input
vectors. Compute the condition numbers of these matrices. In each case set z = ones(n, 1) and
compute b = Cz. Use the built-in Matlab functions to solve Cz = b. Denote the computed solution
by ẑ. Compute the relative errors and the relative residuals:

‖z − ẑ‖
‖z‖

,
‖b− Cẑ‖
‖b‖

.

Comment on the results. Can you make sense of them given the condition numbers you found?

Solution:

function C=cauchymatrix(N)

x=rand(N,1);

C=1./(repmat(x,1,N)+repmat(x’,N,1));

The condition numbers of the randomly generated Cauchy matrices are

>>C4=cauchymatrix(4); C8=cauchymatrix(8); C12=cauchymatrix(12); C16=cauchymatrix(16);

>>K=[cond(C4) cond(C8) cond(C12) cond(C16)]

K =

3.2794e+08 1.2598e+14 7.9039e+17 1.2376e+18

The exact solutions and right-hand-sides are constructed using

>>z4=ones(4,1); b4=C4*z4; z4h=C4\b4;

>>z8=ones(8,1); b8=C8*z8; z8h=C8\b8;

>>z12=ones(12,1); b12=C12*z12; z12h=C12\b12;

>>z16=ones(16,1); b16=C16*z16; z16h=C16\b16;
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Matlab returns singular matrix warnings for the 12 × 12 and 16 × 16 matrices. The relative errors
and relative residuals are

>>re4=norm(z4-z4h)/norm(z4); rr4=norm(b4-C4*z4h)/norm(b4);

>>re8=norm(z8-z8h)/norm(z8); rr8=norm(b8-C8*z8h)/norm(b8);

>>re12=norm(z12-z12h)/norm(z12); rr12=norm(b12-C12*z12h)/norm(b12);

>>re16=norm(z16-z16h)/norm(z16); rr16=norm(b16-C16*z16h)/norm(b16);

>>RE=[re4 re8 re12 re16]

RE =

9.7061e-09 0.00010243 3.6848 48.705

>>RR=[rr4 rr8 rr12 rr16]

RR =

1.2303e-16 2.026e-16 1.4917e-16 5.1294e-16

The relative residual is O(εm) is bounded above by κ(A) · εm.

>> eps*K./RE

ans =

7.5023 273.1 47.629 5.6421

Therefore, for a given machine epsilon, one can determine the worst possible relative error in solving
the linear system by using the matrix condition number as a bound.

3. (30 pts.) In this problem we solve the heat equation using a second-order accurate method for
timestepping. Consider the heat equation

∂u

∂t
=

∂2u

∂x2

for −1 ≤ x ≤ 1 and 0 ≤ t ≤ T with boundary conditions

u(x = −1, t) = u(x = 1, t) = 0 ,
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and initial condition
u(x, t = 0) = sin πrx,−1 ≤ x ≤ 1 .

The Crank-Nicolson scheme is a popular scheme for solving the heat equation because it is accurate
of order 2 both in the timestep, dt := k and in the spatial discretization interval dx := h. It is defined
by the finite difference equations:

un+1
m − un

m

k
=

1

2

un+1
m+1 − 2un+1

m + un+1
m−1

h2
+

1

2

un
m+1 − 2un

m + un
m−1

h2
, n = 0, . . . , N −1 , m = 1, . . . ,M −1

where we have introduced the discretization:

un
m := u(xm, tn) , xm = −1 + h ∗m , m = 0, . . . ,M ; tn = k ∗ n , n = 0, . . . , N

with h = 2/M and k = T/N . The reason for the increase in accuracy is that the above expressions
give the derivatives of the function u(x, t) with respect to x and t at the point xm and the instant
t = (tn + tn+1)/2 so we can think of the time derivative formula as a centered (rather than a forward)
difference. You must demonstrate the accuracy of the scheme by carrying out computations for
different timesteps k, and comparing your results with the exact solution given by the expression:

uexact(x, t) = e−π2r2t sin πrx .

Specifically:

(a) Write the system of equations in the form

(I − δD)un+1 = (I + δD)un , n = 0, . . . , N − 1

where

δ =
k

2h2
, un = (un

1 , . . . , u
n
M−1)

T (un
0 = un

M = 0)

(b) Start the computation off by setting

u0
m = sin πkxm = sin πk(−1 + h ∗m) , m = 1, . . . ,M − 1

(c) perform the LU factorization of the left-hand matrix LU = D− := (I − δD). You must define
D− (and D+) using the command spdiags to take advantage of its sparsity when solving this
system.

(d) Iterate until the final time, t = T is reached.

(e) Run with T = 1 and r = 1. Use M = 20, 40, 80, 160 and N = 10, 20, 40, 80.
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(f) Compute the relative error

e(M, N) =

∑M−1
m=1 |uN

m − uexact(xm, T )|∑M−1
m=1 |uexact(xm, T )|

for each pair (M, N) and show its value in a table.

(g) Determine which pairs work best together; that is determine, for each value of M (and grid-
spacing h), which value of N (and timestep k) gives a time-discretization error that is of the
same order as the space-discretization error. That is, find the value of N beyond which there is
no appreciable improvement in accuracy. For these optimal (M, N) pairs, show that the error
decreases like either k2 or like h2.

(h) For M = 160 and the corresponding optimal value for N , solve the heat equation and plot
the solutions for r = 1, 2, 3; for each value of r show on the same plot solutions for 5 equally
spaced time instants (your plots must extend over the entire computation interval, including
the endpoints). How do the solutions behave as r increases?

Solutions: In matrix form, the equations to solve at every time step

1 + 2δ −δ 0 · · · · · · 0

−δ 1 + 2δ −δ
...

0 −δ 1 + 2δ
...

...
. . . 0

...
. . . −δ

0 · · · · · · 0 −δ 1 + 2δ


un+1 =



1− 2δ δ 0 · · · · · · 0

δ 1− 2δ δ
...

0 δ 1− 2δ
...

...
. . . 0

...
. . . δ

0 · · · · · · 0 δ 1− 2δ


un

The code for the entire simulation is

function err=heateq(M,N,T,r)

% Solve the Heat Equation using 2nd order finite differences for

% spatial discretization and Crank-Nicholson for time stepping

M1=M+1; % # of grid points = # of intervals + 1

x=linspace(-1,1,M1)’; % Set up grid points

h=x(2)-x(1); % Grid spacing

k=T/N; % Time step size

del=k/(2*h^2); % Crank-Nicholson parameter
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in=2:M; m=M-1; % indices of interior points

u=sin(pi*r*x); % Get initial condition

e=ones(M-1,1); % Column vector of all ones

% Left hand side matrix

A=spdiags([-del*e, (1+2*del)*e, -del*e], -1:1, m, m);

[L,U]=trilu(A); % Do LU factorization

coeff=1-2*del; % Lump diagonal coefficient for RHS

for n=1:N % Time stepping loop

f=coeff*u+del*([0;u(1:M)]+[u(2:M1);0]); %RHS

u(in)=U\(L\f(in));

end

exact=exp(-(pi*r)^2*T)*sin(pi*r*x);

err=norm(u-exact,1)/norm(exact,1);

function [L,U] = trilu(A);

n=length(A); am=diag(A,-1); a0=diag(A); ap=diag(A,1);

for k = 1:(n-1)

am(k)=am(k)/a0(k); k1=k+1; a0(k1)=a0(k1)-am(k)*ap(k);

end

L=speye(n)+spdiags(am,-1,n,n); U=spdiags([a0 [0;ap]],0:1,n,n);

The table of results for the specified M,N pairs is If we look at the error over a wider range of interval

M↓ N→ 10 20 40 80

20 5.6688e-01 1.1470e-01 3.2118e-02 7.1080e-02
40 6.0013e-01 1.7002e-01 2.9501e-02 7.8380e-03
80 6.0808e-01 1.8335e-01 4.4370e-02 7.4273e-03
160 6.1005e-01 1.8665e-01 4.8054e-02 1.1210e-02

size an time step, the trend is more obvious.
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The quadratic convergence in spatial discretization can be observed by fixing one of either the time
step or grid spacing to a sufficiently small amount and varying the other. In the plot on the left, the
number of subintervals was taken to be 1,000 and the time step was varied. In the plot on the right,
the number of time steps was taken to be 1,000 and the mesh size was varied.
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For a fixed number of intervals equal to 160, the optimal number of time steps is 251.
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Looking at the computed solution for various times and choices of the inital condition paremeter r,
we can see that greater values of r result in more oscillations over the interval and greater decay rate.
Both of these will lead to requiring additional spatial and temporal resolution to maintain the error
to a specified tolerance.

4. (30 pts.) The equilibrium temperature distribution in a slab of reacting material can under some
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assumptions be modeled by the nonlinear boundary value problem:

d2u

dx2
+ λ2e2u = 0, x ∈ (−1, 1),

with boundary conditions u(−1) = u(1) = 0. The parameter λ is sometimes called the Damköhler
number. For this problem take λ = 1

cosh 1
.

i. Verify that:
u(x) = − ln (λ cosh x),

solves the problem.

ii. Introducing a uniform grid, xj = −1 + jh, j = 0, . . . , n, h = 2
n
, approximate u(xj) by Uj and

approximate d2u
dx2 by the second order central difference formula. This leads to the system of

n− 1 nonlinear equations:

Fj(u) ≡ Uj−1 − 2Uj + Uj+1

h2
+ λ2e2Uj = 0, j = 1, . . . , n− 1,

where we set U0 = Un = 0. The Jacobian derivative of a collection of n − 1 functions, Fj of
n− 1 variables, U , is the (n− 1)× (n− 1) matrix J(U) whose jkth entry is the derivative of Fj

with respect to Uk, Jjk =
∂Fj

∂Uk
. (We denote the n− 1-vectors whose entries are Fj and Uk by F

and U.) Show that the Jacobian derivative of the function given above is a tridiagonal matrix
whose entries are:

Jj,j+1 = Jj+1,j =
1

h2
, Jjj = − 2

h2
+ 2λ2e2Uj .

iii. Newton’s method for solving a system of n − 1 equations in n − 1 unknowns is the direct gen-
eralization of Newton’s method for a single equation which we studied in Chapter 2. Precisely,
given an initial approximation, U(0), we generate subsequent approximations by solving:

J(U(k)) d(k) = −F(U(k)),

and setting:
U(k+1) = U(k) + d(k).

Write a script implementing Newton’s method for the difference approximation described above.
Terminate the iteration when:

‖d(k)‖ ≤ 10−8.

Use U(0) = 0. Be sure to treat J as a sparse matrix when solving. Record the number
of iterations required and print out ‖d(k)‖ for each k. Does the convergence appear to be
quadratic? Carry out the computations for n = 10, 20, 40. Compute the maximum error, that
is the maximum absolute difference between Uj and u(xj), in each case. Do you observe second
order convergence with decreasing h? Plot the solutions in each case.
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Solution:
du

dx
= − tanh(x),

d2u

dx2
= tanh2(x)− 1

exp(2u) = exp(−2 ln[λ cosh(x)]) = exp

(
ln[

1

λ2 cosh2(x)
]

)
=

1

λ2 cosh2(x)
=

1

λ2
sech2(x)

exp(2u) =
1

λ2
[1− tanh2(x)] = − 1

λ2

d2u

dx2

Solutions: Given

Fj(u) ≡ Uj−1 − 2Uj + Uj+1

h2
+ λ2e2Uj = 0, j = 1, . . . , n− 1,

We obtain the Jacobian by differentiating with respect to the each of the elements of the vector u.

Jjk
∂Fj(u)

∂Uk

=
∂

∂Uk

(
Uj−1 − 2Uj + Uj+1

h2
+ λ2e2Uj

)
,

∂Uj

∂Uk

= δjk

Jjk =
δ(j−1),k − 2δjk + δ(j+1),k

h2
+ 2λ2e2Ujδjk

Clearly, nonzero entries can only occur in the range j − 1 ≤ k ≤ j + 1. Evaluating for the Kronecker delta
functions gives the desired results.

Jj,j+1 = Jj+1,j =
1

h2
, Jjj = − 2

h2
+ 2λ2e2Uj .

The script for this problem is

function [iter,nd,err]=nlbvp(n,tol)

np1=n+1; nm1=n-1; in=2:n; x=linspace(-1,1,np1)’;

h=x(2)-x(1); h2=h*h; lambda=sech(1); lambda2=lambda*lambda;

e=ones(nm1,1); D2bands=[e -2*e e]/h2;

D2=spdiags(D2bands, -1:1, nm1, nm1);

exact=-log(lambda*cosh(x)); % Exact solution

uin=0*e; % Interior points (initial value)

d=e; nd=norm(d); iter=0;
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while nd>tol

nonlin=lambda2*exp(2*uin); % Nonlinear term

F=trimult(D2bands,uin)+nonlin; % Forcing function

J=D2+2*spdiags(nonlin,0,nm1,nm1); % Jacobian

d=J\(-F); % Change term

nd=norm(d);

uin=uin+d; % Update solution

iter=iter+1;

end

u=[0;uin;0]; err=norm(exact-u,inf);

function Ax=trimult(A,x);

N=length(x); k=2:N; Ax=A(:,2).*x+[0;A(k,1).*x(k-1)]+[A(k-1,3).*x(k);0];

For n = 80 we obtain the norm of the change with iterations as The convergence with respect to grid

k ||d(k)||
1 2.0789
2 0.5925
3 0.1031
4 0.0038
5 5.2686e-06
6 1.0176e-11

refinement also appears to be quadratic

n iterations ||d|| ||error||∞
10 6 1.5891e-11 7.1784e-03
20 6 7.1673e-12 1.7302e-03
40 6 7.6929e-12 4.2877e-04
80 6 1.0176e-11 1.0696e-04
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