
Homework 5
MA/CS 375, Fall 2005

Due December 2

This homework will count as part of your grade so you must work independently. It is permissible to
discuss it with your instructor, the TA, fellow students, and friends. However, the programs/scripts and
report must be done only by the student doing the project. Please follow the guidelines in the syllabus
when preparing your solutions.

1. (20 pts.) In this problem we explore the volume of a random parallelepiped in 4-dimensional space
whose sides are unit vectors and its connection to the condition number. Using a well-known result
of analytic geometry, the volume of a parallelepiped is found as the determinant of the matrix formed
by the vectors describing all of its sides originating at a given (any) vertex. Your program should:

(a) Generate 4 random column vectors of size 4 × 1

(b) Normalize these veectors so their length is unity.

(c) Compute the volume of the parallelepiped they define. You must use the LU factorization for
computing the determinant of the matrix A whose columns are the 4 random vectors (that is
DO NOT use the command det(A) here!).

(d) compute the condition number of A, κ(A).

(e) Repeat the process 1000 times and produce a scatter plot of det(A) vs 1
κ(A)

.

What are the maximum and minimum values of det(A)? What is the condition number for these
values? How can you explain the extreme values of the condition number and the corresponding
values of the determinant?

2. (20 pts.) Given an n-vector, x, of distinct elements, xi 6= xj for i 6= j, the Cauchy matrix, C(x), is
the n × n matrix whose ijth entry is:

cij =
1

xi + xj

.

Write a program which generates Cauchy matrices of size n = [4 8 12 16] with random input
vectors. Compute the condition numbers of these matrices. In each case set z = ones(n, 1) and
compute b = Cz. Use the built-in Matlab functions to solve Cz = b. Denote the computed solution
by ẑ. Compute the relative errors and the relative residuals:

‖z − ẑ‖

‖z‖
,

‖b − Cẑ‖

‖b‖
.

Comment on the results. Can you make sense of them given the condition numbers you found?

1

3. (30 pts.) In this problem we solve the heat equation using a second-order accurate method for
timestepping. Consider the heat equation

∂u

∂t
=

∂2u

∂x2

for −1 ≤ x ≤ 1 and 0 ≤ t ≤ T with boundary conditions

u(x = −1, t) = u(x = 1, t) = 0 ,

and initial condition
u(x, t = 0) = sin πrx,−1 ≤ x ≤ 1 .

The Crank-Nicolson scheme is a popular scheme for solving the heat equation because it is accurate
of order 2 both in the timestep, dt := k and in the spatial discretization interval dx := h. It is defined
by the finite difference equations:

un+1
m − un

m

k
=

1

2

un+1
m+1 − 2un+1

m + un+1
m−1

h2
+

1

2

un
m+1 − 2un

m + un
m−1

h2
, n = 0, . . . , N −1 , m = 1, . . . , M −1

where we have introduced the discretization:

un
m := u(xm, tn) , xm = −1 + h ∗ m , m = 0, . . . , M ; tn = k ∗ n , n = 0, . . . , N

with h = 2/M and k = T/N . The reason for the increase in accuracy is that the above expressions
give the derivatives of the function u(x, t) with respect to x and t at the point xm and the instant
t = (tn + tn+1)/2 so we can think of the time derivative formula as a centered (rather than a forward)
difference. You must demonstrate the accuracy of the scheme by carrying out computations for
different timesteps k, and comparing your results with the exact solution given by the expression:

uexact(x, t) = e−π2r2t sin πrx .

Specifically:

(a) Write the system of equations in the form

(I − δD)un+1 = (I + δD)u
n , n = 0, . . . , N − 1

where

δ =
k

2h2
, u

n = (un
1 , . . . , u

n
M−1)

T (un
0 = un

M = 0)

2

(b) Start the computation off by setting

u0
m = sin πkxm = sin πk(−1 + h ∗ m) , m = 1, . . . , M − 1

(c) perform the LU factorization of the left-hand matrix LU = D− := (I − δD). You must define
D− (and D+) using the command spdiags to take advantage of its sparsity when solving this
system.

(d) Iterate until the final time, t = T is reached.

(e) Run with T = 1 and r = 1. Use M = 20, 40, 80, 160 and N = 10, 20, 40, 80.

(f) Compute the relative error

e(M, N) =

∑M−1
m=1 |uN

m − uexact(xm, T)|
∑M−1

m=1 |uexact(xm, T)|

for each pair (M, N) and show its value in a table.

(g) Determine which pairs work best together; that is determine, for each value of M (and grid-
spacing h), which value of N (and timestep k) gives a time-discretization error that is of the
same order as the space-discretization error. For these optimal (M, N) pairs, show that the
error decreases like either k2 or like h2.

(h) For M = 100 and the corresponding optimal value for N , solve the heat equation and plot
the solutions for r = 1, 2, 3; for each value of r show on the same plot solutions for 5 equally
spaced time instants (your plots must extend over the entire computation interval, including
the endpoints). How do the solutions behave as r increases?

3

4. (30 pts.) Consider the nonlinear boundary value problem:

d2u

dx2
+ λ2e2u = 0, x ∈ (−1, 1),

with λ = 1
cosh 1

and with boundary conditions u(−1) = u(1) = 0.

i. Verify that:
u(x) = − ln (λ coshx),

solves the problem.

ii. Introducing a uniform grid, xj = −1 + jh, j = 0, . . . , n, h = 2
n
, approximate u(xj) by Uj and

approximate d2u
dx2 by the second order central difference formula. This leads to the system of

n − 1 nonlinear equations:

Fj(u) ≡
Uj−1 − 2Uj + Uj+1

h2
+ λ2e2Uj = 0, j = 1, . . . , n − 1,

where we set U0 = Un = 0. The Jacobian derivative of a collection of n − 1 functions, Fj of
n− 1 variables, U , is the (n− 1)× (n− 1) matrix J(U) whose jkth entry is the derivative of Fj

with respect to Uk, Jjk =
∂Fj

∂Uk
. (We denote the n − 1-vectors whose entries are Fj and Uk by F

and U.) Show that the Jacobian derivative of the function given above is a tridiagonal matrix
whose entries are:

Jj,j+1 = Jj+1,j =
1

h2
, Jjj = −

2

h2
+ 2λ2e2Uj .

iii. Newton’s method for solving a system of n−1 equations in n−1 unknowns is the direct general-
ization of the Newton’s method for a single equation which we studied in Chapter 2. Precisely,
given an initial approximation, U

(0), we generate subsequent approximations by solving:

J(U(k)) d
(k) = −F(U(k)),

and setting:
U

(k+1) = U
(k) + d

(k).

Write a script implementing Newton’s method for the difference approximation described above.
Terminate the iteration when:

‖d(k)‖ ≤ 10−8.

Use U
(0) = 0. Be sure to treat J as a sparse matrix when solving. Record the number

of iterations required and print out ‖d(k)‖ for each k. Does the convergence appear to be
quadratic? Carry out the computations for n = 10, 20, 40. Compute the maximum error, that
is the maximum absolute difference between Uj and u(xj), in each case. Do you observe second
order convergence with decreasing h? Plot the solutions in each case.

4

