Homework 2 - Solutions

MA/CS 375, Fall 2005

1. Use the bisection method, Newton's method, and the Matlab ${ }^{\circledR}$ function fzero to compute a positive real number x satisfying:

$$
\sinh x=\cos x .
$$

For each of the three methods use a tolerance of 10^{-8}. List your initial approximation (or interval in the case of bisection) and the number of iterations needed. Also print at least nine digits of the approximate roots.

Solution:

Here general-purpose bisection script similar to the one in the text, although it is simpler and does not rely on using the feval function.

```
function [xz,res,iter]=bisect(f,a,b,tol,maxit)
iter=0;
fa=f(a); fb=f(b);
if fa*fb>0
    error(['The sign of the the function at the extrema of the', ...
    'interval must be different']);
elseif fa==0
    xz=a; res=0;
    return
elseif fb==0
    xz=b; res=0;
    return
end
x=(a+b)/2; fx=f(x); dx=(b-a)/2;
while (iter<maxit & dx>tol)
        iter=iter+1;
        if fa*fx<0
            b=x; fb=fx;
        elseif fx*fb<0
            a=x; fa=fx;
        else % done
        end
    dx=(b-a)/2;
    x=a+dx; fx=f(x);
end
```

```
if iter>maxit
    fprintf(['bisection stopped without converging to the desired ',...
        'tolerance because the maximum number of iterations was reached']);
end
xz=x;
res=f(x);
```

To use Newton's method, we define $f(x)=\sinh (x)-\cos (x)$ so that $f^{\prime}(x)=\cosh (x)+\sin (x)$. The Newton iteration is simply

$$
x_{k+1}=x_{k}-\frac{\sinh \left(x_{k}\right)-\cos \left(x_{k}\right)}{\cosh \left(x_{k}\right)+\sin \left(x_{k}\right)}
$$

By inspecting the functions $\sinh (x)$ and $\cos (x)$ one can immediately see that the zero must lie somewhere between 0 and $\pi / 2$, so we can use these to define our initial bisection interval and take the midpoint $\pi / 4$ as the initial point for the Newton's method. Computing to 9 -digit precision, one obtains for the root:

$$
x_{\text {bisect }}=0.703290663199065, \quad x_{\text {Newton }}=0.703290658873561, \quad x_{\text {fzero }}=0.703290658863965
$$

Table 1: Finding the root of $\sinh (x)=\cos (x),\left|f\left(x_{n}\right)\right|$

iterations	bisection	Newton's method
1	0.52100915059422	1.19331410800446
2	0.207760588557854	1.31032700775238
3	0.0304020718929473	0.189609665360664
4	0.0637188965127375	0.00667324312269613
5	0.0161973962740738	$9.32165948031027 \mathrm{e}-06$
6	0.00721702718877359	$1.82739379184227 \mathrm{e}-11$
7	0.00446144162724882	$1.11022302462516 \mathrm{e}-16$
8	0.00138496968849744	$O\left(\epsilon_{M}\right)$
9	0.00153644063981195	
10	$7.52867810949187 \mathrm{e}-05$	
\vdots	\vdots	\vdots
25	$2.8881665947722 \mathrm{e}-09$	$O\left(\epsilon_{M}\right)$

2. Use the bisection method, Newton's method, and the Matlab ${ }^{\circledR}$ function fzero to compute all three real numbers x satisfying:

$$
5 x^{2}-e^{x}=0
$$

For each of the three roots and each of the three methods use a tolerance of 10^{-8}. List your initial approximation (or interval in the case of bisection) and the number of iterations needed. Also print at least nine digits of the approximate roots.

Solution: This function has three roots, denoted as $x^{(1)}, x^{(2)}, x^{(3)}$. Plotting on a graph, one sees that

$$
-1<x^{(1)}<0, \quad 0<x^{(2)}<1, \quad 4<x^{(3)}<6
$$

As with problem 1, we use these bounds to set the initial bisection intervals and the midpoints, $-1 / 2,1 / 2$ and 5 as the initial values for Newton's method. For the leftmost zero, $x^{(1)}$, the bisection method converged to within tolerance in 22 iterations and Newton's method converged in 6 iterations. The roots obtained were

$$
x_{\text {bisect }}^{(1)}=-0.371417641639709, \quad x_{\text {Newton }}^{(1)}=-0.371417756797242, \quad x_{\text {fzero }}^{(1)}=-0.371417752459174
$$

For the middle root, bisection converged in 23 iterations and Newton's method converged in 5 iterations, although the original guess for Newton's method $1 / 2$ returned $x^{(1)}$. To obtain $x^{(2)}$, an initial guess of $x 0=2$ was used. The roots obtained were

$$
x_{\text {bisect }}^{(2)}=0.605267107486725, \quad x_{\text {Newton }}^{(2)}=0.605267121314618, \quad x_{\text {fzero }}^{(2)}=0.605267121314618
$$

In computing $x^{(3)}$, bisection converged in 27 iterations and Newton's method converged in 5 iterations.

$$
x_{\text {bisect }}^{(3)}=4.70793791860342, \quad x_{\text {Newton }}^{(3)}=4.70793791814078, \quad x_{\text {fzero }}^{(3)}=4.70793791812886
$$

Newton's method outperformed the method of bisection in all three cases, although in case $x^{(2)}$ a different initial guess was needed to find the correct root.
3. Consider the use of Newton's method to solve:

$$
e^{-x^{2}}-1=0
$$

for the root $x=0$. Reformulate the method as a fixed point iteration and find the rate at which it will converge. (Hint: use l'Hopital's rule to evaluate the derivative of the iteration function as $x \rightarrow 0$.)

Solution: This can be written as a fixed point method as

$$
x=\phi(x)=x-\frac{f(x)}{f^{\prime}(x)} \Rightarrow x_{n+1}=\phi\left(x_{n}\right)=x_{n}-\frac{f\left(x_{n}\right)}{f^{\prime}\left(x_{n}\right)}
$$

The fixed point function is

$$
\phi(x)=\frac{1+2 x^{2}-e^{x^{2}}}{2 x}
$$

It has the limit at the fixed point

$$
\lim _{x \rightarrow 0} \phi(x)=0
$$

since the numerator goes to zero quadratically whereas the denominator goes to zero linearly. The derivative of the fixed point function is

$$
\phi^{\prime}(x)=\frac{\left(2 x^{2}-1\right)\left(1-e^{x^{2}}\right)}{2 x^{2}}
$$

and it has the limit at the fixed point

$$
\lim _{x \rightarrow 0} \phi^{\prime}(x)=\frac{1}{2}
$$

The order of convergence is determined by the equation

$$
\lim _{n \rightarrow \infty} \frac{e_{n+1}}{e_{n}}=\lim _{n \rightarrow \infty} \frac{x_{n+1}-x^{*}}{\left(x_{n}-x^{*}\right)^{p}}=\frac{1}{p!} \phi^{(p)}\left(x^{*}\right) \neq 0
$$

Where p is the lowest order of derivative for which the fixed point function is nonzero. Since the we have shown that the first derivative has a nonzero limit, then $p=1$ so the convergence is linear instead of quadratic. The asymptotic error constant is

$$
c=\frac{1}{p!} \phi^{(p)}\left(x^{*}\right)=\frac{1}{2}
$$

In other words, the theory predicts that when Newton's method converges, that the error of the $n+1$ iteration will be half of the error of the n iteration. Assuming we take a point x closed to the fixed point $x^{*}=0$ we can approximate the ration $f(x) / f^{\prime}(x)$ using l'Hopitals rule to get $f^{\prime}(x) / f^{\prime \prime}(x)$

$$
x_{n+1}=x_{n}-\frac{x_{n}}{2 x_{n}^{2}-1}
$$

Eventually the convergence breaks down due to the errors of evalating the $e^{-x^{2}}$ functions. If the l'Hopital approximation above is used, then the root can be evaluated tp machine precision.
4. Consider a 4-bar planar linkage ABCD where the four rods have lengths $A B=a_{1}, B C=a_{2}, C D=a_{3}$ and $D A=a_{4}$. If we introduce the angles $\alpha=\angle A B C$ and $\beta=\pi-\angle D A B$, we have the system described in the text, problem 2.3, p. 38 (see also Fig. 2.1 in the text). This is called a planar linkage system, and it can exist in various shapes. As the angle α is varied that will result in turn in changes in the angle β; the two angles are related by equation (text, eq. 2.2):

$$
\frac{a_{1}}{a_{2}} \cos (\beta)-\frac{a_{1}}{a_{4}} \cos (\alpha)-\cos (\beta-\alpha)=-\frac{a_{1}^{2}+a_{2}^{2}-a_{3}^{2}+a_{4}^{2}}{2 a_{2} a_{4}}
$$

Apply Newton's method to solve this problem for $\alpha \in[0,2 \pi]$ with a tolerance of 10^{-6}. Assume that the lengths of the rods are $a_{1}=10, a_{2}=2, a_{3}=7, a_{4}=6$. For this arrangement, and to each value of α in
the given range there correspond two possible values of β. Use an initial value of $\beta=-\pi / 2$, which ensures that you will get a solution for β in the same contiguous range. Plot the position of the mid-point of the rod CD as α takes values in $[0,2 \pi]$.

Solution: The Newton solver with linkage plotting is

```
function [mx1,my1,mx2,my2]=linkage(a,k)
% Evaluate the midpoint of CD for the vector of angles in a (alpha)
%
% Draw the linkage system in the configuration dictated by the kth
% value of a (alpha)
n=length(a);
% Two possible configurations
b1=-pi/2*ones(n,1);
b2=pi/2*ones(n,1);
a1=10; a2=2; a3=7; a4=6;
c1=a1/a2; c2=a1/a4;
c3=(a1^2+a2^2-a3^2+a4^2)/(2*a2*a4);
% Newton iteration for each configuration for every a (alpha)
for iter=1:7
        f1=c1*\operatorname{cos(b1) -c2*\operatorname{cos}(a)-\operatorname{cos}(b1-a)+c3; f1p=sin(b1-a)-c1*sin(b1);}
    f2=c1*\operatorname{cos}(b2)-c2*\operatorname{cos}(a)-\operatorname{cos}(b2-a)+c3; f2p=sin(b2-a)-c1*\operatorname{sin}(b2);
    b1=b1-f1./f1p; b2=b2-f2./f2p;
end
```

if(1) \% Do the plotting

```
Cx=a2*\operatorname{cos(a); Cy=a2*sin(a);}
Dx1=a1+a4*\operatorname{cos(b1); Dx2=a1+a4*cos(b2);}
Dy1=a4*sin(b1); Dy2=a4*sin(b2);
mx1=(Cx+Dx1)/2; mx2=(Cx+Dx2)/2;
my1=(Cy+Dy1)/2; my2=(Cy+Dy2)/2;
```

\% The loops followed by the midpoints

```
    plot(mx1,my1,'k--',mx2,my2,'k--','LineWidth',2);
    grid on;
hold on
    % The linkage for a specific angle
x1=[0 a1 Dx1(k) Cx(k) 0]; y1=[0 0 Dy1(k) Cy(k) 0];
x2=[0 a1 Dx2(k) Cx(k) 0]; y2=[0 0 Dy2(k) Cy(k) 0];
plot(x1,y1,'bo-',mx1(k),my1(k),'kp-','LineWidth', 2,'MarkerSize', 10)
plot(x2,y2,'ro-',mx2(k),my2(k),'kp-','LineWidth', 2,'MarkerSize', 10)
hold off;
axis([[-4 12 -6 6])
end
```

Note the Newton method works with arrays of α 's simultaneously, so one can simply choose >>a=linspace (0,2*pi,100)';
and solve the system for all 100 values of α at one time. The second input parameters determines which particular value of α to use to draw the linkage system.

Explaination of grading scheme:

Problem 1 (15 pts):
Bisection (7)
Newton (7)
fzero (1)

Problem 2 (30 pts):
10 pts per root

Problem 3 (15 pts):
Effort at determining the order of convergence (10)
Determining it correctly (5)

Problem 4 (40 pts):
Code present
Any kind of graph
The correct graph

Table 2: Finding the root of $\exp \left(-x^{2}\right)-1$

iterations	e_{n}	e_{n} / e_{n-1}
1	0.140859085770477	
2	0.0697261925839738	0.495006709738192
3	0.0347782110958669	0.498782592409333
4	0.0173785850367956	0.499697497059039
5	0.00868798023700563	0.4999244885939
6	0.00434382617002007	0.499981129275359
7	0.00217189259415103	0.49999528276266
8	0.00108594373579125	0.499998820713202
9	0.000542971547745431	0.499999705187126
10	0.000271485733865846	0.499999926318663
11	0.000135742861985003	0.499999981774658
12	$6.78714303895193 \mathrm{e}-05$	0.49999999555791
13	$3.39357151682078 \mathrm{e}-05$	0.499999999608792
14	$1.6967857193955 \mathrm{e}-05$	0.499999988503294
15	$8.48392965485562 \mathrm{e}-06$	0.500000062346006
16	$4.24196314361372 \mathrm{e}-06$	0.49999980152899
17	$2.12097904619955 \mathrm{e}-06$	0.499999404613566
18	$1.06049882090937 \mathrm{e}-06$	0.500004383734771
19	$5.30250270994825 \mathrm{e}-07$	0.500000811448466
20	$2.65074082013324 \mathrm{e}-07$	0.499903718136735
21	$1.32512805322296 \mathrm{e}-07$	0.499908570146948
22	$6.63247726019351 \mathrm{e}-08$	0.500515949689699
23	$3.28463909634952 \mathrm{e}-08$	0.495235636322964
24	$1.59461624747848 \mathrm{e}-08$	0.48547685170365
25	$8.98384143747749 \mathrm{e}-09$	0.563385795904397
26	$2.8048419952473 \mathrm{e}-09$	0.31220965048943

