
Homework 1 - Solutions
MA/CS 375, Fall 2005

1. How many numbers belong to the set F(2, 2,−1, 4)? What is the value of εM for such set?

Solution: The parameters are β = 2, t = 2, L = −1, and U = 4. The maximum and minimum
representable values in this set are:

xmin = βL−1 =
1

4
, xmax = βU(1− β−t) = 12

Machine epsilon for this set is

εM = β1−t =
1

2

There are t digits in the mantissa [a1 a2 a3 · · · at]. Each of these t bits take β possible values
expect the first bit which takes β − 1 because a1 = 0 is reserved. There is a factor of 2 for the sign
bit to account for whether the number is positive or negative. So the range of possible values for the
mantissa are 2(β − 1)βt−1. The range of possible exponent values is U − L + 1, so the total number
of values in F are

N(β, t, L, U) = 2(β − 1)βt−1(U − L + 1)

In the case of this problem the N = 24.

2. Use MATLAB to construct an upper (respectively lower) triangular matrix of dimension 8 with −4
on the diagonal and 1 on the upper (respectively lower) diagonal. Interchange the second and fifth
rows and then the second and sixth columns. Compute the determinants of each of the matrices you
have computed. Do you notice anything?

Solution: Diagonal matrices are typically created using the diag() function, however, this ma-
trix can be created using a single line of MATLAB code with the built-in function toeplitz(). A
toeplitz matrix is any matrix which contains the same value in every element along a given diagonal.
The upper and lower triangular matrices are obtained using:

>>U=toeplitz([-4 zeros(1,7)],[-4 1 zeros(1,6)]); U=L’;

Since these matrices are bidiagonal, the determinants can be computed simply by taking the product
of the diagonal entries. This is because when one applies the expansion of minors approach, at each
step there is only one submatrix which has a nonzero determinant. The determinant of both L and
U is (−4)8 = 65536. MATLAB gives the same result. To interchange rows 2 and 5, we can use an
approach such as the following:

1

>>tempu=U(2,:); U(2,:)=U(5,:); U(5,:)=tempu;

>>templ=L(2,:); L(2,:)=L(5,:); L(5,:)=templ;

Although more work is done, this can be also done in 1 command.

>>U=U([1 5 3 4 2 6 7 8],:);

To interchange the columns 2 and 6,

>>tempu=U(:,2); U(:,2)=U(:,6); U(:,6)=tempu;

>>templ=L(:,2); L(:,2)=L(:,6); L(:,6)=templ;

This gives the new matrices (zeros not shown):

U =

−4 1
1 −4

−4 1
−4 1

1 −4
−4 1

−4 1
−4

, L =

−4
1 −4

−4 1
1 −4

1 −4
−4 1

1 −4
1 −4

These matrices are no longer bidiagonal, so the simple determinant formula used before is not avail-
able, but this poses no difficulty to MATLAB:

>>det(U)

ans=65536

>>det(L)

ans=65536

This demonstrates two important properties. The transpose of a square matrix has the same deter-
minant as the original matrix and interchanging two rows or two columns of a matrix does not alter
its determinant.

2

3. Check the linear independence of the following vectors in R5:

v1 =

−1

1
1

−1
0

 , v2 =

−2

2
3
3
0

 , v3 =

1
1
1
1
0

 , v4 =

1
2
3
4
0

 , v5 =

−1

1
1

−1
−1

 .

Solution: Using MATLAB, define a matrix V=[v1,v2,v3,v4,v5]. Then compute the determinant
numerically using det(V). MATLAB returns the value 4. Since the determinant is nonzero, the vec-
tors are linearly independent. That is to say that any given vector of the set can not be constructed
using a linear combination of the remaining vectors. Note: You can compute the number of linearly
independent vectors in a matrix V using the MATLAB command rank(V).

4. The Stirling numbers of the second kind are defined by the formula:

S(m)
n =

1

m!

m∑
k=0

(−1)(m−k)

(
m
k

)
kn

(a) Write a matlab function ”stirling2.m” that accepts the arguments n and m and returns S
(m)
n

function S = stirling_2(n,m)

if n > m

term = -(-1)^m*m;

S = term;

factorial = 1;

for k = 2:m-1

term = -term*(k/(k-1))^n*(m-k+1)/k;

S = S+term;

factorial = factorial*k;

end

factorial = factorial*m;

S = S+m^n;

S = S/factorial;

else

if n == m

S = 1

3

else

S = 0;

end

end

(b) Use your function to compute S
(m)
n for m = 5, 10, 15 and n = 5, 10, 15, 20, 25. The answers must

be as accurate as possible. You must write a driver script that calls the function and prints
your answers (with as many digits as feasible–use format long g) in a table of the form:

Table 1: Stirling numbers

n \ m 5 10 15
5 1 0 0
10 42525 1 0
15 210766920 12662650.0000002 1
20 749206090500 5917584964655.04 452329200.001216
25 2.43668497411075e+15 1.20316339217539e+18 4.2993946553481e+15

5. Consider the following algorithm to compute the volume of the unit sphere. Compute n random
triples (xk, yk, zk) with each coordinate uniformly distributed in the interval [0, 1]. Compute the
number of these, p, lying inside the unit sphere. For n large we expect:

p

n
≈

Volume of Sphere
8

Volume of Unit Cube
=

Volume of Sphere

8
,

since the points are constrained to lie in the octant 0 ≤ x, y, z ≤ 1 and 1/8 of the unit sphere lies
in that octant. Carry out the computation for increasing n until the results apparently converge to
two decimal digits. Using the fact that the volume is 4

3
π, use your results to approximate π. How

accurate is your approximation?

Solution: Again this computation can be performed with only a single line of MATLAB after setting
n.

>>PI=6*sum(sum(rand(3,n).^2)<1)/n;

We can determine an error function for increasing n also in one line.

4

>>err=abs(pi-6*cumsum(sum(rand(3,n).^2)<1)./(1:n));

A good way to demonstrate the order of convergence is on a log-log plot.

>>loglog(1:n,err);

10
0

10
2

10
4

10
−4

10
−3

10
−2

10
−1

10
0

10
1

N

Error
1/N

6. The roots of the quadratic
ax2 + bx + c = 0

can be found by the well known formula

x± =
−b±

√
b2 − 4ac

2a

We can also approximate the roots using fixed-point iterations, as follows:

(a) divide through by x to get the equivalent equation (assuming x 6= 0):

ax + b +
c

x
= 0

5

(b) Method 1, forward iteration: consider the sequence

x1 = xinit

xn+1 = − b

a
− c

a

1

xn

, n = 1, 2, 3, . . .

(c) Method 2, backward iteration: consider the sequence

x1 = xinit

xn = − b

a
− c

a

1

xn+1

i.e. xn+1 = − c

b + axn

, n = 1, 2, 3, . . .

Write matlab functions forward.m and backward.m implementing the above iterations, that ac-
cept as inputs xinit, a, b, c, tol and produce an answer x∗ that differs from one of the roots by no
more than tol. (You can accomplish that, e.g., by terminating the iteration if |xn+1 − xn| ≤ tol/2).
Demonstrate the performance of your function for the values:

xinit = 1 , a = 1 , b = c = −1 , tol = 10−10

How many iterations are required to reach the desired accuracy? Note that the two functions will
reach different roots, x∗forward and x∗backward. Verify directly that these are within the desired toler-
ance from one of the roots of the quadratic. Which root is found by each method? Does the answer
change if you vary xinit? Now, use x∗forward as an initial value for backward.m with tol = 10−10.
What value do you end up with? Does the answer change if you also run backward.m again with
xinit = x∗forward as before but with tol = 10−13. Why?

Solutions:

function x = forward(xinit, a, b, c, tol)

x = xinit;

xold = 0;

i=0;

while abs(xold-x) > tol/2

i=i+1;

xold = x;

x = - (1/a)*(b + c/xold)

end

6

i

exact1 = (-b+sqrt(b^2-4*a*c))/(2*a)

exact2 = (-b-sqrt(b^2-4*a*c))/(2*a)

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

function x = backward(xinit, a, b, c, tol)

x = xinit;

xold = 0;

i=0;

while abs(xold-x) > tol/2

i=i+1;

xold = x;

x = - c/(b + a*xold)

end

i

exact1 = (-b+sqrt(b^2-4*a*c))/(2*a)

exact2 = (-b-sqrt(b^2-4*a*c))/(2*a)

Using the values
xinit = 1 , a = 1 , b = c = −1 , tol = 10−10

forward.m converges within tolerance in 26 iterations to the positive root (1.6180339887383),
whereas backward.m converges within tolerance in 28 iterations to the negative root
(−0.618033988738303).

When backward.m is run with x∗forward as an initial guess and a tolerance of 10−10, the program
runs for one iteration and returns a new solution, 1.61803398878025 which is within tolerance of
an exact solution. However, when the process is repeated and the tolerance requested is 10−13, it
requires 61 iterations to converge. This is because x∗forward is not a stable solution for the backward
scheme and any error will grow with repeated iterations. Eventually the solution moves far enough
away from the starting point to be attracted to the other root.

7

Explaination of grading scheme:

Problem 1 (16 pts):
Correct εM (6 pts)
Correct N(β, t, L, U) (6 pts)
Explain how you determined N . (4 pts)
No credit for simply copying out of the book.

Problem 2 (17 pts):
Correctly constructing U and L (5 pts)
Correct determinants (4 pts)
Correct interchange (4 pts)
Correct observation (4 pts)
Use of toeplitz() (+2 extra credit pts)

Problem 3 (16 pts):
Correct result on linear independence and reasoning (16 pts)

Problem 4 (17 pts):
Working stirling.m with correct table (12 pts)
Driver script (5 pts)
Using nchoosek() (-5 pts)

Problem 5 (17 pts):
Code (10 pts)
Some results (7 pts)
“One line solution” (+2 extra credit pts)

Problem 6 (17 pts):
Working forward.m (5 pts)
Working backward.m (5 pts)
Results and discussion (7 pts)

8

