316-TEST 1 prep

Name:
October 5, 2008

Problem	grade
1	
2	
3	
4	
5	
Total	

(1) (20 pts) Solve the initial value problem and sketch the phase plane. Draw in the solution curve corresponding to the given initial conditions.

$$
\frac{d}{d t}\binom{x}{y}=\left(\begin{array}{ll}
3 & -2 \\
2 & -1
\end{array}\right)\binom{x}{y},\binom{x(0)}{y(0)}=\binom{1}{-1} .
$$

(2) (20 pts) Solve the initial value problem and sketch the phase plane. Draw in the solution curve corresponding to the given initial conditions.

$$
\frac{d}{d t}\binom{x}{y}=\left(\begin{array}{ll}
6 & 3 \\
7 & 2
\end{array}\right)\binom{x}{y},\binom{x(0)}{y(0)}=\binom{2}{-2} .
$$

(3) (20 pts) Give the type and stability of the point at the origin for the following systems:
1.

$$
\frac{d}{d t}\binom{x}{y}=\left(\begin{array}{rr}
5 & -1 \\
3 & 1
\end{array}\right)\binom{x}{y} .
$$

2.

$$
\frac{d}{d t}\binom{x}{y}=\left(\begin{array}{cc}
1 & -4 \\
4 & -7
\end{array}\right)\binom{x}{y}
$$

3.

$$
\frac{d}{d t}\binom{x}{y}=\left(\begin{array}{cc}
3 & -2 \\
4 & -1
\end{array}\right)\binom{x}{y}
$$

4.

$$
\frac{d}{d t}\binom{x}{y}=\left(\begin{array}{cc}
2 & -5 \\
1 & -2
\end{array}\right)\binom{x}{y}
$$

(4) (20 pts) Solve the initial value problem

$$
y^{\prime}-y=1+3 \cos t ; y(0)=y_{0} .
$$

Find the value of y_{0} for which the solution remains finite as $t \rightarrow \infty$.
(5) (20 pts) Solve the initial value problem

$$
y^{\prime}=x y^{2}\left(1+x^{2}\right)^{-1 / 2} ; y(0)=1
$$

Give the maximum interval around $x=0$ for which the solution to this IVP exists.

