313 - Midterm I

Name: \qquad
September 26, 2011

INSTRUCTIONS:
WORK ALL PROBLEMS!
YOU MAY ONLY USE YOUR OWN BRAIN AND ONE PAGE OF NOTES.
Instructor: E.A. Coutsias

Problem	grade
1	
2	
3	
4	
5	
6	
7	
Total	

1. (20.)
(a) (10pts) Find all complex numbers z for which

$$
\left|e^{-i z^{2}}\right|=1
$$

holds.
(b) (10pts) Find all values of z for which

$$
|z+4 i|<1
$$

2. (20pts.) Find all values of z such that
(a) $e^{i z}=1+i \sqrt{3}$.
(b) $\cos z=2 i$.
(c) $z^{i}=-1$.
(d) $\log \left(i+\sqrt{z^{2}+3}\right)=-\frac{\pi}{2} i$.
3. (15pts.) Show that $u(x, y)=\cos x \cosh y$ is harmonic in some domain (which?) and find a harmonic conjugate $v(x, y)$.
4. (10pts.) Show that

$$
\lim _{z \rightarrow \infty} \frac{z+1}{\sqrt{z^{3}-1}}=0
$$

by using the equivalence

$$
\lim _{z \rightarrow \infty} f(z)=0 \Longleftrightarrow \lim _{z \rightarrow 0} f\left(\frac{1}{z}\right)=0 .
$$

5. (10pts.) Show that the function $f(z)=e^{\bar{z}}$ is nowhere differentiable.
6. (10pts) Find all values of

$$
\sqrt{3+4 i}+\sqrt{3-4 i}
$$

7. (15pts) Use the Cauchy-Riemann equations to verify that the following function is entire:

$$
f(z)=\left(z^{2}-2\right) e^{-i x} e^{y}
$$

