313 – Midterm I

Name:_____

September 26, 2011

INSTRUCTIONS: WORK ALL PROBLEMS! YOU MAY ONLY USE YOUR OWN BRAIN AND ONE PAGE OF NOTES. Instructor: E.A. Coutsias

Problem	grade
1	
2	
3	
4	
5	
6	
7	
Total	

- 1. (20.)
 - (a) (10pts) Find all complex numbers z for which

$$\left|e^{-iz^2}\right| = 1$$

holds.

(b) (10pts) Find all values of z for which

 $|z+4i|<1 \quad .$

2. (20pts.) Find all values of z such that

(a)
$$e^{iz} = 1 + i\sqrt{3}$$
.

(b) $\cos z = 2i$.

(c)
$$z^i = -1$$
.

(d)
$$\log(i + \sqrt{z^2 + 3}) = -\frac{\pi}{2}i.$$

3. (15pts.) Show that $u(x, y) = \cos x \cosh y$ is harmonic in some domain (which?) and find a harmonic conjugate v(x, y).

4. (10pts.) Show that

$$\lim_{z \to \infty} \frac{z+1}{\sqrt{z^3 - 1}} = 0$$

by using the equivalence

$$\lim_{z \to \infty} f(z) = 0 \iff \lim_{z \to 0} f\left(\frac{1}{z}\right) = 0 \; .$$

5. (10pts.) Show that the function $f(z) = e^{\overline{z}}$ is nowhere differentiable.

6. (10pts) Find all values of

$$\sqrt{3+4i} + \sqrt{3-4i} \quad .$$

7. (15pts) Use the Cauchy-Riemann equations to verify that the following function is entire:

$$f(z) = (z^2 - 2)e^{-ix}e^y$$
.