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            Foundations of mathematics? What are they? What could be, what should be the meaning of that expression?

            If we may start with the utmost naivete, we can say that a foundation is something that holds up a building. Especially a big building, a skyscraper. Without a foundation, the building would fall down. Everyone understands that.

            Of course mathematics is not a building. It is big, but it is not a big building. So the phrase “foundations of mathematics” is a metaphor, a figure of speech. The idea is that mathematics is like a big building, in some important respect. That similarity between mathematics and a big building would be what would make the phrase “foundations of mathematics” sensible.

            But other metaphors are equally apt, or more so. Mathematics has often been compared to a tree. A tree has roots, not a foundation. Roots grow while the branches grow. Old roots could die as new roots sprout. Not like a solid, permanent foundation, which is supposed to be unchanging, once and for all.

Others have even compared mathematics to a flying eagle, supported not by a solid foundation but by the motion of wings. Mathematics survives and prospers and grows by the successful activity and work of its ongoing creators, whose thoughts are its “wings.”

            Perhaps the comparison to a big skyscraper came from the notion that mathematics might be tottering, might be in danger of collapse unless a foundation was inserted underneath it. Gottlob Frege may have had some such feeling, when he wrote, on receiving Bertrand Russell’s postcard announcing the famous Paradox, that he was in the position of a builder whose building crumbled just as he applied the finishing touches. But if anything crumbled, of course, it was Frege’s theory, not Mathematics!

            Others feared that other set theoretic difficulties, confusions, even contradictions, endangered Mathematics. Their fears proved groundless. A century passed, and mathematics is growing in all directions--solving old problems, making newer and stronger connections with every field of science. All without a Foundation! The efforts to give it a firm Foundation, by Brouwer, Hilbert, Bishop and their epigones, are not claimed by anyone to have achieved their goal. Hardly anyone even claims any more, that it is either possible or necessary, to save mathematics from tottering by providing it with a firm Foundation..

            And yet people still talk about Foundations! What are they talking about? 

            Probably about axiomatics That subject became prominent following the publication of David Hilbert's Foundations of Geometry. It had already been much studied in Italy by Giuseppe Peano, Mario Pieri and others. Oswald Veblen in the U.S. was a respected practitioner. In the preface to his classic Projective Geometry, he wrote: "Even the limited space devoted in this volume to the foundations may seem a drawback from the pedagogical point of view to some mathematicians. To this we can only reply that, in our opinion, an adequate knowledge of geometry cannot be obtained without attention to the foundations. We believe, moreover, that the abstract treatment is peculiarly desirable in projective geometry, because it is through the latter that the higher geometric disciplines are most readily coordinated."                                                                                     To escape the paradoxes of intuitive set theory, Ernst Zermelo proposed axioms for set theory. These were completed and refined by others.        Later on, an axiomatic coordination of all mathematics was attempted by the Bourbaki group. Whether your axioms present one subject, like projective geometry, or many, like the Bourbaki, the axiomatic arrangement of known subject matter is a technical mathematical project. The meaning and validity of projective geometry does not depend on its axiomatic presentation. Its meaning and validity depends on its factual content, and on its connection to other mathematical subjects, to physics and science.

            I once had the misfortune to become involved with a computer list-serve called FOM—an obvious acronym. To my eyes, they were working on axiomatic set theory. A project equally worthy as work on "foundations of geometry." Their goal, as well as I could grasp it, seemed to be to find good new axioms about sets, in hope that they'd lead to an interesting or useful new theory. From my viewpoint, as what some philosophers like to call a “working mathematician” (or even, “an ordinary mathematician”) this work was a respectable, slightly esoteric branch of mathematics or mathematical logic. The odd thing was this: when someone mentioned an alternative “foundation” for mathematics (category theory, in particular), the “moderator” of "FOM" responded like a dot-com entrepreneur, facing an unwelcome competitor.

            The logician Richard Grandy, when asked why the field of axiomatic set theory calls itself “Foundations”, answered as follows: This field is descended from earlier studies by Russell, Frege, Hilbert, etc., which really were motivated by a concern for foundations in a philosophical sense—somehow to establish the safety or security or certainty of mathematics, by anchoring it to something solid—something unquestionable, whether logic, concrete symbols, or the Intuition of the Creating Mathematician.. As time passed, the search for such a foundation had only very limited success, and the need for or possibility of such security came to be less apparent to the community of mathematicians. But even after the original philosophical impetus faded away, the technical or mathematical work continued, and continued to call itself by the same name, in much the same way that he, Richard Grandy, might choose to call himself Polish because in fact he has one Polish grandfather

            Certainly no one claims today that "Set theory is a rock on which mathematics rests solidly and securely." Most everybody knows that the continuum hypothesis of set theory is undecided and, by standard set theory, undecidable. Every mathematician knows, or ought to know, another result of Godel and Cohen: that the axiom of choice can be assumed or denied, without introducing any contradictions not already present without it. With that axiom of choice we get famous indigestible things to swallow, like Zermelo’s well-ordering theorem, and the notorious Banach-Tarski theorem. In fact, it is generally acknowledged that set theory is incomparably more worrisome and insecure than, for example, number theory--for which it is supposed to provide a “foundation.” So, if everybody knows this, why do they still talk of set theory as the foundation?

         In fact, set theory today does provide something important: a universal language, for rigorized or formalized mathematics. I say “today”, because mathematics is a historically developing subject. Set theory did not provide a common language for mathematics in the 17th, 18th, 19th or earlier centuries. I withhold judgment whether it will do so through the 21st century and any further centuries in which mankind may survive to practice mathematics. At any rate, in the 20th century set theory came to provide a universal language in which it was possible to formulate all rigorous mathematics.

         Granting that claim, it by no means follows that such a language must be unique. There could be others. Indeed, Lawvere and some of his followers actually make a rival claim for category theory. I suspect that there have been logicians, of whom I know not, who have proposed still other candidates for such a language.

         In a practical sense, such proposals are in vain Someone already fluent in a natural language switches languages only under compelling necessity. The same is true for a mathematical language. Set theory is here. It is established. It is vain for inventors to advocate substitutes or radical improvements, as it was vain for Peano and others to advocate Esperanto or Interlingua. Of course, people interested in language from a theoretical point of view may well be interested in inventing, comparing and evaluating new languages, theoretically.

         So in the common talk of “ordinary mathematicians”, the expression "Foundations of Mathematics" has degenerated to "Universal Language for Mathematics". This does not seem to be problematic. It does not seem to be the most pressing issue for philosophers to worry about. Yet set theory's role as a language is taken by analytic philosophers like W.V.O.Quine to mean, philosophy of mathematics need consider nothing but axiomatic set theory. This is simply the application to mathematics of the basic mistake of "analytic philosophy"--that philosophy should be just about language.

         "Foundations" in the sense of "axiomatic set theory" is simply an inherited misnomer, like “complex variables” as the standard name for "the theory of analytic functions of a complex variable", or “real variables” as the standard name for “elementary point-set topology mixed with measure theory and introductory functional analysis.” These other inherited misnomers generally are harmless, people learn to interpret them correctly. But the "Foundations of Mathematics” misnomer is harmful, because it has become confused with “philosophy of mathematics”. Since foundations of mathematics as a philosophical (rather than a technical mathematical) problem seems to be rather outdated and inactive, of little interest to most mathematicians, so also philosophy of mathematics may then be thought to be of little interest to mathematicians and people seriously interested in mathematics. This confusion should be abolished forthwith and post haste. This will help make room for genuine philosophical investigations of real live problems about the nature of mathematics and mathematical practice.

        Solomon Feferman, who is in my opinion the leading expert and thinker on foundational questions in logic, has acknowledged and recognized the widespread apathy or even distaste among “working mathematicians” for “foundations.” ("Working Foundations," p. 105, in In the Light of Logic, Oxford, 1998.) He responded by listing foundational endeavors, or foundational activities. He described several investigations about axiomatic set theory which might well interest working mathematicians. If set theory is regarded as a common language for mathematics, rather than as a “foundation” in any metaphorical or ontological sense, its properties and limitations are still clearly relevant to mathematicians in general, not only to fellow “foundational” specialists.

 

                    Lived Experience as "Foundation"
 

        If we want to talk about foundations after all, we have to recognize that there can be many different kinds of foundations. It has become automatic to interpret "foundations" as "logical" or "axiomatic" foundations. This notion of foundations is based on seeing mathematics as a collection of statements or formulas, a library of inscriptions. The foundation then is the inscription from which all the other insciptions can be derived. But it's equally valid to regard mathematics as a historical process, part of the intellectual and cultural history of humanity. Then one could ask for historical foundations. It is equally legitimate to see mathematics as embedded in society, as a part of the socio-economic-political life of our times. Then one could ask for the socio-economic-political foundations of mathematics. And certainly one can think of mathematics as an activiy of the individual mind/brain, a function of the nervous system. And one could seek the psychological/neurological foundations of mathematics. In fact, all three kinds of activity are going on today.

 

  I have become interested recently in still a different kind of foundation, what is sometimes called "phenomenological foundation." In this view, the crucial aspect of mathematics is the lived experience of the mathematician, the person who is encountering mathematical objects as perceived entities. Many people--Hardy, Cayley, Sylvester among others--have described mathematical work as actually "seeing" a landscape, a perceived world, making direct analogies to perception of physical objects. 

 

G. H. Hardy, the preeminent English mathematician of his time, wrote:

"I have myself always thought of a mathematician as in the first instance an observer, who gazes at a distant range of mountains and notes down his observations. His object is simply to distinguish clearly and notify to others as many different peaks as he can. There are some peaks which he can distinguish easily, while others are less clear. He sees A sharply, while of B he can obtain only transitory glimpses. At last he makes out a ridge which leads from A and following it to its end, he discovers that it culminates in B. B is now fixed in his vision, and from this point he can proceed to further discoveries. In other cases perhaps he can distinguish a ridge, which vanishes in the distance, and conjectures that it leads to a peak in the clouds or below the horizon. But when he sees a peak, he believes that it is there simply because he sees it. If he wishes someone else to see it, he points to it, whether directly or through the chain of summits which led him to recognize it himself. When his pupil also sees it, the research, the argument, the proof is finished. ("Mathematical Proof," Mind, : 38--1-25, 1929, (p. 18))

 

 

Edmund Husserl was concerned about the loss of contact with lived experience in the prevalent reductionist materialistic way of thinking about the world. Beginning with Galileo's denial of reality to any sensation not subject to measurement or numeration, and Descartes' radical separation between Mind and Matter, science made great advances by focussing on the mathematically measurable aspects of reality. By the 20th century, this denial and separation had led to a common assumption that what's real are atoms and molecules. Our perceptions of the world, our actual moment-to-moment interaction with the world, came to be disregarded,. or thought of as a secondary after-effect to the reality--interactions of atoms and molecules.

 

Husserl worked hard to bring us back to see that our perceptions, our moment-to-moment interaction with the world, is our basic reality, from which our scientific theories are ultimately derived, and on which they ultimately depend. His project was a phenomenological description of reality, faithfully reporting without preconceptions how we perceive and what we perceive and what it is, "to perceive." (The Crisis of European Science and Transcendental Phenomenology).

 

Maurice Merleau -Ponty followed Husserl in this project, and went further, showing that in our perception of the world, of colors and shapes and motions of objects and creatures, there is an active interaction, where the perceived object is perceived as actively presenting itself, in a sense almost forcing itself on us, as we actively reach out with our senses to grasp it.

(Phenomenology of Perception, 1962.)

 

What do Husserl and Merleau-Ponty have to do with mathematics?

 

There is a kind of mystery about mathematical activity, mathematical thinking or problem-solving or research. It is partly expressed in the old debate about whether we invent or discover mathematics--formalists vs. Platonists. 

 

The famous combinatorialist Gian-Carlo Rota was also a deep thinker and expositor of Husserl and Heidegger. In his book Indiscrete Thoughts there are four chapters describing aspects of mathematics from the viewpoint of phenomenology. I think a meaningful idea of the foundations of mathematics could be the lived perceptual experience that so many others have described in poetic or metaphorical language.As a first attempt to report an episode of mathematical insight from the persepective of phenomenological description, I will use a recent experience of my own. (This was also described, in a more "objectivistic" language, as my contribution to the 2003 meeting at the Vrije Universitet in Brussels, "Perspectives on Mathematical Practice", published as Theories of Mind, Social Science and Mathematical Practice, Kluwer, 2005.)

 

I had occasion to read in the excellent book by William Dunham, Journeys Through Genius, the classical proof, by either Heron or Archimedes, of the well-known formula of Heron for the area of a triangle in terms of the lengths of the three sides "a, b, c". The formula, as given in standard form in reference books, is:

 

area = square root of [s (s-a)(s-b)(s-c)].

 

Here "s" is defined as the "semi-perimeter", (a+b+c)/2.

 

I don't know where or when I first learned the formula. I never knew the geometric proof. It is not taught in standard high-school geometry courses. (It is easy to obtain from the law of cosines in trigonometry.) Dunham.presents the classical Greek proof very clearly and readably. I was amazed to see that it takes several pages. It is long and tricky. I can see why it doesn't fit into the ordinary high-school geometry course.

 

The semi-perimeter "s" comes naturally into the expression, because it is the radius of a circle whose construction is an essential element in the proof. 

 

I was not just impressed by the Heron-Archimedes proof, I was really intimidated. How could anyone ever think of anything so complicated? 

 

Such a simple question: How do the lengths of the sides determine the area of a triangle? And such a simple answer: add, subtract, multiply, and take the square root! Then why must there be such a complicated explanation?

 

Of course, I had an advantage over Archimedes and Heron--2,000 years of development of mathematics. 

 

Heron could never have stated it as an algebraic formula. In classical Greece there was no such thing as an algebraic formula. The original formulation must have been long and complicated. "Let the semiperimeter be diminished successively by the length of each side. Then let these three diminished semi-perimeters be multiplied together, and also multiplied by the semiperimeter itself. The result of this four-fold multiplication will be found to be equal to the area of the triangle multiplied by itself."

 

As I stare at the algebraic formula I become aware of an annoying redundancy. There are only three quantities that determine the triangle and its area--the sides "a, b, and c". Then why state the area formula in terms of four quantities, "a,b,c and s"? 

 

"s" is irrelevant! Get rid of it!

 

Quickly, pencil and paper are in my hand, and in a second I have a new formula for the area. After I replace "s" by (a+b+c)/2, the expression becomes the product of four fractions under the square root sign. Each fraction has a denominator of 2, so all together, after multiplying, the denominator under the square root sign is 2 X 2 X 2 X 2 =16. The square root of 16 is 4, so I can simplify by putting 1/4 in front of the square root sign. What's left under the square root is the product of the four numerators. They are

 

(a+b+c), (-a+b+c),(a-b+c),(a+b-c). 

 

The area is 1/4 the square root of this product.

 

This has the same value as Heron's original formula,, but I like it much better. "a,b, and c" are all that appear in the formula. Moreover, this combination of symbols has a pleasing symmetry. Any permutation or interchange between the letters leaves the formula unchanged. That's as it should be. The triangle doesn't care which of its sides you call 'a ' or 'b ' or 'c '.

 

But why should this nice-looking algebraic expression give the area?

 

The first factor, a + b + c, is symmetric. Nothing changes if you interchange the letters. But the next factor, - a + b + c is not symmetric. The first letter, "a", has a minus sign, whereas the other two have plus signs. In order for the whole expression to be symmetric, if - a + b + c is a factor, then a - b + c and also a + b - c must be factors.

 

So I am wondering, why should the first expression -a + b + c, be a factor in the area formula? I see triangles,

turning, shrinking, enlarging, changing from acute to obtuse and back. Triangles are twisting and turning before my mind's eye. As I watch them turn and twist, one of them collapses. A vertex approaches the opposite side and merges with it, the triangle "degenerates" to a line segment. 

 

There it is! "a" was the long side, and "b" and "c" were the two short sides. Now, after the collapse, "b" and "c" together are on top of "a", equal to it.

 

a = b + c. 

 

Or, what is the same thing, -a + b +c = 0. 

 

And the area is now--definitely zero. 

 

The formula fits! It makes sense! When -a + b + c = 0, the triangle degenerates, the area becomes zero! Having -a + b + c as a factor of the area formula makes sense! Having it as a factor makes the area zero when side "a" equals side "b" + side "c", which is when the triangle degenerates to a line segment.

 

From this insight, it's easy to finish the story. If -a + b + c has to be a factor, then so do a - b + c and a + b - c; there is nothing special about "a", whatever is true of it is equally true of "b" and "c". But if you have all three of those expressions as factors, you have a cubic polynomial. Could the area of a triangle be a cubic? No, certainly not. If you double the three side lengths, the area is multiplied by 4, not 8. The area of a plane figure is a quadratic function of the scale, of the measure of length.

 

To get from a cubic--a third degree expression--to the correct form--a quadratic or second degree expression--while preserving symmetry between the three letters a,b and c, the simplest and most natural way is to multiply by one more factor, the symmetric expression a + b + c, getting a fourth-degree "quartic" form, and then take the square root. All that's left to explain is the factor of 1/4 in front of the square root.

 

Omitting some technicalities, this was how Heron's formula changed for me from an obscure mystery to a natural, clear, understandable geometric fact. (I learned later on that similar thoughts had been expressed earlier by others.)

 

I want to stress the way the properties of algebraic expressions and of triangles were "there" already, almost forcing themselves on my attention. Algebraic expressions and Euclidean triangles are not "real world" objects, they are "ideal objects," that is, cultural artifacts, shared concepts or algorithms. Perhaps algoristic concepts, if you like. But when I grapple with them and try to make them fit together, I experience them as resistant, almost intractable, insisting on having their own way. I can succeed only if what I want them to do fits their natures, is in accord with how they work. 

 

I found this out to my chagrin when I tried to carry Heron's idea one step further, to three dimensions. The analog in solid geometry of a triangle is a tetrahedron--a "triangular pyramid", if you like. Given a triangle, choose some point above it. Then join that point with three new edges to each vertex of the base triangle. There's your tetrahedron! Volume in three dimensions is analogous to area in two. There's an elementary formula for the volume of a tetrahedron: one third the area of the base times the altitude (the vertical height of the new vertex above the base.) This is analogous to the elementary formula in two dimensions for the area of a triangle--one half the base times the altitude. Now, just as Heron gives the area of a triangle as a symmetric quadratic function of the three sides,a,b,c, so there should be an analogous formula for the volume of the pyramid as a symmetric function of the lengths of the six sides, a,b,c,d,e,f.

 

I wasted many hours hunting for the right symmetric function of six variables. (I expected it to be, by analogy, the square root of a sixth degree polynomial, since volume depends on the scale of length as the third power (cube).)

 

I failed. The symbols a,b,c,d,e,f could not be tortured to fit my preconception of what they should do. The symbols and the tetrahedron are obstinate, recalcitrant. Rather than forcing them to my will, I had to bow to "reality." Finally, I saw that my goal was impossible. Once I thought to look for them, it was easy to come up with two different tetrahedra whose side lengths are the same, but whose volumes are different (See details below.) The volume of a tretrahedron is not determined only by the lengths of the six sides, but also by how the six sides are connected. There is indeed a formula for the volume in terms of the six edges, but its symmetry properties are more complex, more subtle than what I had in mind. I could find it only after I had adjusted my expectations to accord with reality--mathematical reality.

 

I suggest that this simple story of elementary algebra and geometry is a prototype of mathematical creation and discovery--or of mathematical research, if you will. Of course, it is a caricature as well as a prototype. A caricature because "serious" research generally involves generality and abstraction far beyond such simple visualization and elementary algebra. Nevertheless, even though an oversimplification or a caricature, it is still a prototype. Prototypical in the salience of mathematical entities that one is struggling to understand and control, entities that have their own stubborn integrity that must be respected, in order for the discovery/creation adventure to succeed. The researcher is struggling to penetrate to the inner nature of some mathematical entity he only partly understands. To succeed, he has to interact with it, struggle with it, come to understand more deeply what he can and cannot do with it. The analogy to grappling with and mastering material objects--for example, a sculptor learning to respect the clay, the metal or the stone-- is to me inescapable.

 

[The example I mention, of two tetrahedra with different volumes but the same set of edges, is easily described. Let three edges all have lengths 1, and three others all have lengths square root of 2. For the first tetrahedron, construct the base triangle of the shorter lengths, 1,1,1, and use the three longer sides as the slant edges rising to the vertex. Its volume can easily be calculated with a little trigonometry. It comes out to square root of 5 divided by 12. For the second tetrahedron, use the longer three sides for the base triangle, and the shorter three sides for the slant edges. It is a rectangular tetrahedron with volume 1/6.]
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