
Non-Cantorian Set Theorv 
III 1963 it was proved that a celebrirted mathematical h?pothesis Y 

put *forword I i y  Grorg Cantor coirld ]rot be proved. This profound . 

by Paul 1. C o h c ~ ~  and Reuben H~rsh 

T he abstract t h e o ~  of sets i5  cur- 
rently in a state of change that ill 

meral wa!"~ IS ana10gou~ to the 
19th-centup m~olution m g t w n e q .  145; 
m any revolution, phticd or scientific, 
it i s  d B d t  for those parhcipthp in 
the revolution or w5hlessi1lp it to fore- 
tell its ultimate mnsequences, except 
perhaps that they \\*ill be profound. One 
thing that can b done i s  to to use 
the past as a guide to the future. It is 
an unreliable guide, to be sure. but kt- 
ter than none. 

Ii'e propose h this article to use the 
&-told tale of non-Euclidean geornetr? 
to illuminate the no\v unfolding ston of 
nonstandard set theom. 

A set, of course, is me of the simplest 
and most ynmitive ideas in mathernat- 
i ~ ,  SO simple that today it is part of the 
kindergarten cwiculum. No doubt for 
this vtv reason its role as the most fun- 
damental concept of mathematics was 
not made explicit until the 1880's. Only 
then did Georg Cantor make the 6rst 
nontrivial dismvwy in the sheoy of sets. 
To describe his disimven we must 

kst explain what we mean bi. an infinite 
sct. An infinite set i s  merely a set with 

an infinite number of distinct elements; 
for example, the sct of all *'naturaln num- 
krs ( I ,  2, 3 and so on] is infinite. So tao 
is  the set of dl the points on a pvm line 
segment. 

Cantor pinted out that even for in- 
 hit^ w t s  it rnakes sense to tak about 
the n u m h r  of elements in the set, ox at 
least to state that fiw different sets have 
the snme number of elements. Just as 
wit11 finite sets, \IT rgn say that two 
sets ]lave the same number of elernents 
-the m e  "cardindiem'-if we can 
match up the elements in the two twts 
one for one. If this can be done, we call 
the hvo sets equivalent. 

The set of all natural numbers can 
be matched up with the set of all even 
nmbers. and dm with the set of all 
fractions [MC UIust tat ion  below]. These 
hva examples illustrate n paradoxical 
propep of jdnite sets: an infinite set 

can be equivalent to one of its subsets. 
In fact, it Ir easily proved that a sct is 
infinite if, and only if, it is equivalent to 
some H g P r  subset of itreM. 
A11 of this is engaging, but i t  was not 

new with Cantor. The notion of the car- 
dhali? of infin~te sets would be mter- 

cstiog only ii i t  crruld bt shown that not 
all infinite srts ha\*e the same cardinal- 
ity. It was this that was Cantor's first 
great di- in set t b q .  By his fa- 
maw diagonal pmf he showed that tl~e 
set of natural n m k r s  is noi equivalent 
to the set of p i n t s  m a Iine segment 
[we ilIustmtian on opps-itc pg~]. 

Thus thew are at least tmo d N m ~ t  
kinds of infinity. The first, the infinic of 
the natural numbers (and of any quit+- 
alent anfinite sets), is cded  aleph nought 
( W,,). Sets with cardinality W, are called 
countable. The sccond kind of infinit); 
is the one represented by a line segment. 
325 ~rdinal l iy  is dcngnated by a lower- 
case German c (L), for "continuum." An!, . 
line segment, of ahibary length, has 
cardinality c [we illustration m pap 
1061. So dms my rectangle in h e  p h e ,  
any cube in space, or for that matter 
all of unbounded n-dimensional space. 
whether n is 1,2,3 or 1,W! 

0 nce a single step up b e  &ah of 
infinities has been taken, the next 

follows naturally. M'e encounter the no- 
tmn of the set of d subsets of a g 'va~  
set I s e ~  illustration on page I l l ] .  If tlie 

SET IS m k m D  COUNTABLE if i t  cam bc mmttbed w e  for em! by the G d t r m m  m-ticiua &erg w m  (184S191UE; t b q  arc 
~ b e  mrturrl anmhm {mid& ml. l h r  thc of m not m thdr artnrd order bPr in order mardins to Lbc mm af the , 

n d r a  (top row) i s  ronntnble. Tbe oct of a11 franlon~ I k t o m  nmmerator md the donominuor. Both ex~mpltr &mw h i  am infi- 
r m )  i s  d c o  roumtable. The l r r c t h s  &own berc arc Lbc mem d a h c  ~q n d k c  m firnit- ~rl ua L m M m t  to one of flr h s .  



original & ir called A, this m\r. set is 
called the powti set ol A and is witten 

* <  
1 h And iust we &tab thc pat;er sr? 

1. .I834 4 384G39001... 
- 

2" from A, we can next otltain 2'"") 
from 2*, and so an as long as we please. 

C a t I t ~  proved that w k ~ ~ w  A is finite 2. '.3(i948570110924... 
w mfinite, 24 js never equi\-alcnt to A. 
Tlwrefore the e u r c  d formhlg the 
set of all subsets e r m t e s  an endless 3. ~ 0 4 7 2 2 0 0 1 7 3 8 9 6 ~ . m  

L 

c-lldn of incteasing, nonequi~hent in- 
finite wts. In prticula:. if A is the wt 
of 1~atura1 n m l w  - then it is e a ~  to 9 9 8  01 230108487m** - pmvethatf~~(tIwsetolallsetsof nab 
wal numbers) is equivalent to thr rml- 
tinuum (the set of all p i n t s  on a line 5. ~ 0 0 1 0 ~ 3 O 5 4 9 7 G 1 O m m ~  
segment). In brief, 

2"" e c. 

At this p i n t  a guestion ma! m r r  
to tk mildrr. IS there a) ~ n f i n i t ~  wt xvitl~ % 5S119871350426.m. 
cardinaliv ).ween No and r? That is, 
is there on a l i ~ ~ c  segment an it~finite set 
of points that is not tguivaknt to the 
whole sepent, and alx, not quivalent 
to the set of natural numbers? 

T h i s  qwstio~l m e d  to Calltor. but 
he \\*as unable so find an? ssull set. He 
concfudd-or rather conjectured-ilia4 
no such thing exists. This g w s s  of Can- 
tor's acquired the name "the continuum 
hypothesis." Its prmf or disproof was 
first on the celebrated! list of unsahd 
mathematical problems  draw^ up b!. 
David HiIbert in 1900. Only in 1963 \raas 
it 6 n d v  settled. It was settled, ho\w\.cr. 
in e knse utterly diqcrent from xvhat 
H d W  had in mind. 
To tackle this moblm one muld no 

bnger rely on &tor's debition of a 
set as -any colmbon h t o  a whole of 
definite and separate objects of our in- 
tuition orour &ought." k fact, this defi- 
nim, seaningly transpent, turned 
out to mnceal same beachemus pitfalls. 
Am instance is the sad t xper ie rk  suf* 
fwcd by Gottlob Fwge in 1402. Freg 

in whch ariAthmetic was -stmcted 
on the hndatlon of set theory, that 
is, on he foundation of "intuitive" set 
thQbry as it was then known on the basis 
of Cantor's work. At this p i n t  Frege re- 
d e d  a letter fm Ithe young krtrand 
Russell, which he mknowkdged by add- 
ing this poabcript to his treatise: "A sci- 
entkt a n  M y  mat with anything 
more undesirable tban to have the foun- 
dation give way just as the work is fin- 
ished. Pn this ppbrtion I was put by a 
letter fmm Mr. M a n d  Russell as tBc 
Wmk UgS nearly through f)lt press." 

R d s  blow mnsistd in pointhg 
out a simple munb. Tbete are two 
kinds d seh. First there are h, such 
as -the rtt  of all objects describable m 

SET OF RE.4L KCMBERP IF 1-NCOUh'TkRLE, I* Cantor &ow& in hi6 k m m  dimgomt 
proof. Herr P mmple of the m iir 1 2 ~ 4  in dcrimml form and at random. 1f o m  trkes the 
6rhr di*t of I ~ H   fir^ number, tbt  road di@ of tbc m n d  .ad w w id?!, o m  o b u i n ~  
a real n u d e r  a how iafiuilr decimal expansion ic .16402i7.. . . 1E one m a d 4  chanted 
tuev dipit in the txpm*ion. one rnitht gel 2 7 5 1 3 1 , .  . . A moment'r thooshl w i l l  show h t  
the mr* n u m k  i* diKertnr in at tc l .~  anc pIarc from every n& on tbe fig. Hence the 
nnmler * r a p  not prtstnt on tbt l i ~ ~  t.d 51 b l s  been proved that the lirt wrb incomplete. 

exactl!- 11 English words," haling the 
pcuIiar property that tlwy themselves 
satisfy their defining property; in other 
words, sets that contain themselves as 
ekments. We call them R =is, the R 
standing for Russen. Thm there are all 
other sets-sets that do not belong to 
t f m d v e s .  Cd them the m - R  sets. 
Now, said Russell, nmsidcr the mllection 
of all mn-R sets. (The word "collmtim" 
is introduced hre simply ar a convenient 
y n o n y n  for "set.") Call this set M, Then 
3f is either an R set or a non-R set. But if 
hf is a non-R set, then it k l m g s  to  M, 
by definition of hI, so that i t  is an R set, 
by definition of R sets. This is a contra* 
diction. On the 0 t h  hand, if M is an R 
set, then by debition of M it does net 
belong to M. It dws not belong to itself, 
that i s ,  i t  is not an R set, which is &gab1 
a contradiction. 
The moral t this: ThF free e of 

Cantor's intuit ive notion of a set can lead 
to cbn;tra&ctions. Set thmy can m e  
as a secure foundation fur mathematics 
only f a more sophlsacattd approach i s  
employed to steer clear of antinomies, pf 

m-trahictions of the type proposed by 
Rus~Il later came to be hown. 

It has happnd Mm that unrdmme 
paradoxes have htnded into a scan- 

ingly dear mashematid *. T k e  

n n  the paradoms of Zmo, which re- 
vealed to the Graks u n s w p c t d  corn- 
plnrities in intuitive concepts of lines and 
points. W e  can draw an analogy: As 
Russell found a eontmdiction in the un- 
restricted w of the intuitive conctrrt of 
set, m Zem, had f d  crm&ndict&s it1 

dw tlnnsbiehd use d the htuinve con- 
rips of rim" and "pint." 
In its beginning with Thales in the 

sixth mm B.C. G d  geometry had 
~cIitd on an unspeci64 intuithe m n -  
ccpt of "line" and "point." Some 300 
years later, howewr, Euclid had @en 
&ese concepts an homat ic  treaGent. 
For EucUd g m e h i c  oblects were still 
intuitivelv known real entities, but inso- 
far as the$ were tbe subject of gaomehi- 
call reasoning they were spec~fied by 
ccrtaln unproved mrt ions  rgldoms" 
and "postdates"), on the basis of which 
dl their other propaties were supposed 
to be pmvtd as ' h m m s . "  Wt do not 
h o w  if, and ta what extent. h dewl- 
opncatwasa-toparad-d 
as Ztnof. There is m, doubt, her, 
that to the Grceks gMrmetry was made 
much more sccwc by virtue of depend- 
ing (at kmt m they Miwed and intend- 
ed) only on bg~cal M m c t  from a smdl 
n a m h  of &ly statad assumptions. 

T&: malogous dcvelopmcnt far set 
&rytdcnot300ya~rrbutonly 35.E 



Cantor pla-d the Klk of Thl-the 
fofou~~der of tlw subject, WIKF was able to 
re:! an intuitive ~s,im~hi~)g alolte-then 
the role of Euclid was played by Ernst 
Zwmelo, who m 1908 founded axio- 
matic set t i l e o ~ .  Of murse, Euclid was 
really only onc of a long sumssion of 
Creek geometers who create3 "Euclide- 
an gewnehy"; so also Zennclo was only 
the first of h d  a dozen great names ju 
the metion of axiomatic set theory. 

Just as Ewclid had listed certain prop 
crties of p i n t s  and Ihes and had regard- 
ed as ~ r o v w l  only those theorems in 
gpometr_v that could k obtained from 
the* axiwns (and not from any possibly 
intuitive arguments), so in axiomatic set 
b y *  sf set is regarded simplr as an uil- 
defiiled object satisfying a g ~ v m ~  list of 
axioms. Of course, w-e still want to study 
sets (or lims, as tIw caw may h), and 
so the axioms are clro~en not arbitraril~ 
but ill a m r d  with our intuiti\re notion of 
s set or P line. Jntuitior~ is nonetheless 
barred from any further formal role; rmly 
&ow propositions an? accepted that fol- 
b \v  from the ax ioms.  The fact that o h  
jects described by these axioms actually 
may exist in the real w-mld is imlrvant 
to the process of formall deductioi~ (al- 
though it is. essential to discover>.). 

We agre  to act as if the ~ r n b o l s  for 
rim," "point" and "angle" in geometry. 
or the symbols for "set," "is a subset oT' 
and so on in set theory, are mere marks 
on p a p ,  which may be reamangel only 
according to a given list of rules (axioms 
and r u l e s  of inference). Accepted as 
&mms are only those statements that 
are obtained a c c o h g  to such manipu- 
lations of symbols. (In actual practice 
only those statements are accqpted that 
clearlv CQUM be obtained in this rnanncr 
if o m  took enough time and trouble.) 

mv, in the history of gmetr_v one 
postulate played a rpcial  role. T h i s  

was the parallel postulate, which says 

that through a @vet) pint there cat) b~ 
drawn precisclv OM line parallel to a 
given bne. Tilt difficulty with thia state- 
bent as an axiom i s  that i t  does not have 
the selfmident character ont prefers in 
the foundation stones of a madmetical 
t k r y .  In fact, parallel lines are defined 
as hncs that never meet. eve11 if they 
are extended indefinitely ( 9 0  inbit\3, 
Since any lines we draw on paper or oil 
a blackbard have filite length. Zhis f 
an miom that by its nature cannot be 
vm'fid by direct observation d the 
mw. Konetheless, it plays an indispens- 
able role in Eudidean geom-. For 
man!. centuries a leading problem in ge- 
ometry was to yrocc thc paral1tl pm- 
late, to dmv that it could be obtaflred 
as a t l ~ e a r e m  from the more self-evident 
Euclidean axioms. 

111 abstract set theory, it sr, happens, 
thew also was a particular axiom that 
m e  rnatl~ematiciaiis found hard to 
srvallow. This was the axiom of choice, 
whicll says the follaving: 31 a is any col- 
~ C C ~ ~ M I  of sets B, . . . i, and none d 
the set6 i l l  a is empt~, t h  there exists a 
set Z mlsisting of precisely one element 
each from A, from B and so on thmugh 
all the scts h a. For instance, if a ronsisrs 
of nvo sets, the set of all triangles and 
the set of a11 squares, the11 a ckarlv sat- 
isfies the &om of choice. \Ye merely 
choose some particular hangle and some 
particular square and tlm let these n\*o 
elements constitute Z. 

Mast p p ? e  find the'axiom of choice, 
like the parallel pstulate, intuitively 
wry plausible. The difficul? with it i s  
in the latitude we allow a: "my" mU=- 
tion of sets. As we have sern, thert arc 
endless chains of ever bigger infinite 
9ets .  For such an inconceivably huge coE 
kction of sets there is no way of actually 
choosing om by one fmm all its membzr 
sets. I f  we a q t  the axiom of choice, 
Our acceptance i s  simpl!. an act of faith 
that such a choice is possible, just as our 

acteptanr~ of the parallel plstulate i s  a r b  

art of faith a b u t  how lines would act il 
the! were cxtelded to infinity. It tur~rh 
out that from the innocent-:+.eemfng oa- 
iom of chuim x m e  unexptcted and ex- 
tremely powerful mt~clusions follow. For ' 

c m p l e ,  we are abk to use inductrw 
reasoning to prove statements abut  zhc 
ekments in any set, in much the same 
way that mathematical Induction can lw , 
used to prove theorems a b u t  the nat- 
ural numhrs I, 2, 3 and ro on. 
The axiom of ch i re  played a special . 

role in set theory. Many mathematiciai~% 
thought its ure should be avoided when- 
ewr  possible. Such a fom of axiomatic 
set thtory. in which the axiom of choir*. 
is mf asnancd to hie either true or false. 
rvould be otle 011 which almost all matlw- 
maticians ~vould h prepared to rely. 11 1 

what follows we use the term "restricted 
set theoryw for such an axiom system. \Ite 
we the term f tandard set theory" for 
the theory based on the full set of axioms 
put fornard by Zmnelo and Abraham 
Fraenkel: m c t d  set theory plus the 
axiom of choice. 

1938 this subject was pdwndb (1- 
luminated by Kurt Giidel. G a e l  is 

b s t  known for his great "incomplete- 
ness" theorems d 1930-1931 [= "G& 
del's h f , "  by Ernest Kagel and James 
R .  Newman; Scr~snttlc AMERICAS. 
June. 19561. Here we refer to later work 
by Gbdel that i s  not we1 kmm*l to non- 

' 

mathematicians. In 1938 GlZdel proved 
the followving fundamend d t :  If re- 
stricted set theory is consistent, then SO 

is standard set tlumy. In other wrds, 
the axiom of choice is no m m  dangernus 
than the other axioms; if a contradictio~~ 
can be found in standard set theory, then 
thWp must h d y  be a contradiction 
hidden within restricted set theory. 

But that was not all Giidel prwed. 
We remind the resder of Cnntw's *coil- 
tinuum hpthesis," namely that no in- 

m N I T E  LINE AXD FINITE LIME SEGMENT cmn also bc match -aan point6 on S a d  minim w L. A6 tbe ray chmp di. 
iborrn to bat a we-tIc.onr o r n . ~ e a r e .  Pert. F i6 b c  -tar af rsdioa from leh to ti& w pomt ir ollltasd h titbet S nr L. . 
m semi~irclt S tb.t is tmnrent to mn infinite ltm L, A ray from P c m s  Thup 4 ~ O Q M  corrtapdenre d m  h- .tbc p a s  on nn 
S . t o d y o n e p o i p G I n t h i c w a ~ r r ~ f r o m P ~ ~ a ~ ~  ~ t l i a t m d t b e p o h a o n m M c ~ O f & ~ ~ y h ~ h .  



finite &a1 & h t  is p t e r  than 
H, and smaller than t. Ciiclel: also 
shw.ved that we C P ~  safely tdce the mn- 
tinuurn hptbes is  as an additional ax- 
iclm in set thtwy; that is, if the m t h ~ u -  
um h y p b i s  plus restrictad wt thmv 
i m p k  a w n d c t i o n .  then again there 

' 

must already bc a m ~ ~ t r d c t i o n  bidden 
within restricted set themy. 'Ibis meas a 
half-solution of Cantor's problem; i t  tr-35 

mt P prmf of the continuum h p t h e s i s  
but only a p r d  that i t  cannot be dis- 
+. 
To understand hotv Godel scl~iewd 

his m l t s  we nced to understand what 
is meant by a mdel  for an axiom sys- 
tem. k t  tu return for a rnonre~lt to the 
axioms of plane geometry. If we take 
t k  axioms. including the parallel pos- 
tulate, we have the axioms of Euclidean 
gametry; if instead we ketp all the 
other axioms a before but replace the 
paralkl podate by its negatiorl, we 
have the axioms of a non-Euclidean ge- 
om?. For h t h  axiom systems-Eu- 
ciidm and iwm-Euclidean-we ask: Can 
these axioms lead to a contradiction? 

To ask the question of h c  Euclidean 
system may serm unreasonable. How\. 
cwld lu mythng m g  with our 
familiar, 2,,000-year-old high school ge- 
-? On th 0 t h  hand, to the non- 
mathematician there ecrtail~k is some- 
thing suspicious a b u t  tk second &om 
system, with itr denial of the  intuiti\.~ly 
plausible pamllel postulate. So~>etheless. 
from the viewpoint of Nth-centun 
mathma- the hvo hnds of geometry 
stand mom a less on an equal footing. 
Ebth are sometimes applicable to the 
ph,sical world and both are consistent, 
m a relawe smw we shell now enplaial. 

First we show that non-Euclidean ge- 
m~ is consistent. In order to do this 
we m I y  replace the word %ne" eve?.- 
where bv the phrase "great cinTle," a 
line formed on the surface of a sphere by 
a plane passing h g h  the center of the 
sphere. 1% now regard the axioms as 
sterements about p i n t s  and p a t  circks 
on a given sphere. hiorem-cr, we agree 
t~ identify each pair of diamt'trrcally o p  
posite paints on the sphere as a single 
paint. If the reader prefers, he c9n im- 
a@ the adoms of non-Euclidean ge- 
omeh-y mtttn, with tbe theword %en 
everywhere q t c d  by " p a t  circle," 
tIw word pointn msywhwe replaced 
by *int pair.- Then # fs evident that 
d tb arloms arc tmc, at least insafar 
as our adurary notions abut the sur- 
faced a sphmtare true. In fact, fm 
tbc of Euclidean solid geometry 
bntcandyprwcastheoremshtZhe 
d a c e  of P s p h  b a non-Euclidean 

SET OF ALL SUBSETS OF A GI\-EN SET k illuam au4 m e  m d  r h k  m t  

top form tbt t b r m l t m ~ a t  se~ A. Thir set hns 2x, or 8, mddd thm~ the whole ret 
mnd ibr empty 6ct ate ~rnewhal  imptoperl?. Leluded I. Tbis m wt consisrim& af eight el+ 
mmts is called the p m c r  att of A. mnd i t  f6 denold 2'. JI  A bmr a rltmenta, th* p o w e r  
MI of A has 2m tlemtntb. If A ir infinite, 2" i s  alm Infinite, mnd i t  ir nor tquiprlcnt lo  A. 

surface in the mse we have just de- 
scrikd. In other w&, we now see that 
if the a x i m s  of non-Euclidean geometry 
led to a cont then so would the 
u r d h l a ~  Eut mrnetry of spheres- 
lead to a m~ n, Thus we have a 
nlaticr proof ot consistency; -if Euclid- 
eart three-dimensional geometry i s  mn- 
sistent, the11 K) is mn-Euclidean two- 
dimensional geometry. We say that the 
surf- of the Euclidtan s p k  in a 
model for the axioms d non-Euclidean 
gtorne-. / In & particular model we 

'Jel pastulatr faih 
bust tlm padel lines. It is 
also possible ruct a surface, the 
-'pudosphere, tor which the +lel 
postulate is false because tllere i more 
than one line through a pint  parallel to 
a given be.) 

'Ihe inventimofnon-Eddean p m -  
em, and the mgnjtiotl that its roll- 

sistency is implicd by th conslrtenc\. 
of EucLidean geomeq, wm the work 
of many p t  19thcenm m a h a t i -  
dam; we mention the name of Elemhard 
Ricrnann in p d d w .  Only in the 20th 
century WPS ttn question d of 
whether or not Euclidean gcmmtq itself 
is consistent. 

T h r r q v g t l m w a s u M a n d m m c d  
by ).atlid Hilbert. R 3 W s  solution 

was a mpk appucaihn of tbe idea of 

a coordinate system. & many college 
freshmen learn. b each p i n t  in the 
plane we rmn d a t e  a d r  d n m b r s  : 
its x PI th each 
line or I qua -  
tion: a and y 
&nates thot a true only for the 
p i n t s  on that Line or cirde. In this u*ay 
we M up a mmespondene h e e n  p- 
me- nnd ckmmtary algebra. F w  

~ t m n m t i n o a t ~ j ~ i s a  
mnding statement m the other. It 
i h t  the Prdwns of Euclidean ge- 

m- m lead to s cmh~dir t inn  only 
if thc d e s  of e h e n t a v  dgcbra-the 
pmpcrties of tbc ordmary red n m k r s - -  
cnn k9d tn n mntradiction. Here again 
we )lave a relative prwf of consistency. 
Km-Euclidean gemnetry war aansistent 
if Euclidean geometry u7a5 rnnsistent; 
now Euclide~n gcomeby is consistent if 
elementary dgebra i~ m t .  The 
Euchdem sphere ~ n s  P m d e l  for the 
non-Euchdean plane; the set of pairs of 
d n a t c s  is $1 ttrn a model for the 
Euclidean plane. 

W i t h t h c s e C L P r n p l e s ~ a ~ w e c ~  
suy that Gbdel's proof of the relative 
wmktency of tk &cm of ehoiee and 
of the continuum hypthesis is  analwous 
to Hilbttt's proof of the relative mn-sist- 
rnT of Eudidean geometry. Ln bth in- 
starms the standard theory was justified 
in terms of P mom clementmy one. Of 



coma no m e w ~  serioud~ doubted the 
reliability of Euclidean geometq, where- 
ns suclr outstanding mathematiciaiis as 
L. E. J. Brou\r.er, Hermaran 1-1 and 
Hcnd bincar& had gra\-p doubts a b u t  
the nxiom of choice. In this sense Gder's 
result had a much greater impact and 
signif cane. 

The andogom devebpeilt with re- 
aped to non-Euclidean geometry-what 
we might can nm-canto ria^^ set thcon- 
has taken place mly sir~ir 1963, in the 
tvork of one of the authcws of this article 
(Cob). 117aat i s  meant by '-nor,-Can- 
M a n  set thmv"? Just as E~~clidcan and 

rmn-Euclidean use the =me 
&oms, with the one exeeptintl of t l ~  
pardel p ~ t u l a r ~ ,  so standard ('%anturi- 
an*) and nonstarldard ("nm-Canbrim") 
set thmy differ onl?. in one axiom. Kon- 
Cantorian set theory takes the axioms of 
rertsicted st theov alrd adds not &c 
-+om of choice but rather one or another 
form of the negation of the'axim of 
choice. In particular we can tdte ar an 
axiom the n~gatiorl of the continuum 
h>.pothesis. Thm, as we shall explain, 
there now exists a mplete  solution d 
the continuum problem. To Godel's dis- 
cover): that the continuum hvpthpsis is  

mt d&prm*~blc is added the fact that i t  , k atso not pro\ able, 
E k ~ t l ~  G ~ ~ l t l ' s  regult mrd tlle new dis- 

covw)es wquire the construction of a . 
model, just a% the consis!eacy p m f s  for - , 
gmmctry that we have descriM re- 
quired a mdcl, I n  h t h  - we want . 
to prove that if mtricted set theory iF 
consistent, then SQ is standard set thmy 
(or notastandad hemy). 

Gdel's idea IPS to mstruct  a model 
' 

fm restricted set t h w ~ ,  and to pmvt 
that in this mdel  the Worn of choice 
ond the canti~~uursr hypthesis were the- 
orems. H e  p r d e d  m the foUowing 
way, Using only tlw axioms of restrictd 
e t  theory [WP iututratinn on p g e  11 41, 
1.e are gt~aranteed Erst the existen* of 
at least one set (tlke empty set) by h i o m  
2; then h L : m  3 and Axiom 4 we arc 
guaranld dw erisleikce d an infinite 
wquencv of ever larget finite sets; then 
by Axiom 5, the existence of an infinite 
&t; then by Axiwn 7, of an mdltss se- 
quence of ever larger (nonequivalent) 
il~dnitc sets. and so on. In esmtiallv this 
1~2\.ay Cidel ~ j f i e d  a dass of e t s  by the 
manner in urhicfi they muld actuaIly be 
constructed in sumssh-e steps from 
simpler sets. h s e  sets he called the 
"constructible sets"; their existenm was 
guaranteed by tht gKiams of restrict4 
set theory. Then h ~ b w d  that within 
the realm d the constructible sets the 
axiom of choice and the continurnn hy- 
pothesis can both k proved. That is to 
snv, first, from any mstmctible d e c -  
t i in a of ronstm&ble sets (A, B, . . .) one 
can choose a constructible set 5 wnsist- 
ing of at least one element each from A, 
B and so on. This is thr adorn of cboioe, 
whicll htre might more properly be 
catled t2k t h e m  of choice. h d ,  
if A ~s any infinite m t i b k  -set,* 

there is no mxtructible set -n" 
A and 2' (bigger than A, waller than 
the pwer set of A and eguiralent ta nei- 
ther). If A is taken as the &st infinite 9 mn3ln.l this 1 s t  statement ir the am- 
tinuum hypdlesis. 

I {en* 8 " g m e d d  mtkm by 
pothesis*' was prwd io the ~ a 3 e  of 

e~rrstrrrctibk set theory. Giiders work 
would nhcrcfore dihpose of t k  two 
questions completely if we werc pre- 
pared to adopt the adam that cmiy m- 
shuctjble sets e&. \"v'hy not do so? 
h a u s e  one feels it is unreasonable to 
insist that a set must be ctdmcted 

RUSSELL'S PARADOX i 6  jllustrrtrd b! sup pi in^ tbat in a rerhln rounq L is tbe a*. 
tom of lbr- to toia thdr h k r  met i a rmd utdogne bm in a l o o d d  dope; 

according to any p m a i k l  formula in 

thrt is, the c l d o v c  itself i6 a baOC Somt Libnriam Iin tbe uuIagne i ~ l f  in the cmtm 
oder to be -pited as a gen-' set' 

lome ( t o p )  ; mme do not t Jrprn ropr. The f i e  tisd of m a l ~ t  h dM re Rlcr, Thus in &ary (not d y  con- - 
rher Berlrrad R ~ I K U ;  R m c  me rn t b  k i n k  rbcmretve~ What happsPr hawewtr. if s n d b l ~ )  neither the 
tbc bud librrriaa of t b  r a n e n  dacidei to makt mnrler c ~ u l o g ~ c  of dl zbc: cmJol;zlcc Of choice IK)T e~ntinuum hwthesis 
Sbtt do not lisf tbemulre&? Da. B i b  awn taulcfiue belong b &c m&er caulopt or o o ~ ?  bad k n  prwed. At kast this much ww 



f .  T ~ I ~ Q S  inat are epual Ir tne s a w  
thrng are also eaua! to OGE a7r:ne' 

2. !' CQdZ s C*F aclded t@ C Q ; : F 8 ,  lhe 
snoies are egaal. 

k If eoua!s Bre 5ubtfa~ted from eauzls. 
the wnalnders are eaual. 

4. Tnlnp? *?la! cotrlc~dt. wr!h o?e a-- 
olner are eaua :o r , . - i  anolntr. 

5. f be whole -5  greater Ina? tne Dart 

"'POSTULATES" 

1, 4): 4 5  w~+cshb.el :r. em, . Fna-el 
$,!ha ~1:: lrp- ad-: 7 , -  ,-.: :: a+: ~7 *: 

2. 11!s~sniit +:!r,c~:+-cs'.- ?e$:.apr: 

3, I]: : ~ C ~ C + - p 8 ~ b ~ R ~ + - c . ~ ~ ~  r , r r . +  H 

arb, cfr.ie. aro e .-:2': i. 

lmes wake: t v  +**evbn. am? eC e- !YE 

rrrtgt. mH: T-. ma: 5 =+ ,-;.' ,:- <? a-e;-,~ 

Questmr and the Beaulieu Super 8 HA VE FUN ! a wonderful team 

Our Sarasota photography Ms. Mr. and 
M r s  Ralph Davis, rpy thar little giant, 
the kaulrcu S u g r  8 " is a peach.'" It is 
lighter than most 35 mm. cameras and 
wrth the Qutstar C-mount adapter can bt 

EUCuD'S AXIO%fS were of I w o  kind-: atlachtd easily kh ind  tht Questar with- 
"common notion." and po-tulalra.'. The out additional support- 

We have some experimental r e t l s  here Srouidb phFririd md authmatirian John lhat have taken *hawing fnfiinF 
Plmyhir rl?IB-~B191 iridentifidrithmn sx. on a *bout 2,000 fmt distant, 
jam thn h kcbown to Iw rgrrh dent to birds catch~npl iwc?s  md rtulls workinc 
Enclid'b Posaalrrc 5: ThromFh a riven point b d y  on the-Gulf of ~ c x i c ~  Awe. bolh 
A not oa I pir tn  litlc rn there pa-WP om line " 500 md* It extreme. tiny u n d  crabs. no 1argtr than 
tbut doe* not interert m. A notr-Earlidrm~t silver dollPrs Iwarmjna at 30 feet, ~ 1 1  
rcometn- ir obtained I)?. m b r i n p  ''one" dtmonstratc Ouatar's r&arkablt m l v -  - " 

with ei& %one" or -mWrt timn ant.- It ing pawcr Gwen with distanr movinp 
bo,,ld thn ~ ~ ~ l ~ z ~  axiom, 0b~tEts under difficult lighting mnditions. 

With equal dancy you can discern fatial 
elcar or comdtte b? m d e m  *t.ndard~. e x m a l o r n  81 2,000 fet and fcarhtr 

detail of birds in motion. And, of course. 
~ b r  dose-up study of ma11 animal or 
insa life ar Fea t  tninrgcment is a fas- 

mtain : either of them -Id be nssumed * n . ~ ~ p ~ ~ ~ i t ~ m  -an 
without musing an\+mltradiction unless K d a k  Kodachrome I1 with an ASA 
& "de" a&s &mctd set theorl; rating of 55. Tb~s is the only w p c r  & 

film frrilnblc at present. bnr faster ernul- n h d y  are self-coatradiaory, .by con- ions prmd fm the future, 
d ic t ion  t)nv cause must nhadv k ' fhe Dav isg  found that cxt~lwres at 
-r in wt w, Y;hich WPm*im$cl~ 36 fmmm pct e n d  

proved satrsfsclory prov&d thC W ~ W S  
5s a model for ordinary set rheory. ln 
otber words, it was L w n  that & t h  i could b disprox-ed from the other ex& 4 

oms but not whether they muld I>e ! 
prwd. I 
)Im the a n a b  with the pprallel 1 

pustulate in Euclidean g m ~ r y  be- ' 
cmots partimlarly apt. That Eudid's 
axioms ure mnsistmt war taken for 
granted until quite m d y .  Tk ques- 

were in bright light. At that rate the 
sbutltr spttd is 1/48 m n d .  The). point 
out tfiat the zamc conditions control the 
sumss of teiacopic pho~ography wnth a 
movie camera. RS with a still tamem. All 
the light you can get and "m stcinp" 
are crsenlial for both. as wfI as equip 
rnent thai is free from v i h ~ i e n .  

The Davisa  were pleased w ~ t h  the per- 
formance of this completely automated 
camcra, for all ~ U ~ ~ O K S .  They liked i ts 
smooth. ultm-slow motlon and accrler- 
ated motion. 1:s w i k  range of filming 
speed& its rtfltx viewfinder and bchind- 
the-lem meter. its inrerchangcabk lenses 
and tts Xngenicux zoom Icns. 

For ~ f n  convtnicncc of Queaar m- 
tomcrs we can now ruppiy rhc supcrh 
kaulttu ameras. and in our efforts to 
find the smmhcst  head fw panning. wc 
have d i m r e d  the Mitler Fluid Head 
which o p ~ m t ~ s  OR a patenled #mi- 
hydraulic principle and is compkrely free 
of backlash. Its molion is realty smooth 
as silk and ~t a n  k pd-aptcd to any 
sandard tripod, 
Ekaulreu Automatic Super 8 

with Xngmicux 8 .to 64 mm. 
Zoom L n s  S499.m 

Qmtar C-mount Adaver 17.50 
Miller Fiuid Head, Model "D" 150.00 

Qmmtm dK d z  -I, WII rwmat d tt-- prhd jma  
aW5 rr dcrrrlbrd tn wr b m k l e ~  Send X I  la mflmt mr*.hrtr 
trr North Am*. Iy air m r c r ~  of Wrrrtm Htmlsphrrr. Europt 
m# m w t h  A w a ,  US. Aurmiin ond all 0 t h  p k r r ,  1330. 



W FOR ALL - IF AND ONLY IF E I5 A MEMBER ,!ELEMENT) OC 

3 THERE EXISTS \I OR = EQUALS 

3! THERE EXISTS UNIQUELY d AND * DOES NOT EQUAL 

u UNION - NOT $I THE EMPTY SET - IMPLIES ; 6 A SUBSET OF 

rf THE 8 
vy Y E  x 

1. AXIOM OF EXTENSIONALITY 
Vs y 1 V Z k ~ x - t ~ y E - %  y l  

f wc sets ate eQu# re and mly ~t they have rru same member> 

4. ~x~ullrf OF THE SUM SET OR UNION 
V r 3 v V z ~ 1 € y - 3 1  ! ? f t &  l E # ) l .  

formulas exp*ess~ble +n ou- syr-?em ha#e been eqa-erated Inc nth rS called A f necl the axlo- of te~tzrce-e-1 savs tna! d for hxed 
2 .  !. A,lx.y.+ 1 def~nes y uqi~ue!y es a f m c t i a ~  of x .  sayy a (PI%). then for each u the ranpe of pen u t s  a set Thrsmesns. roughly, that 
an) ("reasonable") pr3peCy Iha? c a l  be stated m the f o m l  languap o' the t h e o r y  can be u W  t9 def~ne a sel (the set of th~ngs 

havrng the staled oropefly) 

7. AXIOM OF THE POWER SET 
V x 3 r  W z  Izcy-r I x) 

this axlorn says that lhve exrdsfor earh m the set y d all subsets of x Artnovgh v r s  thus odned bra  proprlv. BI IS not covered by 
the rep!acement aarom because ~t IS not glven as the range of any fvnctlon Indeed, the card~nal~ty of y w~lF k greater than that of x ,  

50 tha: thf, axmom allows U S  to Construcl h~gher t a v d n a : j  

8. AXIOM OF CHOICE 
If a-A,=$~safunct~on def~redforall oix.thenthereextstsanotherfunct~onf(a)fw OE x,sndf(a) €4. 

Th15 IS the well-known amom Of ch01Ce. whch allows us to do an lnf~n~te amount of "chms~ng" even though we have no orom* that 
would define the chorce frrnctton and thus enable us t5 use 6. Instead. 

9. AXIOM OF REGULARITY 
W x 3 y ( ~ =  I Q I V ( y 6 x d  V ~ I z ~ k d - z ~ y ) ) ) .  

7h1s axtm expllcltly ~rohlb~ts x f  x. for enample. 

- - 

~ ~ ~ A X I O M S F O R 5 E T T H E O R Y m ~ e d .  o f ~ ~ ~ . m ~ O r w b l E b I r g l ~ ~ ~ a p T h i r ~ o m q ~  
In order l o  gift these rheortms It i naccamq to nw the &lr w.6 p t  fotmrd -la mod Abrtbun FrrsaktI. 
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