Non-Cantorian Set Theory

In 1963 it was proved that a celebrated mathematical hypothesis

put forward by Georg Cantor could not be proved. This profound

development is explained by analogyv- with non-Euclidean geometr)-

he abstract theorv of sets is cur-

rently in a state of change that in

several ways is analogous to the
19th-century revolution in geometry. As
in any revolution, political or scientific,
jt is difficult for those participating in
the revolution or witnessing it to fore-
tell its ultimate consequences, except
perhaps that thev will be profound. One
thing that can be done is to trv to use
the past as a guide to the future. It is
an unreliable guide, to be sure. but bet-
ter than none.

We propose in this article to use the
oft-told tale of non-Euclidean geometry
to illuminate the now unfolding story of
nonstandard set theory,

A set, of course, is one of the simplest
and most primitive ideas in mathemat-
ics, so simple that todazy it is part of the
kindergarten curriculum. No doubt for
this very reason its role as the most fun-
damental concept of mathematics was
not made explicit until the 1880's. Only
then did Georg Cantor make the first
nontrivial discovery in the theory of sets.

To describe his discovery we must
first explain what we mean by an infinite
set. An infinite set is merely a set with
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an infinite number of distinct elements;
for example, the set of all “natural” num-
bers (1, 2, 3 and so on) is infinite. So too
is the set of all the points on a given line
segment.

Cantor pointed out that even for in-
finite sets it makes sense to talk about
the number of elements in the set, or at
least to state that two different sets have
the same number of elements. Just as
with finite sets, we can sav that two
sets have the same number of elements
—the same “cardinalin”—if we can
match up the elements in the two sets
one for one. If this can be done, we call
the two sets equivalent.

The set of all natural numbers can
be matched up with the set of all even
numbers, and also with the set of all
fractions [see illustration below]. These
two examples illustrate a paradoxical
propertv of infinite sets: an infinite set
can be equivalent to one of its subsets.
In fact, it is easily proved that a set is
infinite if, and only if, it is equivalent to
some proper subset of itself.

All of this is engaging, but it was not
new with Cantor. The notion of the car-
dinality of infinite sets would be inter-
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esting only i it could be shown that not
all infinite sets have the same cardinal-
ity. It was this that was Cantor’s first
great discovery in set theory. By his fa-
mous diagonal proof he showed that the
set of natural numbers is not equivalent
to the set of points on a line segment
[see illustration on opposite page).

Thus there are at least two different
kinds of infinity. The first, the infinity of
the natural numbers (and of anv equiv-
alent infinite sets), is called aleph nought
{¥,). Sets with cardinality R, are called
countable. The second kind of infinity
is the one represented by a line segment.
Its cardinality is deﬂgnated by 2 lower-
caseGennanc(t) for “continuum.” Any
line segment, of arbitrary length, has
cerdinality ¢ [see sllustration on page
106]. So does any rectangle in the plane,
any cube in space, or for that matter
all of unbounded n-dimensional space,
whether nis 1, 2, 3 or 1,0001

Once a single step up the chain of
infinities has been taken, the next
follows naturally. We encounter the no-

tion of the set of all subsets of a given
set [see illustration on page 111]. 1f the
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SET 18 TERMED COUNTABLE if it can be matched one for one
with the natura! numbers (middle row). Tone the st of all even
numbers (top rowu) is countable. The set of all fractions (bottom
rotw) is also countable. The fractions shown bere are the snes used
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by the Gernuan msthematician Gesrg Cantor (1845-1918) ; they are
not in their natoral order but in order sccording to the sum of the
numerator and the denominator. Both examples show thi an infi-
nite set, unlike a finite set, can he equivalent to one of its sabaets,



original set is called A, this new set is
calied the powet set of A and is written
21, And jusl as we obtain the power set
24 from A, we can next obtain 2'%4?
from 24, and 50 on as long as we please.

Cantor proved that whether A is finite
or infinite, 24 is never equivalent to A.
Therefore the procedure of forming the
set of all subsets generates an endless
chain of increasing. nonequivalent in-
finite sets. In particula:. if A is the set
of natural number- then it is easv to
prove that 24 (the set of all sets of nai-
ural numbers) is equivalent to the com-
tinuum {(the set of all points on a line
segment). In brief,

DR, =g,

At this point a question mav occur
to the reader. 1s there an infinite set with
cardinality betioeen ®y and «* That is,
is there on a line segment an infinite set
of points that is not equivalent to the
whole segment, and also not equivalent
to the set of natural numbers?

This question occurred to Cantor, but
he was unable to find anv such set. He
concluded—or rather conjectured—thai
5o such thing exists. This guess of Can-
tor’s acquired the name “the continvum
hypothesis.” Its proof or disproof was
first on the celebrated list of unsolved
mathematical problems drawn up by
David Hilbert in 1900. Onlv in 2963 was
it finally settied. It was settled, however,
in 2 sense utterlv different from what
Hilbert had in mind.

To tackle this problem one could no
longer rely on Cantor’s definition of a
set as “any collection into a whole of
definite and separate objects of our in-
tuition or our thought.” In fact, this defi-
nition, seeminglv so transparent, twned
out to conceal some treacherous pitfalls.
An instance is the sad experience suf-
fered by Gottlob Frege in 1302. Frege
was about to publish a monumental work
in which arithmetic was reconstructed
on the foundation of set theory, that
is, on the foundation of “intuitive” set
theory as it was then known on the basis
of Cantor's work. At this point Frege re-
cetved a letter from the young Bertrand
Russell, which he acknowledged by add-
ing this postscript to his treatise: “A sci-
entist cen hardly meet with anything
more undesirable than to have the foun-
dation give way just as the work is fin-
sshed. In this position 1 was put by a
letter from Mr. Bertrand Russell as the
work was nearly through the press.”

Russell's blow consisted in pointing
out a simple conundrum. There are two
kinds of sets. First there are those, such
as “the set of all obiects describable in
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. 18347984639001..
B36948570110924...
20472200173996..
J9801230109487...
00102305497610...
D1546798371238..
H0119871350426...

SET OF REAL NUMBERS IS UNCOUNTABRLE, s+ Cantor showed in his famous diagons}
proof. Here a sample of the et i- listed in decimal form and at random. If one takes the
firgt digit of the first number, the second digit of 1be second snd so on 1color), ope obteine
a res] number whose infinite decimal expansion is 1640277.... 1f one randomiy changed
cvery digit in the expansion, one might ge1 2731388, ,.. A moment's thought will show that
the new number i different in st Jeast one place from every pumber on the list, Hence the
number was not present on the list, and it has been proved that the list was incomplete,

exactly 11 English words,” having the
peculiar property that thev themselves
satisfy their defining property; in other
words, sets that contain themselves as
elements. We call them R sets, the R
standing for Russell. Then there are all
other sets—sets that do not belong to
themselves. Call them the non-R sets.
Now, said Russell, consider the collection
of all non-R sets. {The word “collection”
is introduced bere simplv as 2 convenient
synonym for “set.”) Call this set M, Then
M is either an R set or a non-R set. But if
M is a non-R set, then it belongs t0 M,
by definition of M, so that it is an R set,
by definition of R sets. This is a contra-
diction. On the other hand, if M is an R
set, then by definition of M it does not
belong to M. It does not belong to itself,
that is, it is not an R set, which is again
a contradiction.

The moral is this: The free use of
Cantor's intuitive notion of 2 set can lead
to contradictions. Set theory can serve
as a secure foundation for mathematics
only if a more sophisticated approach is
employed to steer clear of antinomies, as
contradictions of the type proposed by
Russell later came to be known.

It has happened before that unwelcome
paradoxes have intruded into a seem-
ingly clear mathematical theory., There

are the paradoxes of Zeno, which re-
vealed o the Greaks unsuspected com-
Pplexities in intuitive concepts of lines and
points. We can draw an analogy: As
Russell found a contradiction in the un-
restricted use of the intuitive concept of
set, so Zeno had found contredictions in
the unrestricted use of the intuitive con-
cepts of “line” and “point.”

In its beginning with Thales in the
sixth century ».c. Greek geometry had
relied on an unspecified intnitive con-
cept of “line” and “point.” Some 300
years later, however, Euclid had given
these concepts an axiomatic treatment.
For Euclid geometric objects were still
intuitively known real entities, but inso-
far as they were the subject of geometri-
cal reasoning they were specified by
certain unproved assertions {“axioms”
and “postulates”), an the basis of which
all their other ies were supposed
to be proved as “theorems.” We do not
know if, and to what extent, this devel-
opment was a response to paradoxes such
as Zeno's. There is no doubt, however,
that to the Greeks geometry was made
much more secure by virtue of depend-
ing (at least so they believed and intend-
ed) only on Jogical inference from & small
number of clearly stated assumptions.

The analogous development for set
theory took not 300 years but oaly 35. If
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Cantor plaved the role of Thales—the
founder of the subjec!, who was able to
rely on intuitive reasoning alone—then
the role of Euclid was plaved by Ernst
Zermelo, who in 1908 founded axio-
matic set theorv. Of course, Euclid was
reallv only one of 2 leng succession of
Greek geometers who created “Euclide-
an geometry”; so also Zermelo was onlv
the first of half a dozen great names in
the creation of axiomatic set theory.

Just as Euclid had listed certain prop-
erties of points and lines and had regard-
ed as proved onlv those theorems in
geometry that could be obtained from
these axioms (and not from any possibly
intuitive arguments), so in axiomatic set
theorv a set is regarded simplv as an un-
defined object satisfving a given list of
axioms. Of course, we still want te study
sets (or lines, as the case mayv be}, and
so the axioms are chosen not arbitrarilv
but in accord with our intuitive notion of
@ set or a line. Intuition is nonetheless
barred from any further formal role; only
those propositions are accepted that fol-
Jow from the axioms, The fact that ob-
jects described by these axioms actually
may exist in the veal world is irrelevant
to the process of formal deduction (al-
though it is essential to discovery).

We agree to act as if the symbols for
“line,” “point” and “angle” in geometry,
or the svmbols for “set,” "is a subset of”
and so on in set theory, are mere marks
on paper, which mav be rearranged only
according to 2 given list of rules (axioms
and rules of inference). Accepted as
theorems are only those statements that
are obtained according to such manipu-
lations of symbels. (In actual practice
only those statements are accepted that
clearlv could be obtained in this manner
if one took enough time and trouble.)

ho\l in the history of geometry one
postulate plaved a special role. This
was the parallel postulate, which says

that through a given point there can be
drawn precisely one line parallel to a
given line. The difficulty with this state-
ment as an axiom is that it does not have
the self-evident character one prefers in
the foundation stones of 2 mathematical
theory. In fact, parallel lines are defined
as lines that never meet, even if they
are extended indefinitely (“to infinity™),
Since any lines we draw on paper or on
a blackboard have finite length, this is
an axiom that by its nature cannot be
verified by direct observation of the
senses. Nonetheless, it plays an indispens-
able role in Euclidean geometry. For
many centuries 2 Jeading problem in ge-
ometry was to proce the paraliel postu-
late, to shoav that it could be obtained
as a theorem from the more self-evident
Euclidean axioms.

In abstract set theory, it so happens,
there also was a particular axiom that
some mathematicians found hard to
swallow. This was the axiom of choice,
which says the followmg If ais any col-
lection of sets {A, B, ...}, and none of
the sets in a is empty, then there exists a
set Z consisting of precisely one element
each from A, from B and so on through
all the sets in a. For instance, if a consists
of two sets, the set of all triangles and
the set of all squares, then o clearlv sat-
isfies the axiom of choice. We merelyv
choose some particular triangle and some
particular square and then let these two
elements constitute Z.

Most people find the axiom of choice,
like the parallel postulate, intuitively
verv plausible. The difficulty with it is
in the latitude we allow &: “any” collec-
tion of sets. As we have seen, there are
endless chains of ever bigger infinite
sets. For such an inconceivably huge col-
lection of sets there is no way of actually
choosing one by one from all its member
sets. If we accept the axiom of choice,
our acceptance is simplv an act of faith
that such a choice is possible, just as our
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acceptance of the parallel postulate is an
act of faith about how lines would act il
they were extended to infinity. 1t turies
out that from the innocent-reeming ax-
jom of choice scme unexpected and ex-
tremely powerful conclusions follow. For
example, we are able to use inductive
reasoning to prove statements about the
elements in any set, in much the same
way that mathematical induction can be
used to prove theorems about the nat-
ural numbers 1, 2, 3 and s0 on.

The axiom of choice played a special
role in set theory. Many mathematicians
thought its use should be avoided when-
ever possible. Such a form of axiomatic
set theory, in which the axiom of choive
is nof assumed to be either true or false.
would be one on which almost all matle-
maticians would be prepared to rely. In
what follows we use the term “restricted
set theory™ for such an axiom system. We
use the term “standard set theory” for
the theory based on the full set of axioms
put forward by Zermelo and Abraham
Fraenkel: restricted set theory plus the
axjom of choice.

In 1938 this subject was profoundly il-

luminated by Kurt Godel. Godel is
best known for his great “incomplete-
ness” theorems of 1930-1931 [see “Go-
dels Proof,” by Ermnest Nagel and James
R. Newman; SCIENTIFIC AMERICAN,
June, 1956]. Here we refer to later work
by Godel that is not well known to non-
mathematicians. In 1938 Gddel proved
the following fundamental result: If re-
stricted set theory is consistent, then so
is standard set theorv. In other words,
the axiom of choice is no more dangerous
than the other axioms; if a contradiction
can be found in standard set theory, then
there must already be a contradiction
hidden within restricted set theory.

But that was not all Gode] proved.
We remind the reader of Cantor's “con-
tinuum hypothesis,” namely that no in-
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INFINITE LINE AND FINITE LINE SEGMENT ean also be
shown to have a onetoone correspondence. Here I is the cenler of
a semirircie S that is tangent to an infinite line L. A ray from P cots
S at only one point. In thizs way rays from P give s onedto-one

match between pointe on S and points on L, Ar the ray changes di.
rection from left 1o right no point is switted from either S or L. |
Thut a one-{o-one correspondence exists betwees the points on an
infinite line and the points on » finite segment of arbitrary length.
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finite cardinal exists that is greater than
#, oend smaller than ¢ Gidel also
showed that we can safely take the con-
tinuum hypotbesis as an additional ax-
jom in set theory; that is, if the conting-
um hypothesis plus restricied set theory
implies a contradiction, then again there

" must already be a contradiction hidden

within restricted set theory. This was a
half-solution of Cantor’s problem; it was
not & proof of the continuum hypothesis
but only a proof that it cannot be dis-

To understand how Godel achieved
his results we need to understand what
is meant by a madel for an axiom sys-
temn. Let us retumn for a moment to the
axioms of plane geometry. If we take
these axioms, including the parallel pos-
tulate, we have the axioms of Euclidean
geometry; if instead we keep all the
other axioms as before but replace the
parallel postulate by its pegation, we
have the axioms of a non-Euclidean ge-
ometry. For both axiom systems—Eu.
clidean and non-Euclidean—we ask: Can
these axioms lead to a contradiction?

To ask the guestion of the Euclidean
system mayv seem unreasonable, How
could there be anvthing wrong with our
familiar, 2,000-year-old high school ge-
ametrv? On the other hand, to the non-
mathematician there certainly is some-
thing suspicious about the second axiom
system, with its denial of the intuitively
plausible parsllel postulate. Nonetheless.
from the viewpoint of 20th-century
mathematics the two kinds of geometrv
stand more or less on an equal footing,
Both are sometimes applicable to the
physical world and both are consistent,
in a relative sense we shall now explain.

First we show that non-Euclidean ge-
ometry is consistent. In order to do this
we merely replace the word “line” every-
where by the phrase “great circle,” a
line formed on the surface of a sphere by
a plane passing through the center of the
sphere. We now regard the axioms as
staternents about points and great circles
on a given sphere. Moreover, we agree
to identify each pair of diametrically op-
posite points on the sphere as a single
point. If the reader prefers, he can im-
agine the axioms of non-Euclidean ge-
ometry rewtitten, with the word “line”
everywhere replaced by “great circle,”
the word “point”™ everywhere replaced
by “point pair.” Then it is evident that
al! the axioms are true, at least insofar
as our ordinary notions about the sur-
face of a sphere are true. In fact, from
the axioms of Euclidean solid geometry
one can easily prove as theorems that the
surface of a sphere is a non-Euclidean
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SET OF ALL SUBSETS OF A& GIVEN SET is illusirated. The square, triangle and efircle at
top form the three-element set A. This ze1 hes 2%, or 8, subsets (provided that the whole st
and the empty set are comewhat impropeely included 1. This pew set consisting of eight ele-
ments is calied the power set of A, and it is denoted 24. 11 4 has n elements, the power
set of 4 has 27 elements. If A ic infinite, 24 is also infinite, and it is not equivalent 10 A,

surface in the sense we have just de-
scribed. In other words, we now see that
if the axioms of non-Euclidean geometry
led to a contradiction, then sc would the
ordinary Euclidean geometry of spheres
lead to a contradiction. Thus we have a
relative proot of consistency; -if Euclid-
ean three-dimensional geometry is con-
sistent, then so is non-Euclidean two-
dimensional geometry, We say that the
surface of the Euclidean sphere is a
model for the axioms of non-Euclidean
geometry. {In the particular model we
have used the parallel postulate fails
betause there are no paralle] lines. It is
also possible to construct a surface, the
“pseudosphere,” for which the paralle!
postulate is false because there is more
than one line through a point parallel to
a given line.}

The invention of non-Euclidean geom-
etry, and the recognition that its con-
sistency is implied by the consistency
of Euclidean geometry, was the work
of many great 19th-century mathemati-
cians; we mention the name of Bernhard
Riemann in particular. Only in the 20th
century was the question raised of
whether or not Euclidean geometry itself
is consistent,

his question was asked and answered
by David Hilbert. Hilbert's solution
was a simple application of the idea of

a coordinate system. As many college
freshmen learn, to each point in the
plane we can associate a puir of numbers:
its x and y coordinates. Then with each
line or circle we can associate an equa-
tion: a relation between the x and y
coordinates that is true only for the
points on that line or circle. In this way
we set up a correspendence between ge-
ometry and elementary slgebra. For
every statement in one subject thereis a
corresponding statement in the other. It
follows that the axioms of Euclidean ge-
emetry can lead to s contradiction only
if the rules of elementary aigebra—the
properties of the ordinary real numbers—
can lead to a contradiction. Here again
we have a relative proof of consistencv.
Non-Euclidean geometry was consistent
i Euclidean geometry was consistent;
now Euclidean geometry is consistent if
elementary algebra is consistent. The
Euclidean sphere was a model for the
non-Euclidean plane; the set of pairs of
coordinates is in turn a mode] for the
Euclidean plane.

With these examples before us we can
say that Godel's proof of the relative
consistency of the zxicm of cheice and
of the continuum hypothesis is analogous
to Hilbert's proof of the relative consist-
ency of Eudlidean peometry. In both in-
stances the standard theory was justified
in terms of a more elementary one. Of
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course, no one ever serioush- doubted the
reliability of Euclidean geometry, where-
as such outstanding mathematicians as
L. E. ]. Brouwer, Hermann \Weyl and
Henri Poincaré had grave doubts about
the axiom of choice. In this sense Godel's
result had a much greater impact and
significance.

The analogous development with re-
spect to non-Euclidean geometrv—what
we might call non-Cantorian set theorv—
has taken place onlv since 1963, in the
work of one of the authors of this article
(Cohen). What is meant by “non-Can-
torian set theory™? Just as Euclidean and
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non-Euclidean geometry use the same
axioms, with the one exception of the
paraliel postulaie, so standard (“Cantori-
an”) and nonstandard {"non-Can‘orian”)
set theory differ only in one axiom. Non-
Cantorian set theorv takes the axioms of
restricted set theory and adds not the
axiom of choice but rather one or another
form of the negation of the axiom of
choice, In particular we can take as an
axiom the negation of the continuum
hypothesis. Thus, as we shall explain,
there now exists a complete solution of
the continuum problem. To Gédel's dis-
covery that the continuum hypothesis is

RUSSELL'S PARADOX i: illustirsted by suppoiing that in a certain country it is the cue
tom of librarians to list their books not in & card cataogue bot in a looseleaf catalogue;
that is, the catalogue itselfl is a book. Some librarians lint the catalogue itself in the cats.
logue (top); some de not (second from ropi, The first kind of estalogue is callod an Raet,
after Bertrand Russell; Resetc sre sets thet inciude themselves. What happens, however, if
the bead librarisen of the rountrv decides (o make a masier catelogue of all the catnlogues
that do not list themselves? Does his own catalogue belong in the master cawslogne or por?
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not disprovable is added the fact that it
is also nat provable,

Both Gixdel's result and the new dis-
coveries require the constraction of a .
maodel, just as the consistency proofs for
geometry that we have described re-
quired a model. In both cases we want
to prove that if restricted set theory is
consistent, then so is standard set theory
{or nonstandard theory).

Godel's idea was to construct a model
for restricted set theory, and to prove
that in this model the axiom of choice
and the continuum hvpothesis were the-
orems. He proceeded in the following
way. Using only the axioms of restricted
set theory (see illustration on page 114),
we are guaranteed first the existence of
at least one set (the empty set) by Axiom
2; then by Axicm 3 and Axiom 4 we are
guaranteed the existence of an infinite
sequence of ever larger finite sets; then
by Axiom 5, the existence of an infinite
set; then by Axiom 7, of an endless se-
quence of ever Jarger (nonequivalent)
infinite sets, and so on. In essentially this
wayv Godel specified a class of sets by the
marner in which they could aetuﬂl]v be
constructed in successive steps from
simpler sets. These sets he called the
“constructible sets”; their existence was
guaranteed by the axioms of restricted
set theory. Then he showed that within
the realm of the constructible sets the
axiom of choice and the continuum hy-
pothesis can both be proved. That is to
say, first, from any constructible collec-
tion e of constructible sets {4, B,...) one
can choose a constructible set Z consist-
ing of at least one element each from A,
B and so on. This is the axiom of choice,
whicli here might more properly be
called the theorem of cheoice. Second,
if A is any infinite constructible set, then
there is no constructible set “between”
A and 24 (bigger than A, smaller than
the power set of A and equivalent to nei-
ther). If A is taken as the first infinite
cardinal, this last statement is the con-
tinuum hvpothesis.

Ilrence & “generalized continuum hy-

pothesis” was proved io the case of
constructible set theory. Godel's work
would therefore dispose of these two
questions completelv if we were pre-
pared to adopt the axiom that only con-
structible sets exist. Why not do so?
Because one feels it is unreasonable to
insist that a set must be constructed
according to any prescribed formula in
order to be recognized as a genuine set.
Thus in ordinary (not necessarily con-
stuctible) set theory neither the axiom
of choice nor the continuum hypothesis
bad been proved. At least this much was
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EUCLIDS AXIOMS were of two kind::
“common notions” and “posttlates.” The
Scottish physicict and mathematician John
Plaxtair ¢ 1748-1819) is identified with an ax.
iom that may be shown 10 he equivalent to
Euclid's Postulate 5: Throagh a given point
A not on & given live m there pa-ser one line
that does not interrert m. A non-Euclidean
geometry i» obtained by replacing “one™
with either “none™ or “more than one.”™ It
shonld be said that Euclid’s axiom- are not
clear or complete by modern standarde.

certain: either of them could be assumed
without causing any contradiction unless’
the "safe” axioms of restricted set theory
already are self-contradictory. Any con-
tradiction they cause must already be '
present in constructible set theory, which
is 2 model for ordinary set theory. In
other words, it was known that neither ;
could be disproved from the other axj- :
oms but not whether they could be
proved.

Here the analogy with the paralle] .
postulate in Euclidean geometlry be- |
comes particularly apt. That Eudlid’s
axioms are consistent was taken for
granted until quite recently. The ques-
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1. AXIOM OF EXTENSIONALITY
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5. AXIOM OF INFINITY
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There ex:s!s a set x tha! contz~s the empty set and that s such that if y belongs 125 the= the union of v and {,) 1s aisz 10 x. The
distinction between the eiement y and the singleton set {y} s basic This axiom guaraniees the exsstence of infinte sete

6.. AXIOM OF REPLACEMENT

Vi, 4 twx 3y Aaeyt, L) =vu3IvBuv)) where Bluv)I ¥rireves3Isiseud Afsrt. 1))
This axromis difficult to restate in Engiish 11iscatled 6. rather than 6 because 1115 really a whote famiiy of axioms We suppose that all the
formulas expressibie in our System have been enumeraied. ihe nthos called A Then the axwom of repfacement savs that o for fixed
1. A Anluyit ) defines y umiguely 235 3 function of x. say y = gix). then for each u the ranpe of g on u 15 3 set. This means. roughiy. that
any {“reasonable’™) property that can be stated = the formal language of the theory can be used 1o define a set (the set of things
having the stated property)

7. AXIOM OF THE POWER SET
YA 3y VI izEey—2 I %)
Thus axiom says that there exists for earh » the set y of all subisets of x Although v 15 thus gefined by a propertv_ it 1s not covered by
the repiacemeant axiom because it 15 not given as the range of any function. inteed. the cardmality of y will e greater than that of x,
50 tha! this axnomaaliows us to construc! igher Cardaats

8. AXIOM OF CHOICE
i a— A_= &5 8 function defined for all a€ x. then there exists another function f(a) for oe x, and fla} € A,.
This is the well-knpwn 2x0m of choice. which altows us to do an infinite amount of “choosing” even though we have no property that
would defing the chorce function and thus enable us to use 6, Instead.

9. AXIOM OF REGULARITY

Yedyl{x=pViyexd V2 (zen—mzey)) )
Tris axiom explicitly prohubits x€ x, for example.

ZERMFELO.FRAENKEL AXIOMS FOR SET THEOHRY sre listed, of set theory, a glessary of which is given st top. This sxiom eys-
In order 1o sate these theorems it is nocessary to use the symbols tem was put forward by Emst Zermelo and Abratam Fraenkel.
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tion that interested geometers was
whether or not they are independent,
that is, whether the parallel postulate
could be proved on the basis of the oth-
ers. A whole series of geometers tried to
prove the paralle] postulate by showing
that its negation led to absurdities. It
seems that Carl Friedrich Gauss was the
first to see that these “absurdities” were
simply the theorems of a new, non-Eu-
clidean geometry. But what Gauss had
the courage to think he did not have the
courage to publish. It was left for Junos
Bolyai, Nikolai Ivanovich Lobachevsky
and Riemann to carry out the logical con-
sequences of denying the parallel postu-
late. These consequences were the dis-
covery of “fantastic” geometries that had
as much logical consistency as the Eu-
clidean geometry of “the real world.”
Only after this had happened was it rec-
ognized that two-dimensional non-Eu-
clidean geometry was just the ordinarv
Euclidean geometry of certain curved
surfaces (spheres and pseudospheres).

The analogous step in set theorv
would be to deny the axiom of choice or
the continuum hypothesis. By this we
mean, of course, that the step would be
to prove that such a negation is con-
sistent with restricted set theory, in the
same sense in which Godel had proved
that the affirmation was consistent. It is
this proof that has been accomplished
in the past few years, giving rise to a
surge of activity in mathematical logic
whose final outcome cannot be guessed.

Since it is a question of proving the
relative consistency of an axiom system,
we naturally think of constructing a
model. As we have seen, the relative
consistency of non-Euclidean geometry
was established when surfaces in Eu-
clidean three-space were shown to be
models of two-dimensional nor-Euclid-
ean geometry. In a comparable way, in
order to prove the legitimacy of a non-
Cantorian set theory in which the axiom
of choice or the continuum hypothesis is
false we must use the axioms of restricted
set theory to construct a model in which
the negation of the axiom of choice or
the negation of the continuum hypothe-
sis can be proved as theorems.

t must be confessed that construction

of this model is a complex and delicate
affair. This is perhaps to be expected. In
Godel's constructible sets, his model of
Cantorian set theory, the task was to
create something essentially the same as
our intuitive notion of sets but more
tractable. In our present task we have to
create a model of something unintuitive
and strange, using the familiar building
stones of restricted set theory.

Rather than throw up our hands and
say it is impossible to describe this model
in a nontechnical article, we shall at-
tempt at least to give a deseriptive ac-
count of one or two of the leading ideas
that are involved. Our starting point is
ordinary set theory (without the axiom
of choice). We hope only to prove the
consistency of non-Cantorian set theory
in a relative sense. Just as the models of
non-Euclidean geometry prove that non-
Euclidean geometry is consistent if Eu-
clidean geometrv is consistent, so we
shall prove that if restricted set theory is
consistent, it remains so if we add the
statement “The axiom of choice is false”
or the statement “The continuum hy-
pothesis is false.” We may now assume
that we have available as a starting point
a model for restricted set theory. Call
this model M, it can be regarded as Go-
del's class of constructible sets.

We know from Godel's work that in
order for the axiom of choice or the con-
tinuum hyvpothesis to fail we must add
to M at least one nonconstructible set.
How to do this? We introduce the letter
a to stand for an object to be added to M;
it remains to determine what kind of
thing a should be. Once we add a we
must also add evervthing that can be
formed from a by the permitted opera-
tions of restricted set theory: uniting two
or more sets to form a new set, forming
the power set and so on. The new col-
lection of sets generated in this way by
M + a will be called N. The problem is
how to choose a in such a way that (1)
N is a model for restricted set theory, as
M was by assumption, and (2) a is not
constructible in N. Only if this is possible
is there any hope of denying the axiom
of choice or the continuum hypothesis.

We can get a vague feeling of what
has to be done by asking how a geometer
of 1850 who was trying to discover the
pseudosphere might have proceeded. In
a very rough sense, it is as if he had start-
ed with a curve M in the Euclidean
plane, thought of a point a not in that
plane, and then connected that point a
to all the points in M. Since a is chosen
not to lie in the plane of M, the resulting
surface N will surely not be the same as
the Euclidean plane. Thus it is reason-
able to think that with enough ingenuity
and technical skill one could show that it
is really a model for a non-Euclidean
geometry.

The analogous thing in non-Cantorian
set theory is to choose the new set g as a
nonconstructible set, then to generate a
new model N consisting of all sets ob-
tained by the operations of restricted set
theory applied to a and to the sets in M.
If this can be done, it will have been

ON SURFACE OF A SPHERE “mraight
line™ is interpreted to mean “great circle”
tA and B at top). Through any pair of di-
ametrically opposite points (az’ and bb’)
there pass many great circles. If we interpret
“point™ to mean “point pair,” then Euclid’s
first postulate is true. The second postulate
is troe if one allows the extended “straight
line” to have a finite total length, or to re-
trace itself many times as it goes around the
sphere. The third postulste is also true if
one understands distance to be measured
along great circles that can be retraced sev-
eral times; here a “circle” means merely the
set of points on the sphere at s given great-
circle distance from a given point. The
fourth postulate is likewise true. Playfair’s
postulate is false, becanse any two great cir-
cles intersect. Thus the sphere is 2 model of
mon-Euclidean geometry. So is the pseundo-
sphere (botsom), if straight lines are inter-
preted as being the shortest curves connect-
ing any two points on the surface. On the
surface of the psendosphere there are many
“straight lines” that pass through a given
point and do not cross a given straight line.
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GEOMETRY STAGE OF DEVELOPMENT SET THEORY
THALES. PYTHAGORAS INTUITIVE BASIS FOR FIRST THEQREMS CANTOR
ZENO PARADOX REVEALED RUSSELL

EUDOXUS. EUCLID

AXIOMATIC BASIS FOR STANDARD THEQRY

DESCARTES. HILBERT STANDARD THEORY SHOWN (RELATIVELY; CONSISTENT GODEL
GAUSS, RIEMANN DISCOVERY OF NONSTANDARD THEORIES CURRENT WORK
?7?

MINKOWSKI, EINSTEIN

ANALOGY IN DEVELOPMENT of geometry (left) and set theory
trighti is traced historically. Nonstandard (non-Euclidean) ge-

proved that one is safely able to negate
the axiom of constructibilitv. Since Go-
del showed that constructibility implies
the axiom of choice and the continuum
hypothesis, this is the necessarv first step
in negating either of these two state-
ments.

In order to carrv out this first step
two things must be shown: that a can be
chosen so that it remains nonconstruct-
ible, not only in M but also in N, and
that N, like M, is a model for restricted
set theory. To specify a we take a round-
about procedure. \We imagine that we
are going to make a list of all possible
statements about a, as a set in N. Then
a will be specified if we give a rule by
which we can determine whether or not
any such statement is true.

The crucial idea turns out to be to
choose a to be a “generic” element, that
is, to choose a so that only those state-
ments are true for a that are true for al-
most all sets in M. This is a paradoxical
notion. Every set in M has both particu-
lar special properties that identify it and
also general typical properties that it
shares with almost all the other sets in M.
It turns out to be possible in a precise
way to make this distinction between
special and generic properties perfect-
Iv explicit and forma). Then when we
choose a to be a generic set (one with, so
to speak, no special properties that dis-
tinguish it from anv set in M), it follows
that N is still a model for restricted set
theory. The new element @ we have in-
troduced has no troublesome properties
that can spoil the M we started with. At
the same time a is nonconstructible.
Any constructible set has a special char-
acter—the steps by which it can be con-
structed—and our a precisely lacks any
such individuality.

To construct a model in which the
continuum hypothesis is false we must
add to M not just one new element a
but a great many new elements. In fact,
we must add an infinite number of them.

16

APPLICATION OF NONSTANDARD THEORY

We can actually do this in such a way
that the elements we add have cardinality

("’““J
=92
82

from the viewpoint of the model M.
Again a rough geometric analogy may be
helpful: To a two-dimensional creature
living embedded in a non-Euclidean sur-
face it would be impossible to recognize
that his world is part of a three-dimen-
sional Euclidean space. In the present
instance we, standing outside M, can see
that we have thrown in onlv a countable
infinity of new elements. They are such,
however, that the counting cannot be
done by any apparatus available in M
itself. Thus we obtain a new model N7,
in which the continuum hypothesis is
false. The new elements, which in N’
play the role of real numbers (that is,
points on a line segment), have cardi-
nality greater than 2%, and so there is
now an infinite cardinal-namely 2% —
that is greater than K, and yet smaller
than ¢, since in our model N”, ¢ is equal to

2(2““}

Since we can construct a model of set
theory in which the continuum hypothe-
sis is false, it follows that we can add to
our ordinary restricted set theory the
assumption of the falsity of the contin-
uum hypothesis; no contradiction can
result that was not already present. In
the same spirit we can construct models
for set theory in which the axiom of
choice fails. We can even be quite spe-
cific about which infinite sets it is pos-
sible to “choose from” and which are
“too big to choose from.”

Whereas Godel produced his results
with a single model (the constructible
sets), we have in non-Cantorian set
theory not one but many models, each
constructed with a particular purpose in
mind. Perhaps more important than any
of the models is the technique that en-

ometry has been applied in such theories as Einstein's theory of
relativity. Nonstandard set theory has yet 1o be applied in physics.

ables one to construct them all: the no-
tion of “generic” and the rela.ed notion
of “forcing.” Very roughly speaking, ge-
neric sets have onlyv those properties they
are “forced” to have in order to be set-
like. In order to decide whether a is
“forced” to have a certain property we
must look at all of N. Yet N is not really
defined until we have specified a! The
recognition of how to make this seem-
ingly circular argument noncircular is
another key element in the new theory.

'\‘-’ hat does the history of geometry

suggest for the future of set theory?
The most remarkable thing about non-
Euclidean geometry is that it turned out
to be an essential prerequisite for Ein-
stein’s general theory of relativity. Rie-
mann created Riemannian geometry for
the purely abstract purpose of unifying,
clarifving and deepening the non-Eu-
clidean geometry of Lobachevsky, Bolyai
and Gauss. This geometry turned out
to be the indispensable tool for Ein-
stein’s revolutionary reinterpretation of
the gravitational force.

Does this example justify an expecta-
tion that non-Cantorian set theory scme-
day will find a currently unforeseeable
application in the “real” (that is, non-
mathematical) world? No one today
would venture an answer. Certainly we
can see (with hindsight) that geometry
has always furnished the essential back-
ground in which physical events take
place. In that sense it should perhaps
have been expected that fundamental
advances in geometry would find a phys-
ical application. Set theorv does not
seem today to have any such organic in-
terrelationship with physics. Still, there
have been some mathematicians (Sian-
islaw Ulam, for example)} who have
proposed that abstract set theory might
furnish useful models for theoretical
physics. At this stage the safest thing is

to refuse to predict anything about the

future—except that it is unpredictable.

ZERMELO. FRAENKEL, ETC. -
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