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Can n pro(w1~ue ne trerisecl m a r  n-ill iac~icare 11 inere arr solutions to 

a Diophant ine cqlr n tion (an equation \ \ - l~e~-e  \vhole-nl~ t m l ~ e r  solutions 

are sougllt)? 7'11i.; qrlestion on a Eainor~s 1ir;l- 11at; nonr been ans\\-ered 

c hear n-itllin 11% the pel'pc-t~tal 
calf: tliele is the proldem. 
Scck its solutiun. I-ou can find 

it by pure rcasoil, fur in matheinatics 
thcre i s  nrr igr~o;~clbilntis [\Ye shall not 
know]." So did lIi~\.id 1 lilhert address 
the Sucond I~it~rtii\tiori:~I Coijp-ess of 
Xlathematicians in I'iari~ otl Altg~st  S ,  
1800, greeting the nett. wilt~~ti F)y pre- 
senting a list ol' 23 1 l l l \ j 0~  I)IWI>ICIIIS to 
clinllc~~ge futtlre t~i;lthrt~ti>ticin~~s. Snnw 
OF Hil1,ei.t'~ probleins are still ~rir~nI\.ctl. 
Othrrs Flavlr illspired $ ~ l l ~ l . i l f i l ) ! l ~  of 
m;itliv~natiual investigators iuld Iliivu Icd 

t r ~  nliajor IICW rnatlleinatical tlleories. Thc 
lnost rcccntly co~~qnerecl of Hilbei-t's 
prc11Jerl1s i s  the 10111. \vliiuh n-a$ solved 
i11 2970 by tthc 82-y~a1=c>ld Russian 
mathematici;ui Yitri h1;ltyasevicfi. 

David Hi1l)crt was lmm in Kiinigshrg 
in l8G"and rvas profr.ssnln at tlie Univer- 
sity of Giittil~gcri fmt i~  IS95 until h i s  
death in 1943. Aftcr tllc driitll nf Hvnri 
PoitlcarC in 1912 lie \rnc gc~~erally re- 
galded as being the forelnost matllcmnti- 
cian of his time. He made f tz~i r lz~~~er~ta l  
contributions in severi~l fiddr. ? w t t  lic is 
pcrhaps h e ~ t  relne~nI,~rtrE for liir tlcvcl- 

op~ilcnt of t l i ~  aIxttnc+ method as a pow- 
crF11\ trlol ill ~natl~cmatics. 

1 Iill,ert's 10th prc,l>lenl is easily rIe- 
scrihetl. It has t r ~  rlo with the sinlplest 
and I H C K ~  I I ~ I S ~ C  in;~tliematical activity: 
so!\-iilg ~ l t t i t t i o ~ ~ s .  TEic equatiotis to IF 
solved are polynominl ctluations, that is. 
cq~~atiolls  such us x" 33s = 5,  \vliich 
:Ire Enrmed I,! ~ d t l i n g  and nlt~Itiply- 
ing constimts anrl \~ilri:~I>li~s  rid I? u'i- 
ilia whole-tiluuber espo~zcnts. AItrrro\+cr. 
Hilhert specified that tllc ctjuatioiis rtitrst 
tlse r~nly I l~te~ers .  tlmt is. prwitix-c or  
~ ~ e g t ~ t i v c  \vl~olc 1111rnlx-rs. XI irr;htit)~i:~[ 

GRAPHS 01.' TV.0  EQU.\TIOXS iIIustrare the differcllc.~ 11r.twre1l 
an  orrlinary c t ~ u : r t i ~ ~ t i  :~ntl a Plioptrantine eqnatiol~. for wlliv11 one 
i s  i r ~  tprr-trd orily in rclinle-ltumher so tuf ions; this diffrrc~lrr i s  

central to Hillwrt'- 10111 ~trolrl~nt.  The equations i n  point are 
.r" +: - 2 = O ! IP!I 8 and r-' I v" 3 5 0 I right)  ; hotb are rep- 
resented by ~ i r v 1 ~ i  1t.it11 their vellter at t l l ~  origin. that is. at tlir 
point wit11 morrTinatrs .r = 0 ,  y = (I. Iri the case of x2 + f? - 2 = 0 
the circle n mdiu. of \f2. IF tlie ~clunriolr i >  treated as an ordi- 

liar? eqnalion. 11lrre art. infinitel? ntony s o l u t i u n s  If, ho\r.erer. it 
i~ treated as a Diopl~antillc cquntinn, t1ic:rc itrc only four solu- 
tion-: I l ) r = I , y = 1 , 4 2 ~ . r =  - l . , v = l .  1 3 1  s = 1 . y = - 1 , a r ~ I  
I I r s = -1, y = -1. Tlrese soltttionr nrc rel~resenretl hy dots 
where the graph croaaeb [lie Eol~r l~oit~th ssIt11 tliole voordinate. 011 

thr Cartesian grid. In the rase of s" y2 - 3 a 0, ~ h c  rirrle ha< a 
rarlitw of VT. h" an ardiilarr equarion it  11~. 311 inhike n~rrnl,er of 
anltttioris; ns a Uiophantine equalion. hn* re \~ r .  i t  II:I* none a t  al!. 
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phaitus of Alexandria, who wrote! n 1300k 
on the subject in t11c third century. 

Hilbert's 10th prohlern is: Give a 
icd procdtire Iby which any 
ntine equation can 1% tested to 
rlutions exist. In I lilbert's words: 

~ i v e 1 1  s Diophantine equation with any 
11urnl~r of ~mkntnvn quantities a d  with 
rational iiltepal numerical m f i c i e n t s :  
to devise n nroces5 according to which it 

d by a finite number of 
er the equation is solv- 
i~itegers." Hilllert does 

not ask tor n process to find the solutions 
but merely for a process to determine if 
the equation has solutions. The process 
should he a dear-cut formal procedure 
that cou yammed for a comput- 
ing n ~ a c  that 1vouId be guawn- 
teed to . I1 cases. Such a prwess 
is b ~ o m n  as an algorithm. 

If I-Iilhert's problem is simply stated, 
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Jfli~vasevich' solution is evcn more sin+ 
plv stated: No such process con ever Ile 

such an algorithm docs not 

Jisalqmintindy ncgntivc. Mntyn- 
se\idi result, however, cn~istitutes nn 
important and uscful addition to the un- 
deistanding of properties of nr11n1,ers. 

klntvaseviclz' work catcnded a series 
of researches by three Arneriwns: one of 
us (Davis), J r d i i ~  Robinson and Hilap, 
Putnam. ~ l ~ d r  work in turn wns lx~5ed oil 
esl+licr investigations I y  se\rer;ll founders 
of modern logic nrld computability 
theory: Alan Tirring, Emil Post, Alonzo 
Chnrch, Stephen Kleene and the same 
Kurt GiicIcl who is famous for his ~vork 
OII thr: consistency of axiomatic systems 
(I*lilbcrt's second problem) and 011 the 
c o ~ ~ t i t ~ ~ u ~ ~ ~ n  Ilypothcsis of Cantor (Hil- 
l~crt's first problem). 

f i t  as start oil Hilbert's 10th problem 
by looking at a few Diophantine 

equations. The tenn "Diophanth~e equrla- 
tion" is sligl~tly misleading, because it is  
not so n ~ u c I ~  the nature of the equation 
thnt is cmcid as the nature of the ad- 
rnissilde solzttions. For example, the 
equation Ir' + y" 2 = 0 has infinitely 
many soIutions if one does not think of it 
as a Diopl~antine equation. The sol~~tions 
are represented by the graph of the 
equation, ~vhich is n circlc in the platre 
formed by the x asis and the y axis. The 
cwlter of the circle i s  at the cmrclinatcs 
x = 0, y = 0, That point is  caller1 the 
origin; it i s  alsbreviatccl(0,O). The radius 
of the circje is  fi [sea illurfrnlion on 
opli(h~ite ~wge]. The coordinates oh any 

GREEN-LIGHT-RED-LIGHT fifACHINE is an imaginary device that tests nunlllers, to de- 
tnrmine if they are members of a given set. Rilbert's 10th prohlem asks i f  n prenn-light-red. 
light "Hilbert muchine" ran be bnilt to test Diophantine equations to hee 1vIict11er or not 
fliry l l ~ v e  solntions. Tn the case 01 testing nombers for membership in r set, kcern light goea 
on if the mnchine can determine in a finite number of rteps that ~ i v r n  input i s  a rnerulter 
of the eel. Say that S is the set of all even numbers. To test inputs one rm rfcvi~e an algo- 
rithm for dividing each input x by 2, If the remainder of the division i a  0 (written Rcm 
x/2 = 0 j, machine would tarn on i t s  green light, si~nifying that x i s  a member of S. 

23 4 m e m b e r  o f  S? 

RED LIGHT GO= ON on the green-lisbt-red-light machine i f  thr machine can determine 
that the inpnt is not a member of the srt. Suppose the input x i s  the whole nnmlter 23; 2 
goes into 23 with a remainder of 1, signilying thnt 23 i s  not a mcmhrr o l  b. Complement of 
set S is 3, the set of odd numhers; 23 is n mem1tr.r o l s .  Since a green-light-red-light machine 
ran I)c built to sort members of S lrom rn~n~l~ers  of S, the ret S i s  raTlrd romputallle. 



GREEN-LIGHT-RED-LTGHT IIACHIhE IWR THE SET S can hc for nailrrew rlie green lamp of the green-light-red-Iirh~ rnnrhine 
pransEormed into a grees-lighr mncllinr? for 5 (that is, a machine snrl put i t  into the sotkct that hdd the red lamp. This fact van Ija 
that simply lights up when the input i s  a menthcr of SI plus n stated in another way. Tf a set (sltrh as S )  is compotahle, then both 
precn-light machine for tlie romplen~nnt of S. The proor is sim- the set and its complement Isuch as F) are listable, thr~r is,tl)e nlcmm- 

ple. To builrl a green-light matllioe for S, unscrew the red lanlp of hers of S (ill this rase thc pet of even numbcre) can he listed sepn. 
the Krr.en-lipl~t.ted+lirlrt machine. To huilil a preen-light mnvhine rntely and sorted {ram the rneml~ers of3 Ithe set of odd nttnlhersj. - 

f-f t r u e  f h n t  len- /if h f  - red-light f Ycs i t  is, and f 

f ~ o n v e r s e l ~ ,  I c a n  use  a g r c t n - l i j h t  machine for 
S plus q green- lijlrt m a c h i n e  for t h e  

c u m p ~ c  rn en t of S ( plus an e x t r a  red 

m a c h i n e  I Turned h f o  R 

GREEN-LIGHT MACHINE FOR EACH OF S AND gcan Iw used In the green-light machine f o r 3  replnrt: the green Inmp rr-it11 a rrd 
to rnnstrurt a preem-liplit-red-lid~t macllinc. fnr the set S-This Etnte- lamp. Then hook the marllines in parallel so that tltc input goes 

ment i s  tile ronvt-rne of the one for the top ill~istration on this price. into hot11 rimultaneonsly. The  res111t i s  clearly u preen-lipht-terl. 

86 

can show if; true by 

green-light m r c h i n c  f o p  S plvs a green-l ighf s w , t c h l ~ y  around 

m f f c h t n e  f o r  The c o m p l e m e n f  of S ? f h c  l a m p s .  



point on the circle satisfy the equation, 
and there are an infinite number of such 
points. If we consider the problem as a 
Diophantine eqnatio~i, liowever, there 
are nrily four solurions: (1) r = 1, y = 1; 
(2) K = -1, !/ = 1; (3) X = 1, 9 = -1, 
and(4)x=-1 ,y=- -1 .  

Suppose t l ~ e  equation i s  diangecl to 
P f y" 3 = 0. Thew are s d l  an in- 
finite number of solutions if it is treated 
as an ordinary equation but no solutions 
at all if it is treated as a Diophantine 
equation. The rceson is that now the 
graph is a circFe with radius equal to dx 
and no points ori this curve have 330th 
coorrIinatas simdtanmusly equaI to 
wl~ole numbers. 

A famous family of Diophantine equa- 
tions has the fonn xn -t yn = 9, where 
n may equal 2,3,4 or m y  larger integer. 
If n is equal to 2, the equation is satisfied 
lly the Iengths of the sides of any rigltt 
triangle and is called the Pythagorcnn 
theoretn. One such solution is the set of 
numbers a = 3, y = 4, z = 5, If n is 
equal to or great& than 3, the equation 
is what is known as Fernat's equation. 
The 17th-century French mathematician 
Pierre de Eermat thougl~t he had proved 
that these equations have no iositive 

: whole-number solutions. In the mnrgin 
of his copy of Diophnntus'book he wrote 
tha t  he had founcl a "marvelous proof" 

Eight machine. This assertion can be stated 
differently: If both a set and i te  comple- 
ment are listable, then the rer is tomput able. 

that was unfortunately too long to 11e 
written down in that space. The proof (if 
indeed Fermat had one) has never been 
fmmd. Known as Permat's last theorem, 
it i s  probably the oldest and most famous 
~lnsolved prol>lcm in mathematics. These 
exampIes rillow that Diopliantine equa- 
tions arc cnsy to write dorm but hard to 
solve. They are hard to solve because we 
are so exclusive allout the kinrl of num- 
bers we accept as solutions. 

For first-degree equations, that is, 
equations in which nnknolvns are not 
multiplied together and nll exponents are 
equal to 1, such as 7x -I- 4y - 3=. - 99f 
3- 1311 - 10 = 0, the exbtence of soIu- 
tjms can lle determined by a technique 
of division known since ancient times as 
Euclid's dgoritlim. For second-degree 
equations with two unknowns, such z q  

3r" 5gy" + 7 = 0 or x" --by - g2 = 1, 
a theory developed early in the 19th 
century by the great Karl Fricclrich 
Gauss enables one to determine whether 
there are any solutions. Recent work by 
the young British mathematician Alan 
Ilaker has shed considera1,le light on 
equations greater tlian the second degree 
that have two unknowns. For equations 
greater than the first degree that have 
more than two unknowns, there exist 
only some special cases that can be ]]an- 
dled by special tricks, and a vmt sex of 
ignorance. 

\&Thy is i t  so M c u l t  to find a process 
such as the one Hilbert called for? 

The most direct approach rnot~ld be to 
sinlply test all pussible sets of vaIues of 
the unknowns, one after another, untiI a 
solution is found. For example, if the 
equation flits two unknowns, one could 
make a list of dl pails of integers. Tlwn 
one wni~ld simply go through the list 
trying one pair after another to see if it 
satisfies the eqtintion. This is certainly 
a clear-cut, mechanical procedure that a 
machine could carry out. What will 1,e 
the result? 

If the equation is the first one we men- 
tioned, a+ g2 - 2 = 0, one would test 
(Q,O), (O>ll, U>O) ,  {Q,-U, (- 1,OI re- 
ject them all. The next candidate, (l,l), 
is a solution. \Ve were lucky: only six 
pairs had to IE considerwl. If, on the 
other hand, the equation were xZ + !j2 = 
20,000, one would have to test thou- 
sands of pairs of numl~rs  before a solu- 
tion WRS found. Still, it is clear that if a 
soIution exists, it will be found in a finite 
~t~lrnber of s tep .  

On the other hand, whnt about the 
second equation: x2 + 9% 3 = O? One 
can try pairs of integers from now till 
eternity, and all that will ever be known 
is that a solution has not been foilnd yet. 

One would never kno\v whether or not 
the nest pair tried would he a so1utio11. 
For this particular example i t  is possiblc 
to prove there are no solutions. But the 
proof requires a new idea; i t  cannot I I C  
obtained merely by sucuessively sul~st i- 
tuting iotegers into the  equation. 

A device that carries out a process of 
the kind suggested Ily FI ilhcrt shodd 
accept as an input the coeficfenb r ~ f  an 
arbitrary Diophantine criuation. As an 
otitput it sflould turn on a green light if 
tlae equation has a solution and a recl 
light it' it has none. Such a rn:iohine 
might 'be called a 1 lilllert rnacliitle. By 
way of contrast a device that simply 
searches for solutions hy successive trials 
ntl infiailrrrn could be described as a 
green-light machine. If the equation has 
a solution, the green light goes on after 
a fir-rite number of stcps. If the equation 
has no solution, the computation simply 
goes on forever; unlike the Hillbert ma- 
chine, the green-light maclzine has n(> 
wily of knowing when to give up. 

It is easy to build a green-light mil- 

chine for Diophantine equations. The 
question is, can rve do better and I~uild 
a Hillwrt machine, that is, a grccn-light- 
red-light mac1iine that will al\vnys stop 
aftcr a finite number of stcps and give a 
definite yes or no answer? What Xlatya- 
sevich proved i s  that this can never he 
done. Even if we allow the rnachinc uu- 
limited memory stol.:lge mid unlfmitud 
computing time, no prngram can ever he 
written and no machine can ever 1 ~ e  l~uilt 
thnt wilI do wllat Hill>ert wanted. A 
I i i l l ~ r t  machii~c does not exist. 

H i l l ~ r t  continued in lsis address of 
1900: "Occ*sionally it. happens that we 
seek the solution undcr insufficient Fly- 
potl;iescx or in an illcorrect sense, nnd for 
this reason do not succeed. T h e  problem 
then arises: to show the impossibility of 
the solution under the given hypotlreses, 
or in the sense contemplatcd." TIiat is 
exactly wli:-ir has happened wit11 the 10th 
problem. 

order to explain how we know that 
- - tin Hilheft machine exists, we ltave to 
discuss some simple ideas about corn- 
putahlit?. Suppose S stands for a set of 
integers. S is "listable" if a green-lidit 
machine can be built that wiIl do the 
foIlowi~lg job: accept ally integer as an 
input, and as an output turn oti R green 
light after a finitc number of steps if and 
only if the input (the integer) belongs to 
S. For example, the set of even n ~ l m b c r ~  
is listal~le. In this unsc the macllinc 
would divide the iilprlt ly 2 a d  ~usil 
on n green light if thc remainder is (1, 111 
rnathumatical literature such sets are 
callcd rermrsi\,ely enutneral>le; the ~rrord 



PAIRS OF ENTEGERS can be individually 
tefited by green-light machines to see if they 
are aolntions to Diophantine equations. 
Trial and error comes up with a solution for 
the equation x" +- y2 - 2 = 0 on the sixth 
try (top). Green-light mncbine testing eqaa- 
tion x2 + y2 - 3 = O has no way o l  knowing 
when to give up, however, because there are 
no sholemnmber solutions Ibottom). All  it 
knows i s  &at it has found no solutions y e t  

"listable" is our informal equivalent. 
The set S is  "computal~lo" if a green- 

light-red-light machine (sitnilar to the 
Ililhert rnaclline for Diophantine equa- 
ticsm) can be built to do a more difficult 
jofx accept any integer as input and, 
after a finite n u m l ~ r  of steps, tun1 on a 
green light if the integer is in S and a 
red light if the integer is not in S. For 
example, the set of even nnmbers i s  
computd~Ie. The machine would &vide 
the input by 2; if the remainder is 0, it 
turns on a grcen light, and if ths remain- 
der i s  1, it turns on a red light [see illus- 
tmtions on page 8-51, 

There is a dose connection hefiveen 
these two definitions. For the purposes 
of esplanation, let S denote the complc- 
ment of S, that is, the set of all integers 
that do not belong to S. If in the two ex- 
amples S is the set of even integers, then 
3 is the set of odd integers. We can prove 
that if S is computabJe, S and S are h t h  
listable. To put that statement mother 
way: If a green-light-red-Light rnndline 
exists for S, then there exists a peen- 
light machine for S and a peen-light 
machine for %. The proof is simple. TO 
build a green-light machine for S, just 
unscrew the red b& of the green-light- 
red-light machine. T o  build a green- 
light machine for s, unscrew the peen 
bulb of the Hillert machine and pat it 
into the socket that held the red bulb. 

The converse i s  nIso tru& 1f 5 and 
are listable, then S is  computable. The 
equivalent of this statement is: If a 
green-light machine exists for each of S 
and S, then a peen-light-red-light ma- 
chine can I>e built for S. This is easily 
done. In the peen-light machine for 5, 
replace the p e n  bulb with a r d  bulb. 
Then hook up the two machines in par- 
allel, so hat the input goes into both si- 
m~rlta~~eously. The result is clearly a 
green-ligltt-&-light machine. 

Knowi t lg  all of this, ww can now h t e  
one oE the crucial facts in cornput- 

abiIity theory, one that plays s central 
role in the solution of Hilbert's 10th 
problem: There is a set K that is  listable 
but not computable! That is, there exists 
a pen-Iight machine for K but it is im- 
possible to build a green-light machine 
lor d ~ e  complement of K .  
To prove this seemingly stmnge fact, 

let me!i green-light ~nachine be spe& 
ified by a detailed i customer*^ manual" 
in the English language. The customer's 
manual describes exactly how the ma- 
chine is constmcted. The customer's 
mnn~rals can be set in order mid num- 
bered sequentially 1, 2, 3 and so on. In 
that way dl green-light machines are 
numbered; M i  is the first machine, M2 is 

the second and so on. There is a subtle 
point hidden here. Such an ordered list 
of customer's manuals would not be pos- 
sible for green-light-red-light machines. 
The difftdty is that one cannot tell from 
tlle manual whether the red light or the 
grecn light will turn on for any input t o  
the corresponding machine. - 

The set K is defined as the set of num- 
bers n such that the nth. machine lights 
up when it receives n aself as an input. 
Iu other words, the number 1 belangs to ', 

K if arid only if MI films on its grccil 
light when "1" is entered into its input. 
The numher 2 beIongs to K if and only 
if M, eventuaIly lights up when ''2'' is 
entered into its input, and so on [see fop 
i h - t r a l w n  oft q~posile page]. 

In order to I~uiId a green-Iiglllt ma- 
chine for K we need, along with the li- 
brary of customer's manuals, a little Inan 
who can read them and carry out their 
instructions. He should perhaps be a 
wise old man, but he must be an obedi- 
ent- man who does exactly what he is 
told. We give the little man a number, 
say 3,781. The little man looks into cus- 
tomer's manud No, 3,781. Rcnding the 
manual, he is aide to build the green- 
light machine M3,7R1. Once this i s  done, 
he inserts the integer 3,781 as input into a 

green-Iigfit machine M,ni,,. IE the grccn 
light gw on, the n u m b  3,781 belongs 
to K. Thus we have a green-light ma- 
chme for K. 

What about 3 Haw can we lx sure 
there is 110 peen-light machine for it? 
Well, suppose there were such ZI ma- 
chine. Then since Ei is the complement 
of K, this machine should light up lor 
any input, say for 297, if and only if 
M,,, does not light up for 297. (If 
lit u p  it bvotild mean that the integer 
297 belong to K and not to E.) Thus 
tlre lnacIlil~e for P: certainly is not the 
same as M E , ,  [see bottom illustmtion oti 

opposite page]. Ry the same token, how- 
ever, it is not the same as M, for any 
other value of n. TI18 same argument 
\vutild apply to any other number just 
as we11 as to 297, and it shows that no 
green-light machine for R appears any- ' 

where in the library of ctistomer's man- 
uals. Since every possible green-light 
machine eventually t u r n s  up in our list, - 
it follo~vs that no green-light machine 
for can possibly exist. That is to say, 

is not listable, 
The result i~ certainly remarkable. It 

deserves contemplation and apprecin- 
tion. We know perfectly well what the 
set K is; in principle wc cnn produce as 
much of it as we wish with a computer 
printout. Nevertheless, there can never 
be a formal procedure {an algorithm or 
a machine pro<prn) for sorting R from 



P i c k  n n u m b e r ,  s n y  n u m b e r  - s a y  3 , 7 8 1  - 
1s d e  f ined 4 s  ?he ~ e f  of nvm bers 

"n" s v c h  t h a t  t h e  _n i h  grecn-13hf mnchine  lyhfs  
when i f  r c c e r v e s  _n as an input.  

THE SET K IS LISTABLE, that Is, a geen-light machine for K numbers YE mch that the nth machine fights up when it  receives n 
exists. Let all conceivable green-light machines be nnmbered: MI itself as an input. In the ilInsmation a little man has entered the 
is the first machine, M2 is tbe second machine, M3 is the third ma- number 3,781 as an input to Ma,,, and the green light has turned 
chine and so forth ap to the nth machine. K i a  defined as the set of on, indicating that the whole nnmber 3,781 is a memher of set K .  

Is there a g w e n  - 1l;pht machine for fhe - c o m p / e m e n t ' o f  K ?  if t h e r e i s , i t  can't de 

U 

TRE SET K IS NOT COWUTABLE, that is, no green-light ma- not the some as Mz,,. By the same roken, it is not the same as M, 
chine for K, the complement of K Suppose there was snch a for any other y l n e  of ra %s no green-ligbt machine exists for 
green-light machine for K. Since K i s  the complement of K, this meaning that K is not listable. A listabIe set whose complement i s  
machine &odd  light np for any Input, 8ay for 297, and only if not listable is not c~mp~table;  no green-light-red-light machine can 
MW7 does not light up for 297. Thus the machine for K is certainly he built for it. Thus there i s  no algorithm for sorting K from E. 



FIBONACCI NUMBERS were discovered in ha. 1202 by Lconardo af Pisa, known as Fibo- 
nacci. The kcquence is ob~ained hy staning with X and 1 and snccesaively adding the last 
two nnmbers to get the next one. T h e  sequence prows exponentialIy: the nth nurnt~er in the 
sequence is spproximntely proportional to ~ l ze  nth power of the real numbcr [ (1  + 61/21". 

CHINESE REMAINDER THEOREM is used in the solution to Hilbert's 10th problem. Tn 
this case the thcorem i s  employcd to find a number whose remaintlcrs, when divided by the 
numbers 10,3, 7 and 11, are respectiveIy 4, 2, 3 and I. Integer 584 is the smallest solu~ion. 

PROBLEM. To find the smallest number n that has the remainders of 4.2.3 and 1 
when ~t is divided by 10. 3. 7 and 11. 

SOLUTION: Let x be the number sought. "Rem-' will be the abbr%viarlon 

- 
K .  Thus here is an example of a precisc- 
ly stated problem tha t  can never l>e 
solved by mcclianical means. 

This cliscussion Ins of course been in- 
formal and nonrigorous. It is possible.. 
I~owever, to refonnulate all the ideas and 
arguments wit11 precise mathematical 
definitions and proofs. In fact, they have 
been formdated in a branch of mathe- ., 
rnaticaI logic called recursive function 
t l ~ c o ~ y ,  established in the 1930's by 
Godel, Cl~urcl~, Post, Kleene nnd Turing. 

I 

ow, what has all this to do with Dio- 
phanthe equations? Simply this. 

\.latyascvicll has proved that every list- 
able set Iias n coiresponding Diophan- 
tine equation. hlore precisely, if S is a 
lktable sct, thcn there is a correspond- 
ing polynomial P, with integer co- 
efficients and \rarial,lcs x,yl,y2,. .. ,yn, 
which is denoted by P s ( ~ , ~ l , y 2 , ,  . . ,gnf .  

Any integer, such as 17, b c l o ~ ~ g s  to set S 
iI arid only if the Diopharliine equatioll 
I'(17,gl,y.., . . . ,y.) = 0 has a solution. 

It might be thought that for some seb 
we wmtld have to resort to inconceiv- 
ably co~nplicated poIynomials, but t h i s  is 
not the cnsc. The degree of P need not 
exceed the fourth power; the numbcr of 
varial~les yL ,~ t . ,  .. .,yn need not exceed 
14. (No one b ~ o w s  yet if both of these 
bounds can 1x nchicvcd simultaneously.) 

This result of MatyasevicIi' quickly -.- 
leads to the conclusion that no Hilbert 
machine can exist. 1lcc.d the listable 
set K constructed a few paragraphs 
above. According to hlaltyxqevich, there 
is a Djophantine equation, Pti(x,yl,y2, 
. . . ,yn) = OF associated with this set, If 
it were possible to huild a Hilllert ma- 
chine, that is, a green-light-rcd-light 
machine for testing Diophantine equa- 
tions to see if they have solutions, then 
for any integer r we could determine 
whether or not there existed integers 
yl,yz,. . . ,yn sue11 that the equation 11% 
a solution. In so determining, hc 
we would also be determining v 
or not r belongs to K .  In other \\ 
Hflhert machine applied to the Uio- 
phxntine equation that describes K 

.A 
could be used as a green-light-red-light 
machine for K. We have proved, how- 
ever, that K is not computal~le, so that no - 
green-light-red-Iight rn aclune can exist *- 

for K .  The only way out of this dilemma 
is to conclude that there is no Hilhrt 
machine. In other words, Hilbert's 10th 
problem is unsolval~lel 

The fact that a Dinphantine equation 
is associated with evcry listable set is a 
positive resr~lt that is of great interest in 
itself, quite aside from its application to 
Ifilbert's 10th problem. A particularly im- 
porkint and interesting set of integers is 

for "The remainder of. .  . ." The problem can then be r a n f l e w  

.ern ( + F ) = 4  ~ m ( + - ) = 3  

.em (-;-) = 2 Rern (-:T ) = 1 

In order to 11nd x twr aunlllary problems lor new unknowns y ~ ,  yz, yr ard ya must be 
solved. In each caw ihe numerator is obta~ned by multlplylng three of the drv~sors logether 
and usrng the fovrth as the denominator. For example, In Ihe first equatton 
with yr the numerator 237 is equal to 3 x 7 x 11 .  and 10 is pol rn the denominator 

 em ( 5 % ~ )  = 4 ,  yl < 10 Rem (q) = 3.y~ < 7 
R e r n ( q 2 )  = 2 . y ~  < 3 Rem ( ' :qy?) =l.y. < 1 1  

The set of smallest ~nlegers lhat are mlutmns to these auxlllay equations 
myl = 4 .y2=  l . y 3 = 3  andyd - 7 

To get x (the original number sought) the numerators of the l w r  aurll~ary 
equations are added togemer: 

x - (231~1) + (770yz) T (330~3) I (21 Oya)  

= (231 x 4) (770 x 1 )  + (330 x 3) + (210 x I) 

= 924 - 770 + 990 + 210 

= 2.894 

Thus 2.894 IS one value 01 x .  A smaller number can be oblained 1 the produd of all 
four divisors is suMracted from Thrs solullon: 

2.894 - (10 x 3 x 7 x tl) = 2,894 - 2310 = 584. 

Therefore 584 IS the smallest solullon to the problem 

lords, a - 



the set of priine ~anmnbers. A prime num- 
ber is one that is filctorabIe (divisible) 
only by 1 and l ~ y  itself. Some examples 
are 2, 3, 5, 7, 11, 13 and 17. That they 
are listable is rather obvious. An algo- 
rithm for listing them has come down 
from the Greeks with the name of "the 
sieve of Eratosthenes." Cornl~itiing Mat- 
yasevich' result with a devicc developed 
by Putnam, zve obtain a Diophantine 
equation Q(y1,g2,. . . ,yn) = z such that 
n positive number z is a prime if and a11Iy 
if this equation has a positive irltegcr 
solution y l , y , .  . . ,yn. (The exact form of 
the poiynomial Q is a bit too compli- 
cated to fully write out here.) 

Another remarkable result can be 
proved lly com1,ining hlatyasevich' theo- 
rem with GocIcl's work on undecidabil- 
ity. If there is any system of mioms 
whatsoever from which information can 
be deduced al,oa~t Diophantine equa- 
tions, one call always obtain a particular 
Diophantine equation that has the fol- 
lowing properties: (I)  the equation has 
no positive integer solutions and (2) 
the fact that it has no positive integer 
solutions cannot be logically deduced 
from the given set of axioms. Of course, 
once the Diophantine equation is 011- 
tnined tve can make up a new se;t of axi- 
oms Erom which one can prove that the 
Diopllantine equation has no sohition. 
But tlleil this new set of axioms give 
rise to another Diophantine equation for 
which the same can be asserted. 

J&,Tltat went into the proof of Mrtya- 
sevich' theorem? Tn addition to the 

results from cli~ssicnl and even ancient 
number theory that we have already 
mentioned, there is a key resnlt known 
as the Chinese remainder theorem. It  
will be helpful to illustr;~te the Chinese 
remainder theorem by a numerical ex- 
ample. 

Suppose one wishes to find a number 
wllo~e remainders, when diviclcd by the 
rwmbers 10,3,7 and 11, arc respectively 
4, 2, 3 and 1 [see bottom il!ustratioiz on 
opposite pags] . The Cl~inese remainder 
theorem assures us that there must be 
siich a number. (In face, in this case 584 
is such a number.) All that is required 
for the Chinese remainder theorem to 
work is that no pair of the divisors used 
have any comnlon factor (except, of 
course, 1). There can be any number of 
divisors, and t l ~ c  desired remainders can 
be any positive integers whatsoever. 

In 1931 Godcr showed how to use the 
Chinese remainder t1ieorem as a coding 
trick, jn which an arbitrary finite se- 
quence of numben can be encoded as a 
single number. From the code number 
onc recovers the seqnence in the same 

wny that 4 , 2 , 3  and 1 are obtained from 
584 in the esample--as remainders in 
s~zccessive divisions. The divisors can be 
cl~osen to be in arithmetic progression. 

The first attempt to prove that a Hil- 
bert machine cannot exist was made by 
one of us (Davis) in his doctoraI disserta- 
tion in 1950, C6deI's technique of using 
the Chinese remainder theorem as a 
coding device was applied to associate 
a Diophantine equation, P,(k,x,z,y,,y,, 
..., y,) = 0, with every listable set S. 
Unfortunately the relation hebveen the 
set and the equation turned out to be 
more complicated than what was needed 
for Hilbert's 10th problem. Specifically, 
the relation was: A positive integer r be- 
longsto the set S if and only if lor some 
positive integer value of z it i s  possible 
to find n solution for every one of the 
Diopllantine equations obtained 1>y sull- 
stituting X- = I, then k = 2 and so on up 
to z into the equation P8(k,~F~,yI,!~2,  
. . . ,y,) = 0. Although the result seemed 
tantalizingly close to what was needed, 
it mas only a beginning. 

At about the same time Robinson be- 
gan her own investigations of sets that 
can be defined l ~ y  Diophantine equa- 
tions. She developed various ingenious 
tecIlniques for dealing wit11 equations 
whose solutions behaved like eqmnen- 
tials (grew like a power). In 1960 she, 
Davis and Putnam collaborated in prov- 
ing another mdt. They made use of 
both her work and Davis' result to show 

to any IistahIe set there corsespond- 
ed n Diophantine equation of an '"cx- 
tended" kmd, extended in the sense that 
varia'tAes in the equation were allowed 
to occur as exponents. An example of 
such xn equation i s  2t f x2 = rq. Davis, 
Robinson 3rd Putnam combined their 
work with some of Robinson's earlier 
results and discovered the following: If 
even one Diophnntine equation could be 
found whose solutions behaved exp* 
nentiauy in an appropriate sense, then it 
wodd be p s i b l e  to describe every list- 
able set b y  a Diophantine equation. 
This would in tun1 sl~orv that Hilbert's 
10th problem is unsolvnhlc. 

t took a decade to find a Diophantine I equation whose solutions grow expo- 
nentially in the appropriate sense. In 
1970 Matyasevich found such an eqna- 
tioil l y  using what are knawn as the 
Fibonacci numbers. These celebrated 
numbers were discovered in A.D. 1202 
by Leonardo of Pisa, who was also 
kno.rvn as Fil~onacci. He found them by 
computing the total number of pairs of 
descendants of one pair of rabbits if the 
original pair and each offspring pair re- 
prodlrced itserf once n month. n e  Fibo- 

1.  u + w - v - 2 - 0  

Il. I - 2 v - 2 a - 1  = 0  

!I!. I Z -  lz - z> - I = 0 

IV. g - 61' = 0 

V. g 2 - g h  - h S -  1 = O  

VI. m - c(2h + g) - 3 = 0 

VII. rn - fl - 2 = 0 

VIII. x z  - mxy + y' - 1 = 0 

IX. ( d - l ) t + v - X - 1 - 0  

X. x - v  - (31 x g ) ( e  - l ) = O  

MATYASEVICH' SOLUTION to Hilhert's 
10th problem involves o Diophantine equa- 
tion that is obtained hy sqnaring each of 
these 10 equations and then adding them to- 
gether and setting tlia resulting complicated 
palynomial equaI to zero. In these equations 
the values u and v in the eoIutions are re- 
lated in such a wag that v is the 214th Fi- 
bonacci number. From the sol~rtion it Xol- 
lowed that for every listahlr: set there i s  
on associated Diopbanrine equation. Since 
there exist listable ~ e t s  whose complements 
ere not listable, then not every listnl>le set 
can have s green-fight-red-light mnchine. 
Since having a green-light-red-ligl~t machinc 
for a set i a  equivalent to baving a Hilhert 
machine for Diophantine eqnations, niatya- 
sevich' mcluIt means that no Rilbert machine 
can be bnilt to test Diophantine equations. 

nacci series is obtained by starting with 
1 and 1 and successively adding the pre- 
ceding two numbers to get the next: the 
6rst Fibonacci number is 1, the second 
i s  1, the third is 1 + 1 = 2, the fourth is 
I. + 2 = 3, the fifth is 2 + 3 = 5 and so 
on. The property that is important for 
I-Iilbert's 10th problem is that the Fibo- 
nacci numbers grow exponentially. That 
is, the nth Fibonacci nun~her is approxi- 
mntely proportional to the nth power of 
n certain fixed real number. 

If one could find a Diophantine q ~ t a -  
tion whose soIutions relate n to the nth 
Fibonacci number, it would be the cle- 
sired example of a Diophantine equn- 
tion whose solutions behave exponen- 
tially. 'Xhe solution of Hilbert's 10th 
problem would follo\v from this exam- 
ple. What Matyn~evich did was to con- 
struct such a Djopl~antirle equation [MC 

illustration alowe]. Once he had shown 
that Zhe set of Fibonacci numbers is as- 
sociated in this way with a Diophantine 
equation, it foIlowed immediately from 
the theorem of Davis, Robinson and 
Putnam that for every listable set there 
is an associated Diophantine equation, 
including in particular the set K, 1vhicI1 
is not computable. And so ends the s t o y  
of Hilhert's 10th problem. 


