HILBERT'S 1OTH PROBLEM

Can a procedure be devised that will indicate 1f there are solutions to

a Diophantine cquation_ (a.n equation where whole-number solutions

are sought)? This question on a famous hst has now been answered

[AA 7 7 e hear within us the perpetual
\Y’r call: there is the problem.
Seck its solution, You can find

it by pure reason, for in mathematics
there is no ignorabimus [We shall not
know].” So did David Hilbert address
the Sccond International Congress of
Mathematicians in Paris on August S,
1900, greeting the new century by pre-
senting a list of 23 major problems to
challenge future mathematicians, Some
of Hilbert’s problems are still unsolved.
Others have inspired  generations of
mathematical investigators and have led

by Martin Davis and Reuben Tlersh

to nwajor new mathematical theories. The
most recently conquered of Hilbert's
preblems is the 10th, which was solved
in 1970 by the 22-year-old Russian
mathematician Yuri Matyvasevich.
David Hilbert was born in Konigsherg
in 1862 and was professor at the Univer-
sity of Géttingen from 1893 until his
death in 1943. After the death of Henri
Poincaré in 1912 he was generally re-
garded as being the foremost mathemati-
cian of his time. He made fundamental
contributions in several fields, but he is
perhaps hest remembered for his devel-

opment of the abstract method as a pow-
erful tool in mathematics.

Hilbert’s 10th problem is easily de-
seribed. It has to do with the simplest
and most Iasic mathematical activity:
solving equations. The equations to be
solved are polvnomial equations, that is,
equations such as x* — 3xy = 5, which
are formed by adding and mmultiply-
ing constants and variables and by us-
ing whole-number expenents. Moreover,
Hilbert specified that the cquations must
use only integers, that is, positive or
negative whole numbers. No irrational
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GRAPHS OF TWO EQUATIONS iflusteate the difference hetween
an ordinary equatien and a Diophantine equation. for whirh ane
is interested only in whele-mumber solutions; this difference ix
central to Hilbert’s 10th problem. The equations in point are
a2 an — 2= ilefty and x¥ L ¥y — 3 =0 {right); hoth are rep-
resented by cireles with their center at the origin. that is, at the
point with coordinates x =0, ¥y =10. Inthe case of 2 42 — 2 =10
the cirele has a radius of /3. If the eguation is treated as an ordi-
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nary equalion, there are infinitely many solations. If, however, it
iz treated as a Diophantine equation, there are only four solu-
tions: IDhx=Ly=1LiZrxa=—-ly=1131rx=1v=—=1,and
th v =—1, y = —1. These solutiont are represenied hy dots
where the graph crosses the four poims with these coordinates on
the Cartesian grid. In the case of x¥ 4= 2 — 3 =0, the circle has a
radius of 1/3. As an ordinary equation it has an infinite number of
solutions; as a Diophantine equatien, however, it has nene at all.




or imaginary numbers or even fractions
are allowed in either the equations or
their solutions. Problems of this type are
called Diophantine equations after Dio-
phantus of Alexandria, who wrote a book
on the subject in the third century.

Hilbert’s 10th problem is: Give a
mechanical procedure by which any
Diophantine equation can be tested to
see if solutions exist. In Iilbert’s words:
“Given a Diophantine equation with any
number of unknown quantities and with
rational integral numerical coefficients:
to devise a process according to which it
can be determined by a finite number of
operations whether the equation is solv-
able in rational integers” Hilbert does
not ask for a process to find the solutions
but merely for a process to determine if
the equation has solutions. The process
should be a clear-cut formal procedure
that could be programmed for a comput-
ing machine and that would be guaran-
teed to work in all cases. Such a process
is kmown as an algorithm.

If Hilbert’s problem is simply stated,
Matvasevich’ sclution is even more sim-
ply stated: No such process can ever e
devised; such an algerithm does not
exist. Worded in this way, the answer
sounds disappointingly negative. Matya-
sevich’ result, however, constitutes an
important and uscful addition to the un-
derstanding of properties of numbers.

Matyasevich’ work extended a series
of researches by three Americans: one of
us {Davis}, Julit Rebinson and Hilary
Putnam. Their work in turn was based on
earlier investigations by several founders
of modern logic and computability
theory: Alan Turing, Emil Post, Alonzo
Chureh, Stephen Kleene and the same
Kurt Godel who is famous for his work
on the consistency of axiomatic systems
(Hilbert’s second problem) and on the
continuum  hypothesis of Cantor (Hil-
bert’s first problem).

Et us start on Hilbert’s 10th problem

by locking at a few Diophantine
equations, The term “Diophantine equa-
tion” is slightly misleading, because it is
not so much the nature of the equation
that is crucial as the nature of the ad-
missible solutions. For example, the
equation 1% + y* — 2 = ( has infinitely
many solutions if one does not think of it
as a Diophantine equation. The solutions
are represented by the graph of the
equation, which is a circle in the plane
formed by the x axis and the ¥ axis. The
center of the circle is at the coordinates
¥ =0, y=0. That point is called the
origin; it is abbreviated {0,0). The radius
of the circle is /2 [see illustration on
opposite page]. The coordinates of any
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GREEN-LIGHT-RED-LIGHT MACHINE is an imaginary device that tests numbers to de-
termine if they are members of a given set. Hilbert’s 10th problem asks if a greenlightored.
light “Hilbert machine” can be huilt 1o test Diophantine equations to see whether or net
they have selntions, Tn the case of testing nombers for membership in a set, green liglt goes
on if the machine can determine in a finite number of steps that a given input is n member
of the sel, Say that § is the set of all even nambers. To test inputs one can devige an algo-
rithm for dividing each input x by 2. Jf the remainder of the division is 0 (written Rem
x/2 = 0), machine would turn on its green light, signifying that x js a member of 5.

Is 23 a meméber of §7?
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RED LIGHT GOES ON on the green-light.red-light machine if the machine can determine
that the input is not a member of the sct, Suppose the input x is the whole namber 23; 2
goes into 23 with a remainder of 1, signifying that 23 is not a member of 5. Complement of
set 5is 5, the set of odd numbers; 23 is 2 member of 5, Sjnce & green-light-red-light machine
ean be built to sort members of S from members of 5, the set S is ralled computalle.
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Yes itis, and |
can show its trve by
switching around
the lamps.

Is if trve fthat a green- hight-red-light
machine can be turned mfo &
green-1ight machine for S plvs a green-~light
machine for the complement of S ?

& |~

GREEN-LIGHT-RED-LIGHT MACHINE FOR THE SET 8 can he for S, unserew the green lamp of the green-light-red-light machine

transfermed inte a green-light machine for ¥ (that iz, a machine and put it inte the socket that held the red lamp, This fact van be
that simply lights up w_llen the input is 2 member of 3) plus a stated in another way, 1f a sel (such as S) is computable, then both
green-light machine for S, the complement of 5. The proof is sim- the set and its complement {(such as 8) are listable, that is, the mem-
ple. To build a green:dight machine for §, unserew the red lamp of bers of § {in this rase the set of even numbers) ean be listed sepa-
the green-light.red.light machine. To build a green-light machine rately and sorted from the members of § {the sot of odd numberz).
Conversely, | can vse a green-/ight machine for _ :
S plvs a green- 1ight machine for the ... fo build a green-light-
complement of S (plus an extra red lamp...) red-light machine for S
2ol - :

|
¥

GREEN.LIGHT MACHINE FOR EACH OF § AND § can be nsed In the greenlight machine for § replace the green lamp with a red
to eonstruct a green-lightred-light machine for the set 5. This state- lamp. Then hook the machines in parallel so that the input goes
ment is the converze of the one for the top illnstration on this page. inte both simultaneously. The result is clearly a green-light-red-
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point on the circle satisfy the equation,
and there are an infinite number of such
points. If we consider the problem as a
Diophantine equation, however, there
are only four solutions: {1 x = 1, ¢ = 1;
2)x=-L y=1(Fx=1, y=-1,
and {($)x=—-1 y=—1

Suppose the equation is changed to
#? + y* — 3= 0. There are still an in-
finite number of solutions if it is treated
as an ordinary equation bt no solutions
at all if it is treated as a Dijophantine
equation. The reason is that now the
graph is a circle with radius equal to +/3,
and no points on this curve have both
coordinates simultaneously equal to
whole numbers.

A famous family of Diophantine equa-
tions has the form x* + y* = 27, where
n may equal 2, 3, 4 or any larger integer,
If nis equal to 2, the equation is satisfied
by the lengths of the sides of any right
triangle and is called the Pythagorean
theorem. One such solution is the set of
numbers x =3, y=4, 2=05. If n is
equal to or greater than 3, the equation
is what is known as Fermat's equation.
The 17th-century French mathematician
Pierre de Fermat thought he had proved
that these equations have no positive
whole-number solutions. In the margin
of his copy of Diophantus” book he wrote
that he had found a “marvelous proof”

light machine. This assertion can be stated
differently: If both a set and its comple.
ment ar# listable, then the set is computable,

that was unfortunately toc long to le
written down in that space. The proof Gf
indeed Fermat had one) has never been
found. Known as Fermat’s last theorem,
it is probably the oldest and mest famous
unsolved problem in mathematics. These
examples show that Diophantine equa-
tions are easy to write down but hard to
solve. They are hard to solve because we
are so exclusive about the kind of num-
bers we accept as solutions.

For first-degree equations, that is,
equations in which unknowns are not
multiplied together and 21l exponents are
equal to 1, such as 7x + 4y — 3z — 99
-+ 13u — 10 = 0, the existence of solu-
tions can be determined by a technique
of division known since ancient times as
Euclid’s algorithm., For second-degree
equations with two unknowns, such as
32 =5t + T=0o0r x> —xy — g2 =1,
a theory developed early in the 19th
century by the great Karl Friedrich
Gauss enables one to determine whether
there are any solutions. Recent work by
the young British mathematician Alan
Baker hax shed considerable light on
equations greater than the second degree
that have two unknowns. For equations
greater than the first degree that have
more than two unknowns, there exist
only some special cases that can be han-
dled by special tricks, and a vast sea of
ignorance,

\Vhy is it so difficult to find a process
such as the one Hilbert called for?
The most direct approach would be to
simply test all possible sets of values of
the unknowns, one after another, until a
solution is found. For example, if the
equation has two unknewns, one could
make a list of all pairs of integers. Then
one would simply go through the list
trying one pair after another to see if it
satisfies the equation. This is certainly
a clear-cut, mechanical procedure that a
machine could carry out. What will be
the result?

H the equation is the first one we men-
tioned, x* + 4 — 2 = 0, one would test
(0!'0)) (0,1), (LO)! (0,—1), (_ 1)0) and re-
ject them all. The next candidate, (1,1},
is a solution. We were lucky: only six
pairs had to be considered. If, on the
other hand, the equation were 2* + ¢* =
20,000, one would have to test thou-
sands of pairs of numbers before a solu-
tion was found. Still, it is clear that if a
solution exists, it will be found in a finite
number of steps,

On the other hand, what about the
second equation: x2 + y* — 3 =07 One
can try pairs of integers from now till
eternity, and all that will ever be known
is that a solution has not been found yet.

One would never know whether or not
the next pair tried would be a solution.
For this particular example it is possible
to prove there are no solutions. But the
proof requires a new idea; it cannot he
obtained merely by successively substi-
tuting integers into the equation.

A device that carries out a process of
the kind suggested by Hilbert should
accept as an input the coefficients of an
arbitrary Diophantine equation. As an
output it should turn on a green light if
the equation has a solution and a red
light if it has none. Such a machine
might 'be called a Tlilbert machine. By
way of contrast a device that simply
searches for solutions by successive trials
ad infinitum could be described as a
green-light machine. If the equation has
a solution, the green light goes on after
a finite number of steps. If the equation
has no solution, the computation simply
goes on forever; unlike the Hillert ma-
chine, the green-light machine has no
way of knowing when to give up.

It is easy to build a green-light ma-
chine for Diophantine equations. The
question is, can we do better and build
a Hilbert machine, that is, a green-light-
red-light machine that will always stop
after a finite number of steps and give a
definite yes or no answer? What Matya-
sevich proved is that this can never be
done. Even if we allow the machine un-
limited memory storage and unlimited
computing time, no program can ever be
written and no machine can ever be built
that will do what Hilbert wanted. A
Hillert machine does not exist.

Hilbert continued in his address of
1900: “Oeccasionally it happens that we
seek the solution under insufficient hy-
potheses or in an incorrect sense, and for
this reason do not succeed. The problem
then arises: to show the impossibility of
the solution under the given hypotheses,
or in the sense contemplated.” That is
exactly what has happened with the 10th
problem.

Tn order to explain how we know that
- no Hilbert machine exists, we have to
discuss some simple ideas about com-
putabilitv. Suppose S stands for a set of
integers. § is “listable” if a green-light
machine can be built that will do the
following job: accept any integer as an
input, and as an output turn on a green
light after a finite number of steps if and
only if the input (the integer) belongs to
8. For example, the set of even numbers
is listable. In this case the machine
would divide the input by 2 and tum
on a green light if the remainder is ¢. In
mathematical literature such scts are
called recursively enumeralile; the word
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PAIRS OF INTEGERS can be individuslly
tested by green-light machines to see if they
are solntions to Diophantine equations,
Trial and error comes np with a solution for
the equation 22 - y2 — 2 =10 on the sixth
try (top). Greenlight machine testing eqna-
tion 2 4 4% — 3 = ( has no way of knowing
when to give up, however, becanse there are
no whole-nnmber solutions (bottom). All it
knows is that it has found no solntions yet.
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“listable” is our iformal equivalent,

The set § is “computable” if a green-
light-red-light machine (similar to the
Hilbert machine for Diophantine equa-
tions) can be built to do a more difficult
job: accept any integer as input and,
after a finite number of steps, turn on a
green light if the integer is in S and a
red light if the integer is not in S. For
example, the set of even numbers is
computable, The machine would divide
the input by 2; if the remainder is 0, it
turns on'a green light, and if the remain-
der is I, it tumns on a red light [see dlus-
trations on page 85],

There is a close connection between
these two definitions. For the purposes
of explanation, let S denote the comple-
ment of 8, that is, the set of all integers
that do not belong to 8. If in the two ex-
amples S is the set of even integers, then
§ is the set of odd integers. We can prove
that if S is computable, § and S are hoth
listable. To put that statement another
way: If a green-light-red-light machine
exists for S, then there exists a green-
light machine for § and a green-light
machine for 5. The proof is simple. To
build a green-light machine for S, just
unserew the red bulb of the green-light-
red-light machine. To build a green-
light machine for S, unscrew the green
hulb of the Hilbert machine and put it
into the socket that held the red bulb,

The converse is also true: If 5 and 8§
are listable, then S is computable, The
equivalent of this statement is: If a
green-light machine exists for each of S
and §, then a green-light-red-light ma-
chine can be built for 5. This is easily
done. In the green-light machine for §,
replace the green bulb with a red bulb.
Then hook up the two machines in par-
allel, so that the input goes into both si-
multaneously, The result is clearly a
green-light-red-light machine.

Knowing all of this, we can now state

one of the crucial facts in comput-
ability theory, one that plays a central
role in the solution of Hilbert's 10th
problem: There is a set K that is listable
but not computable! That is, there exists
a green-light machine for K, but it is im-
possible to build a green-light machine
for K, the complement of K.

To prove this seemingly strange fact,
let each green-light machine be speé~
ified by a detailed “customer’s manual”
in the English language. The customer’s
manual describes exactly how the ma-
chine is constructed. The customer’s
manuals can be set in grder and num-
bered sequentially 1, 2, 3 and so on. In
that way all green-light machines are
numbered; M, is the first machine, M, is

the second and so on. There is a subtle
point hidden here. Such an ordered list
of customer’s manuals would not be pos-
sible for green-light-red-light machines.
The difficulty is that one cannot tell from
the manual whether the red light or the
green light will turn on for any input to
the corresponding machine,

The set K is defined as the set of num-
bers n such that the nth machine lights
up when it receives n itself as an input.
I other words, the number 1 belongs to
K if and only if M, turns on its green
light when “1” is entered into its input.
The number 2 belongs to K if and only
if M, eventually lights up when "2" is
entered into its input, and so on [ see top
illustration on opposite page].

In order to build a green-light ma-
chine for K we need, along with the li-
brary of customer’s manuals, a little man
who can read them and carry out their
instructions. He should perhaps be a
wise old man, but he must be an obedi-
ent: man who does exactly what he is
told, We give the little man a number,
say 3,781, The little man looks into cus-
tomer’s manual No. 3,781, Reading the
mamual, he is able to build the green-
lipht machine Mj y4;. Once this is done,
he inserts the integer 3,781 as input into
green-light machine M, 74;. If the green
light goes on, the number 3,781 belongs
to K. Thus we have a green-light ma-
chine for K.  _

What about KP How can we be sure
there is no green-light machine for it?
Well, suppose there were such a ma-
chine. Then since K is the complement
of K, this machine should light up for
any input, say for 297, if and only if
Moqy does not light up for 297, (If Mg,
lit up, it would mean that the integer
297 belongs to K and not to K.) Thus
the machine for K certainly is not the
same as Myy. [see bottom illustration on
opposite page]. By the same token, how-
ever, it is not the same as M, for any
other value of 7. The same argument
would apply to any other number just
as well as to 297, and it shows that no
green-light machine for K appears any-
where in the library of customer’s man-
uals. Since every possible green-light
machine eventually turns up in our list,
it follows that no green-light machine
for K can possibly exist, That is to say,
K is not listable.

The result is certainly remarkable. It
deserves contemplation and apprecia-
tion. We know perfectly well what the
set K is; in prineciple we can produce as
much of it as we wish with a computer
printout. Nevertheless, there can never
be a formal procedure {an algorithm or
a machine program) for sorting K from
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THE SET K IS LISTABLE, that is, a green-light machine for K
exists. Let all conceivable green-light machines be numbered: M,
is the first machine, M, is the second machine, M, is the third ma-
chine and so forth up to the #th machine, K is defined 2s the set of

numbers n such that the nth machine lights ap when it receives n
itself az an inpnt. In the illustration a little man has entered the
ngmber 3,781 as an input to M3.781 and the green light has turned
on, indicating that the whole number 3,781 is a member of set K.

Is there a green -light machine for the

complement of K?

M y97. becavse the definition of K says

that M agg will light vp '

~ Similarly il can't be any other machine My. felp!

[F there j5 , it can't be

when 297 Is the input.

THE SET K IS NOT COMPUTABLE, that is, no green-light ma-
chine exists for K, the complement of K, Suppose there was such a
greendight machine for K, Since K is the complement of K, this
machine should light np for any input, say for 297, if and only if
M, q; does not light up for 297, Thus the machine for K is certainly

4

not the same az My, By the same 10ken, it is not the same as M
for any other valne of n. Thus no greendight machine exists for K,
meaning that K is not listable, A listable set whose complement is
not listable is not computable; no green-light-red-light machine can
he built for it. Thus there is no algorithm for sorting K from K.
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FIBONACCI NUMBERS were discovered in A.n. 1202 by Leonarde of Pisa, known ae Fibo-
nacci. The sequence is obtained by starting with 1 and 1 and snceessively adding the last
two numbers Lo get the next one. The gequence grows exponentially: the nth number in the
sequence is approximately proportional to the 2th power of the real namber [(1 4 +/5) /270

CHINESE REMAINDER THEQOREM is used in the solntion te Hilbert’s 10th problem. In
this case the theorem is employed to find a numher whose remainders, when divided by the
numbers 10, 3, 7 and 11, are Tespectively 4, 2, 3 and 1, Tnteger 584 is the smallest solution.

Q0

7. 5+8=13
8. 8+13=21

9. 13 + 21 =34
10. 21+ 34 =55

54 34 + 55 - 89

12, 55 + B9 = 144

13, 89 + 144= 233

12
—

PROBLEM: To find the smallest number n that has the remainders of 4, 2, 3 and 1
when it is divided by 10. 3.7 and 11,

SOLUTION: Let ¥ be the number sought. “Rem™ will be the abbraviation

for "The remainder of .. .." The problem ¢an then be rewritten:
Hem(-{‘o—)=4 Fiem(-?;-v)=3
X _ x _
Rern (»3— -2 Rem (vﬂ- ) -

In order to lind x four awxiliary problems for new unknowns y. ¥z, ¥a ard ya must be
solved. In each ¢ase the numerator is obtained by multiplying three of the divisors 1ogether
and using the fourth as the denominator. For example, in he first equation

with y1 the numerator 231 is equal to 3 = 7 = 11, and 10 is pul n the dencminator:

330
nem(_z_a%L) =4,y < 10 Rem(-—?u) =3.ya < 7
770y2 R 210)’_“) -1 < 1
Hem( 3} =2y < 3 e 11 = Uebi

The set of smallest inlegers 1hat are solutions to these auxiliary equations
iEyr =4 yz=1ya=3andys = 1.
To get x (the original number sought) the numerators of the four auxiliary
aqualions are added together:
¥ = [23y1) + {770¥2) + (320y3) + (210ya)

= {231 x &) = (770 x 1} + {330 = 3} + (210 % 1)

=924 « 770 + 990 + 210

= 2,894

Thus 2,894 is cna value of x. A smaller number can be oblained if the product of all
four divisors is subtracted from this selulion:

2894 - (10 « 3 x 7 x 1) = 2894 — 2310 = 584,

Therefore 584 is the smallest solution to the prablemn

K. Thus here is an example of a precise-
ly stated problem that can never be
solved by mechanical means.

This discussion has of course been in-

formal and nonrigorous. It is possible,

however, to reformulate all the ideas and
arguments with precise mathematical
definitions and proofs. In fact, they have
been formmulated in a branch of mathe-
matical logic called recursive function
theory, established in the 1930s by
Gédel, Church, Post, Kleene and Turing,

Now, what has all this to do with Dio-

phantine equations? Simply this.
Matyasevich has proved that every list-
able set has a corresponding Diophan-
tine equation. More precisely, if § is a
listable set, then there is a correspond-
ing polynomial P, with integer co-
efficients and variables X042, . -« \lfns
which is denoted by Pslx,y.e.. .. 4ak
Any integer, such as 17, belongs to set 8
if and only if the Diophantine equation
PUT7 411,80, . . - otn) = O has a solution,

It might be thought that for some sets
we would have to resort to inconceiv-
ably complicated polynomials, but this is
not the case. The degree of P need not
exceed the fourth power; the number of
variables 44, ...,4, need not exceed
14. (No one knows yet if both of these
bounds can be achieved simultaneously.)

This resutt of Matyasevich’ quickly
leads to the conclusion that no Hilbert
machine can exist, Recall the listable
set K constructed a few paragraphs
above. According to Matyasevich, there
is a Diophantine equation, Pgr(xyy,ys,
v slfn) = 0, associated with this set, If
it were possible to build a Hilbert ma-
chine, that is, a greenlight-red-light
machine for testing Diophantine equa-
tions to see if they have solutions, then
for any integer & we could determine
whether or not there existed integers
Y142, . .4y Such that the equation has
a solution. In so determining, however,
we would also be determining whether
or not  belongs to K. In other words, a
Hilbert machine applied to the Dio-
phantine equation that describes K
could be used as a green-light-red-light
machine for K. We have proved, how-
ever, that K is not computable, so that ne
green-light-red-light machine can exist
for K. The only way out of this dilemma
is to conclude that there is no Hilbert
machine. In other words, Hilbert’s 10th
problem is unsolvable!

The fact that a Diophantine equation
is associated with every listable set is a
positive result that is of great interest in
itself, quite aside from its application to
Hilbert’s 10th problem. A particularly im-
portant and interesting set of integers is

e




the set of prime numbers. A prime nun-
ber is one that is factorable (divisible}
only by 1 and by itself, Some examples
are 2, 3, 5, 7, 11, 13 and 17. That they
are listable is rather obvious. An algo-
rithm for listing them has come down
from the Greeks with the name of “the
sieve of Eratosthenes.” Combining Mat-
yasevich’ result with a device developed
by Putnam, we obtain a Diophantine
equation Q(yy.Ys,...,Ys) = = such that
a positive number z is a prime if and only
if this equation has a positive integer
solution Yy.Ys, ... Y (The exact form of
the polynomial Q is a bit too compli-
cated to fully write out here.)

Another remarkable result can Dbe
proved by combining Matyasevich’ theo-
rem with Godel’s work on undecidabil-
ity., If there is any system of axioms
whatsoever from which information can
be deduced about Diophantine equa-
tions, one can always obtain a particular
Diophantine equation that has the fol-
lowing properties: (1) the equation has
no positive integer solutions and (2}
the fact that it has no positive integer
solutions cannot be logically deduced
from the given set of axioms. Of course,
once the Diophantine equation is ob-
tained we can make up a new set of axi-
oms from which one can prove that the
Diophantine equation has no solution.
But then this new set of axioms will give
rise to another Diophantine equation for
which the same can be asserted.

"7 hat went into the proof of Matya-
sevich’ theorem? In addition to the
results from elassical and even ancient
number theory that we have aready
mentioned, there is a key result known
as the Chinese remainder theorem. It
will be helpful to illustrate the Chinese
remainder theorem by a numerical ex-
ample.

Suppose one wishes to find a number
whose remainders, when divided by the
numbers 10, 3, 7 and 11, are respectively
4, 2, 3 and 1 [see bottom illustration on
opposite pege]. The Chinese remainder
theorem assures us that there must be
such a number. (In fact, in this case 584
is such a number.} All that is required
for the Chinese remainder theorem to
work is that no pair of the divisors used
have any common factor {except, of
course, 1). There can be any number of
divisors, and the desired remainders can
be any positive integers whatsoever.

In 1931 Gédel showed how to use the
Chinese remainder theorem as a coding
trick, in which an arbitrary finite se-
quence of numbers can be encoded as a
single number. From the code number
one recovers the sequence in the same

way that 4, 2, 3 and' 1 are obtained from
584 in the example—as remainders in
successive divisions. The divisors can be
chosen to be in arithmetic progression.

The first attempt to prove that a Hil-
bert machine cannot exist was made by
one of us (Davis) in his doctoral disserta-
tion in 1950, Gidel’s technique of using
the Chinese remainder theorem as a
coding device was applied to associate
a Diophantine equation, Pg(k,x.z,4:.Ys,
vooolfn) =0, with every listable set S.
Unfortunately the relation between the
set and the equation turned out to be
more complicated than what was needed
for Hilbert’s 10th problem. Specifically,
the relation was: A positive integer x be-
longs to the set S if and only if for some
positive integer value of z it is possible
to find a soluticn for every one of the
Diophantine equations obtained by sub-
stituting k = 1, then k = 2 and so on up
to z into the equation Pglkx.yyt:,
vo054a} = 0. Although the result seemed
tantalizingly close to what was needed,
it was only a beginning.

At about the same time Robinson be-
gan her own investigations of sets that
can be defined by Diophantine equa-
tions. She developed various ingenious
techniques for dealing with equations
whose solutions behaved like exponen-
tals (grew like a power). In 1960 she,
Davis and Putnam colaborated in prov-
ing another result. They made use of
both her work and Davis’ result to show
that to any listable set there correspond-
ed a Diophantine equation of an “ex-
tended” kind, extended in the sense that
variables in the equation were allowed
to occur as exponents, An example of
such an equation is 2¢ 4- 2% = z3, Davis,
Robinson and Putnam combined their
work with some of Robinson’s earlier
results and discovered the following: If
even cne Diophantine equation could be
found whose solutions behaved expo-
nentially in an appropriate sense, then it
would be possible to describe every list-
able set by a Diophantine equation.
This would in turn show that Hilbert’s
10th problem is unsolvable.

]t took a decade to find a Diophantine

equation whose solutions grow expo-
nentially in the appropriate sense, In
1970 Matyasevich found such an equa-
tion by using what are known as the
Fibonacci numbers. These celebrated
numbers were discovered in A.p. 1202
by Leonardo of Pisa, who was also
known as Filonacei. He found them by
computing the total numher of pairs of
descendants of one pair of rabbits if the
original pair and each offspring pair re-
produced itself onee a month. The Fibo-

Lo v+w-v-2=0
. t-2v-2a-1=0
m g-fz—z2-1=0
V. g~bfZ=0
V. gf-gh-h*-1=0
VI. m—-ci2h+g)—-23=0
Vit. m~f-2=0
VIl x? ~mxy +y*—1=0
X, g-1i+pg—-x-1=0
X. x-v-(h~qlle-T=0

MATYASEVICH’ SOLUTION to Hilbert's
10th problem involves a Diophantine equa-
tion that iz obtained by squaring each of
these 10 equations and then adding them to-
gether and setting the resulting complicated
polynomial equal to zero. In these equations
the values z and » in the solutions are re-
lated in such a way that v is the 2uth Fi-
bonacei number. From the solution it fol-
lowed that for every listoble set there is
an associated Diophantine equation. Since
there exist listable sets whose complements
are not listable, then not every listable set
can have a greenlight-redlight machine,
Since having a green-light-red-light machine
for a set is equivalent to having a Hilbert
machine for Diophantine equations, Matya-
sevich’ result means that no Hilbert machine
can be built to test Diophantine equations.

nacci series is obtained by starting with
1 and 1 and successively adding the pre-
ceding two numbers to get the next: the
first Fibonacei number is 1, the second
is 1, the third is 1 + 1 = 2, the fourth is
14+2=3 thefifthis 2+ 3 =15 and so
on. The property that is important for
Hilbert’s 10th problem is that the Fibo-
nacci numbers grow exponentially. That
is, the nth Fibonacci number is approxi-
mately proportional to the nth power of
# certain fixed real number.

If one could find a Digphantine ecqua-
tion whose solutions relate n to the nth
Fibonacci number, it would be the de-
sired example of a Diophantine equa-
tion whose solutions behave exponen-
tially. The solution of Hilbert’'s 10th
problem would follow from this exam-
ple. What Matyasevich did was to con-
struct such a Diophantine equation [see
illustration above]. Once he had shown
that the set of Fibonacei numbers is as-
sociated in this way with a Diophantine
equation, it followed immediately from
the theorem of Davis, Robinson and
Putnam that for every listable set there
is an associated Diophantine equation,
including in particular the set K, which
is not computable. And so ends the story
of Hilbert’s 10th problem.
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