MATH 163 —HOMEWORK # 9 : ANSWERS to some problems

Note: in most cases we DO NOT show all the work necessary to obtain the answer. You need to show all work.

Solutions Day 24:

1. (a) $5/3 = 1.6$
 (b) 3
 (c) 2
 (d) 4/15
 (e) diverges
 (f) -1
 (i) $3\pi/4 - \tan^{-1} 2$

Solutions Day 25:

1. (a) none ($\lim_{n \to \infty} a_n = 0$)
 (b) diverges ($\lim_{n \to \infty} a_n = \infty \neq 0$)
 (c) none ($\lim_{n \to \infty} a_n = 0$)
 (d) diverges ($\lim_{n \to \infty} a_n = 1 \neq 0$)
 (e) none ($\lim_{n \to \infty} a_n = 0$)
 (f) diverges ($\lim_{n \to \infty} a_n = 2/3 \neq 0$)
 (g) diverges ($\lim_{n \to \infty} a_n = \pi/2 \neq 0$)
 (h) diverges ($\lim_{n \to \infty} a_n = 1 \neq 0$)

2. (a) may (b) must (c) may (d) may (e) must

3. (a) $3 + 2 \sum_{n=0}^{\infty} \left(\frac{2}{3}\right)^n = 9$ (basic property iv)
 (c) $\frac{1}{100} + \frac{1}{9} = 0.12\bar{2}$ (basic properties iii and iv)

4. (a) The tail of this series is the same as the tail of the harmonic series.
 (b) Converges (telescoping, value = 1). Basic property (iii) does not say anything about the sum or difference of two diverging series.
 (c) Diverges since it is a difference of a diverging sequence and a converging sequence. There is nothing to cancel the divergence of first part.

5. (a) $2(0.1111\ldots) = 2 \sum_{n=1}^{\infty} \frac{1}{10^n} = 2/9$

7. (a) $r = -1 + \sqrt{3}$
 (b) $c = \frac{\sqrt{3} - 1}{2} \approx 0.366$

Solutions Day 26:

2. (c) Let $f(x) = 1/\sqrt{x}$. Note
 (i) $f(k) = a_k \geq 0$, for $k \geq 1$ (all you need is that $a_k \geq 0$ for k sufficiently large, that is, bigger than some N). Also
 (ii) $f'(x) = -1/(5\sqrt{x^4}) \leq 0$ for $x > 0$ (again, all you really need is that $f' \leq 0$ for $x > N$ some N).
So the two conditions for the integral test apply. Since
\[\int_{4}^{\infty} f(x) \, dx = \infty \]
the series \(\sum_{k=4}^{\infty} a_k \) diverges. (The series diverges no matter what the starting value is since the sum of the tail diverges.)

(d) Let \(f(x) = \frac{e^x}{(1 + e^x)^2} \). Note

(i) \(f(n) = a_n \geq 0 \) for any \(n \), and

(ii) \(f'(x) = e^x(1 - e^x)/(1 + e^x)^3 \leq 0 \) for \(x \geq 0 \).

So the two conditions for the integral test apply. Since
\[\int_{0}^{\infty} f(x) \, dx = \int_{2}^{\infty} \frac{du}{u^2} = \lim_{t \to \infty} \int_{2}^{t} -\frac{1}{u} \, du = 1/2 \]
(Again, as long as \(f \) is continuous on the interval of integration, it doesn’t matter what the left endpoint is. I chose one that was convenient.) Since this integral is finite, the series \(\sum_{n=1}^{\infty} a_n \) converges.

3. 10: converges since series equals sum of two converging series with \(p = 1.2, 1.4 > 1 \).

14: series equals \(\sum_{n=0}^{\infty} \frac{1}{n^{1.3n}} \) which diverges by integral test (show all work)

4. First, note integral test applies: \(a_n \geq 0 \) and \(f(x) = 1/x^6 \) is decreasing. The first \(N \) for which \(\int_{N}^{\infty} f(x) \, dx = 1/(5N^5) \leq 10^{-6} \) is \(N = 12 \). Thus
\[\sum_{n=1}^{\infty} \frac{1}{n^b} = \sum_{n=1}^{12} \frac{1}{n^b} + error = 1.017342 + error \]
where \(0 \leq error \leq 10^{-6} \).

5. First, note integral test applies: \(a_n \geq 0 \) and \(f(x) = 1/x^2 \) is decreasing. The first \(N \) for which \(\int_{N}^{\infty} f(x) \, dx = 1/N \leq 0.05 \) is \(N = 20 \). Thus
\[\sum_{n=1}^{\infty} \frac{1}{n^2} = \sum_{n=1}^{20} \frac{1}{n^2} + error = 1.5962 + error \]
where \(0 \leq error \leq 0.05 \).