MATLAB Tutorial

Mohammad Motamed ${ }^{1}$
${ }^{1}$ Department of Mathematics and Statistics, The University of New Mexico, Albuquerque, NM 87131

August 28, 2016

Contents:

1. Scalars, Vectors, Matrices .. 1
2. Built-in variables, functions, and commands ... 2
3. Operations on vectors and matrices .. 3
4. Logical operators .. 4
5. Graphics .. 4
6. Matlab programing (scripts,conditionals, loops, functions) 6
7. Efficient Matlab programming ... 8

1 Scalars, Vectors, Matrices

- Scalars (or numbers) are zero-dimensional arrays.
$\mathrm{a}=2$; generates a scalar (number 2) and assigns it to variable a.
- Vectors are one-dimensional arrays.
$\mathrm{x}=[1 ; 2 ; 3 ; 4 ; 5]$; generates a column vector.
$y=\left[\begin{array}{llll}1 & 2 & 3 & 4\end{array}\right]$; generates a row vector.
- Matrices are two-dimensional arrays.
$A=[123 ; 456 ; 789]$; generates a 3×3 matrix.
Rows are separated by semicolons (;)
The entries on each row are separated by empty spaces or commas (,)
The output is

$$
A=\left[\begin{array}{lll}
1 & 2 & 3 \\
4 & 5 & 6 \\
7 & 8 & 9
\end{array}\right]
$$

2. Built-in variables, functions, and commands

- Built-in variables:
- i complex unit $(\mathrm{i}=\sqrt{-1})$

It is better to type 1 i instead of i when you need complex unit. Because sometimes we my assign another number to variable i, and if we do so, then i will no longer be complex unit.

- pi $\pi=3.14159 \ldots$

If you type pi, Matlab displays 3.1416. It is important to note that the number pi is not 3.1416. It has many many more decimals. You can observe this by typing pi - 3.1416 in the command window in Matlab which will not return 0 . Indeed, if you first type format long and then type pi, you will see more decimal digits.

- Built-in functions:

size returns the size of a variable. For example size(A) returns 3×3.
length returns the maximum dimension of a variable
max: returns the largest entry of a vector
min: returns the smallest entry of a vector

- Mathematical functions: sin cos tan exp log log10
- disp(.) displays its argument
- find(.) For example let $x=(0: 0.5: 3)$. Then f ind $(x>1.5)$ returns indices corresponding to the entries of x which are greater than 1.5 , that is [567].
- Try a = 5; disp(['a=' num2str(a)');
- Try length(x) and compare it with max (size(x)).
- Try $\max (\mathrm{A})$.
- Try $\sin (\mathrm{pi} / 3) / \cos (\mathrm{pi} / 3)$ and compare the result with $\tan (\mathrm{pi} / 3)$.
- Built-in commands to create special vectors and matrices:
- colon (:) creates a row vector
$\mathrm{x} 1=(1: 5) \quad$ components of the vector increase by 1
$\mathrm{x} 2=(1: 0.5: 5)$ components can change by non-unit steps
$\mathrm{x} 3=(5:-1: 1)$ components can change by negative steps
- linspace (a, b, n) creates a vector with linearly spaced entries from a to b with length n $\mathrm{y} 1=$ linspace $(1,5,5) \quad$ is the same as $\quad \mathrm{y} 1=(1: 5)$
$\mathrm{y} 2=$ linspace $(1,5,9) \quad$ is the same as $\quad \mathrm{y} 2=(1: 0.5: 5)$
- zeros(m,n) generates an $m \times n$ matrix with all entries zero.
- ones (m, n) generates an $m \times n$ matrix with all entries one.
- eye(n) generates the $n \times n$ identity matrix.
- diag(x) generates an $n \times n$ diagonal matrix with x on the diagonal, where x is a vector with length n .
- rand (m,n) generates a random matrix of size $m \times n$ with uniformly distributed random numbers between 0 and 1 .
- Try $2 *$ ones $(3,3)$.
- Using the commands diag and ones generate a 5×5 matrix A whose diagonal elements are ($1,2,3,4,5$) and off-diagonal elements are 2.
Answer: $\quad \mathrm{x}=(1: 5)$;

$$
A=2 * \operatorname{ones}(5,5)+\operatorname{diag}(x-2) ;
$$

- Other useful commands:

- save yourfilename.mat A x

The above command will save the variables A and x in a mat-file.

- load yourfilename.mat

The above command will bring all variables saved in yourfilename.mat.

- help min

The help command gives information about the command written after it (min).

- clear all clears all variables from memory.
- clc clears the command window.

3. Operations on vectors and matrices

- Standard arithmetic operators: + - * / \wedge
- If we put a dot (.) before the operator, we obtain a component-wise operator.

Example: Let $\mathrm{A}=\left[\begin{array}{ll}1 & 2 \\ 3 & 4\end{array}\right]$ be a 2×2 matrix.
Then, if we write B1 = A * A we will obtain B1 $=\left[\begin{array}{ll}1 & 2 \\ 3 & 4\end{array}\right] *\left[\begin{array}{ll}1 & 2 \\ 3 & 4\end{array}\right]=\left[\begin{array}{cc}7 & 10 \\ 15 & 22\end{array}\right]$.
But if we write $B 2=A . * A$ we will obtain $B 2=\left[\begin{array}{ll}1 * 1 & 2 * 2 \\ 3 * 3 & 4 * 4\end{array}\right]=\left[\begin{array}{cc}1 & 4 \\ 9 & 16\end{array}\right]$

- inv(A) computes the inverse of square matrix A.
- $\operatorname{det}(\mathrm{A})$ computes the determinant of square matrix A .
- A' computes the conjugate transpose of matrix A.

4. Logical operators

- The logical operators $<>=<=>===\sim=$ are binary operators which return 0 (false) or 1 (true) for scalar arguments. If their arguments are vectors, they will return vectors with entries 0 and/or 1.
- Example: 5 == 3 returns 0 .
- Example: $5=3+2$ returns 1 .
- Example: $\mathrm{x}=(0: 0.5: 3)$; this will return $\mathrm{x}=\left[\begin{array}{lllllll}0 & 0.5 & 1 & 1.5 & 2 & 2.5 & 3\end{array}\right]$
$y=x>1.5 ; \quad$ this will return $y=\left[\begin{array}{llllll}0 & 0 & 0 & 0 & 1 & 1\end{array} 1\right]$
$z=x(y) ; \quad$ this will return $z=\left[\begin{array}{ll}2 & 2.5\end{array}\right]$, that is the elements of x which are greater than 1.5

5. Graphics

- A few useful commands:
figure plot xlabel ylabel legend subplot loglog semilogx semilogy set axis hold on
- Example 1: Plot the curves $\sin x$ and $\cos x$ for $x \in[0,2 \pi]$ in the same figure.

Answer: $\quad \mathrm{N}=1000$;

$$
\mathrm{x}=\text { linspace }(0,2 * \mathrm{pi}, \mathrm{~N}) \text {; }
$$

$$
\mathrm{y} 1=\sin (\mathrm{x}) ;
$$

$$
\mathrm{y} 2=\cos (\mathrm{x}) ;
$$

figure(1);
set(gca,'fontsize', 20);
plot(x,y1,'b-', 'Linewidth', 2) ;
hold on;
plot(x,y2,'r-','Linewidth', 2);
xlabel('x');
ylabel('y');
legend('y $=\sin x$ ', ' $\left.y=\cos x^{\prime}\right)$;
axis([0 $2 * \mathrm{pi}-11])$;
This code will generate the following plot, delicted in Figure 1.

Figure 1: The figure generated by MATLAB code in Example 1.

- Example 2: Plot the curves $\sin x$ and $\cos x$ for $x \in[0,2 \pi]$ in two separate figures.

Answer: $\quad N=1000$;

```
x = linspace(0,2*pi,N);
```

$\mathrm{y} 1=\sin (\mathrm{x})$;
$\mathrm{y} 2=\cos (\mathrm{x})$;
figure(2);
subplot ($1,2,1$) ; \%it divides the figure window into a 1×2 matrix
of subplots and makes subplot no. 1 active
set(gca,'fontsize', 20);
plot(x,y1,'b-', 'Linewidth', 2);
xlabel('x');
ylabel('y = sin x ');
axis([0 $2 *$ pi -11$]$);
subplot ($1,2,2$) ; \%it divides the figure window into a 1×2 matrix
of subplots and makes subplot no. 2 active
set(gca,'fontsize', 20);
plot(x,y2,'r-','Linewidth' ,2);
xlabel('x');
ylabel('y = cos x ');
axis([0 $2 *$ pi -11$]$);

This code will generate the following plot, delicted in Figure 2.

Figure 2: The figure generated by MATLAB code in Example 2.

6. MATLAB programming

- 1. Scripts

A script is a collection of MatLab commands written in the script window and saved as an m-file.
Example: Open a new script window. In the new window type:

```
x = linspace(0, 2*pi,1000);
y = sin(x);
figure(3);
set(gca,'fontsize', 20);
plot(x,y,'b-','Linewidth', 2) ;
xlabel('x');
ylabel('y = sin x');
axis([[0 2*pi -1 1]);
```

Then save it as myplot1.m in a proper folder on your computer. Finally, type myplot1 in the command window to run your code.

- 2. Conditionals

Conditional statements enable you to select which block of code to execute. The simplest conditional statement is an if statement, with the following general form:

```
if a condition is satisfied
    do these calculations
else if another condition is satisfied
    do these calculations
else
    do these calculations
end
```

In the above format, elseif and else are optional.

Example: In a new script window type the following simple code:

```
a = rand(1); % generates a uniform random number between 0 and 1
if a > 2/3
    disp('a > 2/3');
elseif a < 1/3
    disp('a < 1/3');
else
    disp('1/3 <= a <= 2/3');
end
```


- 3. Loops

Matlab provides two types of loops:

fori $=I$ do these calculations end

while underlinea statement is true
do these calculations
end

- A for-loop in Matlab is comparable to a Fortran do-loop or a C for-loop. A for-loop repeats the statements in the loop as the loop index (i) takes on the values in a given row vector (I). I is called an index vector.

Example: The following for-loop repeats the statement inside the loop as the loop index i takes on values 1 to 5 :

```
I = (1:5);
for i = I
    disp(2 * i)
end
```

Alternatively, we can write

```
for i = 1:5
    disp(2 * i)
end
```

- A while-loop repeats as long as the given expression in front of while is true (non-zero). As soon as the expression becomes false, the calculations stop, and Matlab exits the loop.

Example: The following while-loop repeats the statement inside the loop as long as number a is less than or equal to 10 :

```
a = 1;
while a <= 1
    disp(a)
    a = a+1
end
```

- Consider a vector $\mathrm{x}=\operatorname{linspace}(0,10,100)$. Using for-loop, write a MatLaB program to compute

1) the sum of the elements of x , that is $S=\sum_{i=1}^{100} x_{i}$
2) a vector $c=\left[c_{1}, c_{2}, \cdots, c_{100}\right]$ containing the cumulative sum of the elements of x , that is $c_{j}=\sum_{i=1}^{j} x_{i}$, where $j=1,2, \cdots, 100$.

Answer: $\quad \mathrm{x}=\operatorname{linspace}(0,10,100)$;
S = 0;
c = [];
for $i=1:$ length (x)
S = S+x(i);
$c(i)=S ;$
end

- Compare the results of the above code with the following built-in commands in Matlab:

1) $\operatorname{sum}(x)$
2) cumsum (x)

- 4. Functions

A Matlab function is a script which takes one or more inputs and generates one or more outputs. The first line of a Matlab function reads:
function [output1, output2, ...] = FunctionName(input1, input2, ...)
Example: The following Matlab function takes a vector x as input and generates a vector y where $y=\sin ^{2} x$

```
function y = sin2fun(x)
y = (sin(x)).^2;
```

To use and run the function, in the command window we type:

$$
\begin{aligned}
& \mathrm{x}=\operatorname{linspace}(0, \mathrm{pi}, 1000) ; \\
& \mathrm{y}=\sin 2 f u n(\mathrm{x}) ;
\end{aligned}
$$

Note that instead of $y=\sin 2 f u n(x)$; we can also type $y=f e v a l(' \sin 2 f u n ', x)$;

7. Efficient MATLAB programming

See the next four hand-written pages.
7. Efficient matlab programming

- It is very easy to write a MATLAB program that runs very slowly.
- This is not MATLAB's fault. MATLAB is designed for a particular type of task, which is matrix computatuns. It is computationally efficient for matrix and vector operations. It should not be regarded as a general purpose language, like $C+t$. Of course, a poor mATLAB code will run slowly.
- A Hew efficient techniques:
(1) inline v. anonymous functions

$$
\begin{aligned}
& f=\text { inline }\left({ }^{\prime} \exp (-t) *(x(1)+x(2)) / 1000^{\prime}, ' x^{\prime},{ }^{\prime} t^{\prime}\right) \\
& t=0 \\
& x=[1 ; 2] \\
& N=125
\end{aligned}
$$

for $i=1: N$

$$
\begin{aligned}
& x=x+f(x, t) \\
& t=t+0.1
\end{aligned}
$$

end

Now replace the 1 st line by:

$$
f=@(x, t)[\exp (-t) *(x(1)+x(2)) / 1000] i
$$ and see the difference!

\Rightarrow always use anonymous functions instead of inline functions.
(2) Preallocation of arrays

$$
\begin{aligned}
& N=1 e 5 \\
& t=0 \\
& T=t
\end{aligned}
$$

for $i=1: N$

$$
\begin{aligned}
& t=t+0 \cdot 1 ; \\
& T=[T ; t]
\end{aligned}
$$

end

In each iteration, the array T grows. MATLAB needs to allocate memory for a larger array, which is very costly.

It is better to pre-allocate an array that will be filled in a loop. Now replace the above code with the following and see the difference!

$$
\begin{aligned}
& N=1 e 5 ; \\
& t=0 ; \\
& T(1)=t ;
\end{aligned}
$$

for $i=1: N$

$$
\begin{array}{r}
t=t+0 \cdot i ; \\
\text { end }
\end{array}
$$

(3) loop vs. vectorized implementation

Ex. $1 \quad N=1 e 7$;

$$
\begin{aligned}
& x=\operatorname{linspace}(0, p i, N) \\
& f=\sin (x)
\end{aligned}
$$

for $i=1=N-1$

$$
d f(i)=f(i+1)-f(i) ;
$$

replace the loop by the following 7 command:

Try to avoid loops and replace them by vectorized commands.

Ex. 2 Evaluate a piecewise function $f(t)= \begin{cases}0 & t<0 \\ 1 & 0 \leq t<2 \\ 2 & t \geq 2\end{cases}$ for a vector $t=\operatorname{linspace}(-1,3, N)$ with $N=1 e 4$.
option 1

$$
f=2 \operatorname{eros}(N, 1) ;
$$

for $i=1: N$
if $t(i)>=0$ \& \& $t(i)<2$

$$
f(i)=1 ;
$$

else if $t(i)>=2$

$$
f(i)=2 ;
$$

and
end

Option 2

$$
\begin{aligned}
& f=z \operatorname{eros}(N, 1) \\
& f(\operatorname{find}(t\rangle=0 \& t\langle 2))=1
\end{aligned}
$$

Option 3

$$
\begin{aligned}
& f=2 \operatorname{eros}(N, 1) ; \\
& f(t>=0 \& t<2)=1 ; \\
& f(t>=2)=2
\end{aligned}
$$

$$
f(\operatorname{find}(t\rangle=2))=2 ; \quad f(
$$

The 154 option, although very natural for a C programmer, is a poor and slow MATLAB code. We need to write vectorized implementations, instead of computations based on individual elements.

* The and option uses the built-in function "find", which returns a list of indices for which the logical statement in its argument is true.

Ex. find $((5: 9)>7)$ returns a vector $[45]$.
Moreover, the code is not based on individual elements, and hence it will be faster than the code in option 1.

* The 3 rd option uses logical referencing instead of "Find" and is the fastest among the three codes.

