Upload your report as a PDF-file on Canvas before Sunday October 23, 11:59pm.

- 1. Given $n \ge 1$ a set of m + 1 evaluation points $\{x_i\}_{i=0}^m$, with $m \ge n$, first implement the following functions:
 - (a) A function ortho_coeffs that computes the coefficients of a set of n + 1 monic polynomials $\varphi_0, \ldots, \varphi_n$ that are orthogonal w.r.t. the inner product

$$\langle f, g \rangle_m := \sum_{i=0}^m f(x_i)g(x_i), \quad \text{with } m \ge n.$$

THE UNIVERSITY OF

Such monic polynomials satisfy the recursive formula:

$$\varphi_{-1} = 0, \quad \varphi_0 = 1$$

$$\varphi_{k+1} = (x - \beta_k)\varphi_k - \gamma_k\varphi_{k-1}, \quad k = 0, 1, \dots, n-1,$$

with the coefficients

$$\beta_k = \frac{\langle x\varphi_k, \varphi_k \rangle_m}{\|\varphi_k\|^2}, \qquad k = 0, 1, \dots, n,$$

and

$$\gamma_k = \begin{cases} 0 & \text{for } k = 0\\ \frac{\|\varphi_k\|^2}{\|\varphi_{k-1}\|^2}, & k = 1, \dots, n. \end{cases}$$

Note that the squared norm $\|.\|^2$ in the definition of the coefficients is given by the inner product defined above, that is $\|f\|^2 := \langle f, f \rangle_m$.

This function should take n and $\{x_i\}_{i=0}^m$ as input and should return the coefficients $\{\beta_k\}_{k=0}^{n-1}$ and $\{\gamma_k\}_{k=0}^{n-1}$.

(b) A function evaluate_ortho_bases that evaluates the n+1 monic orthogonal polynomials $\varphi_0, \ldots, \varphi_n$.

Input: the set of evaluation points $\{x_i\}_{i=0}^m$, and the set of coefficients $\{\beta_k\}_0^{n-1}$ and $\{\gamma_k\}_{k=0}^{n-1}$. (Note that γ_0 is not needed).

(c) A function approx_coeffs that computes the coefficients $\{c_k\}_{k=0}^n$ of the best polynomial approximation $p_n(x) = \sum_{k=0}^n c_k \varphi_k(x)$ of a continuous function f in the norm induced by the provided inner product. Indeed, p_n is the *least squares approximation* of f, that is the best approximation in 2-norm with the particular inner product defined above.

Input: $\{x_i\}_{i=0}^m$, $\{f(x_i)\}_{i=0}^m$, $\{\beta_k\}_0^{n-1}$ and $\{\gamma_k\}_{k=0}^{n-1}$. Output: $\{c_k\}_{k=0}^n$.

(d) A function evaluate_ortho that evaluates the approximation polynomial $p_n(x)$. Input: a set of evaluation points $\{x_i\}_{i=0}^m$, the sets $\{\beta_k\}_0^{n-1}$ and $\{\gamma_k\}_{k=0}^{n-1}$, and the set of approximation coefficients $\{c_k\}_{k=0}^n$.

In order to improve efficiency you may use Clenshaw's recursion formula:

$$y_{n+2} = y_{n+1} = 0,$$

$$y_k = (x - \beta_k) y_{k+1} - \gamma_{k+1} y_{k+2} + c_k, \quad k = n, n - 1, \dots, 1, 0.$$

Then $p(x) = y_0$. Note that β_n , γ_n and γ_{n+1} are not needed.

Then use these functions, in addition to functions interpolate and evaluate from Homework 1, and compute the interpolations and the least squares approximation of Problem 2 of Homework 1. Verify that when m = n interpolation and least-square approximation are equivalent and discuss your results and findings.

2. Consider *natural* cubic splines belonging to $S_3^2(\{x_i\}_{i=0}^m)$ relative to the sets of knots $\{x_i\}_{i=0}^m$ such that

$$a = x_0 < x_1 < x_2 < \dots < x_{m-1} < x_m = b, \quad m \ge 1.$$

- (a) Show that $g(x) = x^2(|x| 3)$ is a *natural* cubic spline belonging to $S_3^2(\{x_i\}_{i=0}^4)$ for $\{x_i\}_{i=0}^4 = \{-1, -0.7, 0, 0.4, 1\}.$
- (b) Denote by $s(f; \cdot) \in S_3^2(\{x_i\}_{i=0}^m)$ the natural cubic spline approximation to f. Write a function nat_spline that computes the natural cubic spline approximation $s(f; \cdot) \in S_3^2(\{x_i\}_{i=0}^m)$. The function has in input the vectors $\{x_i\}_{i=0}^m$, $\{f(x_i)\}_{i=0}^m$ and a vector of evaluation points \mathbf{x} and returns the natural cubic spline evaluated at \mathbf{x} . Compute the spline using the fact that the second derivative of the spline $\sigma(x) = s''(f; x)$ evaluated at the internal points $\{x_i\}_{i=1}^{m-1}$ are given by

$$A \boldsymbol{\sigma} = \mathbf{b},$$

where

$$A = \begin{bmatrix} 2(h_1 + h_2) & h_2 & & \\ h_2 & 2(h_2 + h_3) & h_3 & & \\ & h_3 & 2(h_3 + h_4) & h_4 & & \\ & \ddots & \ddots & \ddots & & \\ & & h_{m-2} & 2(h_{m-2} + h_{m-1}) & h_{m-1} & \\ & & & h_{m-1} & 2(h_{m-1} + h_m) \end{bmatrix},$$
$$\boldsymbol{\sigma} = (\sigma_1, \ \sigma_2, \ \dots, \ \sigma_{m-1})^{\top},$$

$$\mathbf{b} = (6(df_2 - df_1), \ 6(df_3 - df_2), \ \dots, \ 6(df_m - df_{m-1}))^{\top},$$

with $h_i := x_i - x_{i-1}$ and the $df_i := (f_i - f_{i-1})/h_i$, i = 1, m. Once the coefficients $\sigma(x_i)$, $i = 0, 1, \ldots, m$ have been computed, including $\sigma(x_0)$ and $\sigma(x_m)$, one can use a function eval_spline that takes as input the vectors $\{x_i\}_{i=0}^m$, $\{f(x_i)\}_{i=0}^m$, $\{\sigma(x_i)\}_{i=0}^m$ and a vector of evaluation points **x** and returns the natural cubic spline evaluated at **x**. The python implementation of eval_spline is provided on the course webpage.

- (c) Verify the correctness of the spline function, showing that $s(g, \cdot)$, for $g(x) = x^2(|x| 3)$, using $\{x_i\}_{i=0}^4 = \{-1, -0.7, 0, 0.4, 1\}$ is equivalent to g(x), for $x \in [-1, 1]$, up to round-off errors.
- (d) Use the function nat_spline to find the natural cubic spline approximation to $f(x) = \frac{1}{1+x^2}$ on [-5, 5], for (i) equally spaced nodes $\{x_i^{\text{eq}}\}_{i=0}^{10}$, and (ii) Chebyshev

nodes $\{x_i^{ch}\}_{i=0}^{10}$. Compare your results with the interpolating polynomial of degree 10 over the two sets of nodes; see Homework 1, Problem 2.

HE UNIVERSITY OF

Note: Matlab/Octave spline function, implements a not-a-knot twice-differentiable cubic spline, where $s'(x_0) = s'(x_1)$ and $s'(x_{n-1}) = s'(x_n)$. This is not quite a natural spline but it is close to. One can use this function in the case nat_spline has not been implemented correctly.