Mohammad Motamed
MATH 505, Fall 2022 - HW \# 2, Posted: Sep. 27, 2022
Upload your report as a PDF-file on Canvas before Sunday October 23, 11:59pm.

1. Given $n \geq 1$ a set of $m+1$ evaluation points $\left\{x_{i}\right\}_{i=0}^{m}$, with $m \geq n$, first implement the following functions:
(a) A function ortho_coeffs that computes the coefficients of a set of $n+1$ monic polynomials $\varphi_{0}, \ldots, \varphi_{n}$ that are orthogonal w.r.t. the inner product

$$
\langle f, g\rangle_{m}:=\sum_{i=0}^{m} f\left(x_{i}\right) g\left(x_{i}\right), \quad \text { with } \quad m \geq n
$$

Such monic polynomials satisfy the recursive formula:

$$
\begin{aligned}
& \varphi_{-1}=0, \quad \varphi_{0}=1 \\
& \varphi_{k+1}=\left(x-\beta_{k}\right) \varphi_{k}-\gamma_{k} \varphi_{k-1}, \quad k=0,1, \ldots, n-1,
\end{aligned}
$$

with the coefficients

$$
\beta_{k}=\frac{\left\langle x \varphi_{k}, \varphi_{k}\right\rangle_{m}}{\left\|\varphi_{k}\right\|^{2}}, \quad k=0,1, \ldots, n
$$

and

$$
\gamma_{k}= \begin{cases}0 & \text { for } k=0 \\ \frac{\left\|\varphi_{k}\right\|^{2}}{\left\|\varphi_{k-1}\right\|^{2}}, & k=1, \ldots, n\end{cases}
$$

Note that the squared norm $\|.\|^{2}$ in the definition of the coefficients is given by the inner product defined above, that is $\|f\|^{2}:=\langle f, f\rangle_{m}$.
This function should take n and $\left\{x_{i}\right\}_{i=0}^{m}$ as input and should return the coefficients $\left\{\beta_{k}\right\}_{k=0}^{n-1}$ and $\left\{\gamma_{k}\right\}_{k=0}^{n-1}$.
(b) A function evaluate_ortho_bases that evaluates the $n+1$ monic orthogonal polynomials $\varphi_{0}, \ldots, \varphi_{n}$.
Input: the set of evaluation points $\left\{x_{i}\right\}_{i=0}^{m}$, and the set of coefficients $\left\{\beta_{k}\right\}_{0}^{n-1}$ and $\left\{\gamma_{k}\right\}_{k=0}^{n-1}$. (Note that γ_{0} is not needed).
(c) A function approx_coeffs that computes the coefficients $\left\{c_{k}\right\}_{k=0}^{n}$ of the best polynomial approximation $p_{n}(x)=\sum_{k=0}^{n} c_{k} \varphi_{k}(x)$ of a continuous function f in the norm induced by the provided inner product. Indeed, p_{n} is the least squares approximation of f, that is the best approximation in 2-norm with the particular inner product defined above.
Input: $\left\{x_{i}\right\}_{i=0}^{m},\left\{f\left(x_{i}\right)\right\}_{i=0}^{m},\left\{\beta_{k}\right\}_{0}^{n-1}$ and $\left\{\gamma_{k}\right\}_{k=0}^{n-1}$. Output: $\left\{c_{k}\right\}_{k=0}^{n}$.
(d) A function evaluate_ortho that evaluates the approximation polynomial $p_{n}(x)$. Input: a set of evaluation points $\left\{x_{i}\right\}_{i=0}^{m}$, the sets $\left\{\beta_{k}\right\}_{0}^{n-1}$ and $\left\{\gamma_{k}\right\}_{k=0}^{n-1}$, and the set of approximation coefficients $\left\{c_{k}\right\}_{k=0}^{n}$.
In order to improve efficiency you may use Clenshaw's recursion formula:

$$
\begin{aligned}
& y_{n+2}=y_{n+1}=0 \\
& y_{k}=\left(x-\beta_{k}\right) y_{k+1}-\gamma_{k+1} y_{k+2}+c_{k}, \quad k=n, n-1, \ldots, 1,0 .
\end{aligned}
$$

Then $p(x)=y_{0}$. Note that β_{n}, γ_{n} and γ_{n+1} are not needed.

Then use these functions, in addition to functions interpolate and evaluate from Homework 1, and compute the interpolations and the least squares approximation of Problem 2 of Homework 1. Verify that when $m=n$ interpolation and least-square approximation are equivalent and discuss your results and findings.
2. Consider natural cubic splines belonging to $\mathcal{S}_{3}^{2}\left(\left\{x_{i}\right\}_{i=0}^{m}\right)$ relative to the sets of knots $\left\{x_{i}\right\}_{i=0}^{m}$ such that

$$
a=x_{0}<x_{1}<x_{2}<\cdots<x_{m-1}<x_{m}=b, \quad m \geq 1
$$

(a) Show that $g(x)=x^{2}(|x|-3)$ is a natural cubic spline belonging to $\mathcal{S}_{3}^{2}\left(\left\{x_{i}\right\}_{i=0}^{4}\right)$ for $\left\{x_{i}\right\}_{i=0}^{4}=\{-1,-0.7,0,0.4,1\}$.
(b) Denote by $s(f ; \cdot) \in \mathcal{S}_{3}^{2}\left(\left\{x_{i}\right\}_{i=0}^{m}\right)$ the natural cubic spline approximation to f. Write a function nat_spline that computes the natural cubic spline approximation $s(f ; \cdot) \in \mathcal{S}_{3}^{2}\left(\left\{x_{i}\right\}_{i=0}^{m}\right)$. The function has in input the vectors $\left\{x_{i}\right\}_{i=0}^{m},\left\{f\left(x_{i}\right)\right\}_{i=0}^{m}$ and a vector of evaluation points \mathbf{x} and returns the natural cubic spline evaluated at \mathbf{x}. Compute the spline using the fact that the second derivative of the spline $\sigma(x)=s^{\prime \prime}(f ; x)$ evaluated at the internal points $\left\{x_{i}\right\}_{i=1}^{m-1}$ are given by

$$
A \boldsymbol{\sigma}=\mathbf{b}
$$

where

\[

\]

with $h_{i}:=x_{i}-x_{i-1}$ and the $d f_{i}:=\left(f_{i}-f_{i-1}\right) / h_{i}, i=1, m$. Once the coefficients $\sigma\left(x_{i}\right), i=0,1, \ldots, m$ have been computed, including $\sigma\left(x_{0}\right)$ and $\sigma\left(x_{m}\right)$, one can use a function eval_spline that takes as input the vectors $\left\{x_{i}\right\}_{i=0}^{m},\left\{f\left(x_{i}\right)\right\}_{i=0}^{m}$, $\left\{\sigma\left(x_{i}\right)\right\}_{i=0}^{m}$ and a vector of evaluation points \mathbf{x} and returns the natural cubic spline evaluated at \mathbf{x}. The python implementation of eval_spline is provided on the course webpage.
(c) Verify the correctness of the spline function, showing that $s(g, \cdot)$, for $g(x)=x^{2}(|x|-$ 3), using $\left\{x_{i}\right\}_{i=0}^{4}=\{-1,-0.7,0,0.4,1\}$ is equivalent to $g(x)$, for $x \in[-1,1]$, up to round-off errors.
(d) Use the function nat_spline to find the natural cubic spline approximation to $f(x)=\frac{1}{1+x^{2}}$ on $[-5,5]$, for (i) equally spaced nodes $\left\{x_{i}^{\mathrm{eq}}\right\}_{i=0}^{10}$, and (ii) Chebyshev

Mohammad Motamed
MATH 505, Fall 2022 - HW \# 2, Posted: Sep. 27, 2022
nodes $\left\{x_{i}^{\text {ch }}\right\}_{i=0}^{10}$. Compare your results with the interpolating polynomial of degree 10 over the two sets of nodes; see Homework 1, Problem 2.
Note: Matlab/Octave spline function, implements a not-a-knot twice-differentiable cubic spline, where $s^{\prime}\left(x_{0}\right)=s^{\prime}\left(x_{1}\right)$ and $s^{\prime}\left(x_{n-1}\right)=s^{\prime}\left(x_{n}\right)$. This is not quite a natural spline but it is close to. One can use this function in the case nat_spline has not been implemented correcly.

