Upload your report as a PDF-file on Canvas before Friday September 23, 11:59pm.

1. Polynomial Interpolation

(a) Consider a generic polynomial of degree n in the form

$$p(x) = c_0 + c_1(x - x_0) + c_2(x - x_0)(x - x_1) + \ldots + c_n(x - x_0)(x - x_1) \cdots (x - x_{n-1}).$$

The problem of finding the polynomial p(x) that interpolates a function f at the points x_0, x_1, \ldots, x_n is equivalent to solving a linear system of the form

$$A\mathbf{c} = \mathbf{f} \tag{1}$$

THE UNIVERSITY OF NEW MEXICO

with $\mathbf{c} = (c_0, c_1, \dots, c_n)^{\top}$ and $\mathbf{f} = (f(x_0), f(x_1), \dots, f(x_n))^{\top}$. Write the corresponding matrix A.

- (b) Implement a function interpolate that computes the coefficients $\{c_i\}_{i=0}^n$ of the interpolating polynomial p(x) for a given function f by solving the system (1). The function takes as inputs the vector (x_0, x_1, \ldots, x_n) and the function f, and returns the vector (c_0, c_1, \ldots, c_n) .
- (c) Implement a function evaluate that evaluates the polynomial p(x) at a set of m+1 points $\{x_i^{\text{ev}}\}_{i=0}^m$. Input: a vector of evaluation points $(x_0^{\text{ev}}, x_1^{\text{ev}}, \dots, x_m^{\text{ev}})$, the vector (x_0, x_1, \dots, x_n) , and the vector of coefficients (c_0, c_1, \dots, c_n) . To improve efficiency you may use the recursive formula:

$$b_n = c_n,$$
 $b_{n-i} = (x - x_{n-i})b_{n-i+1} + c_{n-i}, i = 1, 2, \dots, n,$ $p(x) = b_0.$

. How many additions and multiplications are needed to evaluate the polynomial?

(d) Verify your interpolate and evaluate functions by taking f to be a polynomial of low degree and by plotting f and p. Also try $f(x) = sin(2\pi x)$ over $[0, 2\pi]$. Make sure your plots have readible and labeled axes with a legend.

2. Let
$$f(x) = \frac{1}{1+x^2}$$
 on $[-5, 5]$.

- (a) Find and plot the *n*-degree polynomial $p_n(x)$ that interpolates f on the equally spaced points $x_i = -5 + \frac{10i}{n}$, i = 0, 1, ..., n. Consider n = 3, 6, 10.
- (b) Find and plot the *n*-degree polynomial $p_n(x)$ that interpolates f on the points $x_i = 5 \cos\left(\frac{\pi(2i+1)}{2(n+1)}\right), i = 0, 1, \dots n$. Consider n = 3, 6, 10.
- (c) Plot the function $w_n(x) = \prod_{j=0}^n (x x_j)$ for $n = 2, 3, ..., 10, x \in [-5, 5]$, where the points x_j are as in part (a), and when the points x_j are as in part (b).
- (d) Using interpolation theorem, discuss your observations in parts (a) and (b) on the basis of w_n graphs.

Note: if you were not able to write the functions evaluate and interpolate in the first exercise, you can use Matalb/pyhton functions like polyval and polyfit in this exercise.

- 3. Consider the functions $f(x) = x x^3$ and $q(x) = \frac{1}{4}x$, with $x \in [-1, 1]$.
 - (a) Using the Oscillation Theorem, show that q is the minimax polynomial of degree 1 for the function f on the interval [-1, 1]. State the theorem hypotheses and sho that they are satisfied.
 - (b) Show that q is also the minimax polynomial of degree (at most) 2 for the function f, over the interval [-1, 1].
 - (c) Write the interpolation error f p, where p is the polynomial of degree (at most) 2 interpolating f at the points x_0, x_1, x_2 over the interval [-1, 1]. Show that p is the minimax polynomial if x_0, x_1, x_2 are taken to be the Chebyshev points. Why is this statement false for a generic (smooth) function f?
 - (d) Calculate the polynomial p of degree (at most) 2 that interpolates f at the Chebyshev points and verify that, indeed, p is the minimax polynomial for u, that is, $p(x) \equiv q(x)$ on [-1, 1].