Mohammad Motamed
INTI
NHE UNIVERSITYOF
MATH 505, Fall 2022 - HW \# 1, Posted: Sep. 7, 2022

Upload your report as a PDF-file on Canvas before Friday September 23, 11:59pm.

1. Polynomial Interpolation
(a) Consider a generic polynomial of degree n in the form
$p(x)=c_{0}+c_{1}\left(x-x_{0}\right)+c_{2}\left(x-x_{0}\right)\left(x-x_{1}\right)+\ldots+c_{n}\left(x-x_{0}\right)\left(x-x_{1}\right) \cdots\left(x-x_{n-1}\right)$.
The problem of finding the polynomial $p(x)$ that interpolates a function f at the points $x_{0}, x_{1}, \ldots, x_{n}$ is equivalent to solving a linear system of the form

$$
\begin{equation*}
A \mathbf{c}=\mathbf{f} \tag{1}
\end{equation*}
$$

with $\mathbf{c}=\left(c_{0}, c_{1}, \ldots, c_{n}\right)^{\top}$ and $\mathbf{f}=\left(f\left(x_{0}\right), f\left(x_{1}\right), \ldots, f\left(x_{n}\right)\right)^{\top}$. Write the corresponding matrix A.
(b) Implement a function interpolate that computes the coefficients $\left\{c_{i}\right\}_{i=0}^{n}$ of the interpolating polynomial $p(x)$ for a given function f by solving the system (1). The function takes as inputs the vector $\left(x_{0}, x_{1}, \ldots x_{n}\right)$ and the function f, and returns the vector $\left(c_{0}, c_{1}, \ldots, c_{n}\right)$.
(c) Implement a function evaluate that evaluates the polynomial $p(x)$ at a set of $m+1$ points $\left\{x_{i}^{\mathrm{ev}}\right\}_{i=0}^{m}$. Input: a vector of evaluation points $\left(x_{0}^{\mathrm{ev}}, x_{1}^{\mathrm{ev}}, \ldots x_{m}^{\mathrm{ev}}\right)$, the vector $\left(x_{0}, x_{1}, \ldots x_{n}\right)$, and the vector of coefficients $\left(c_{0}, c_{1}, \ldots, c_{n}\right)$. To improve efficiency you may use the recursive formula:

$$
b_{n}=c_{n}, \quad b_{n-i}=\left(x-x_{n-i}\right) b_{n-i+1}+c_{n-i}, i=1,2, \ldots, n, \quad p(x)=b_{0} .
$$

. How many additions and multiplications are needed to evaluate the polynomial?
(d) Verify your interpolate and evaluate functions by taking f to be a polynomial of low degree and by plotting f and p. Also try $f(x)=\sin (2 \pi x)$ over $[0,2 \pi]$. Make sure your plots have readible and labeled axes with a legend.
2. Let $f(x)=\frac{1}{1+x^{2}}$ on $[-5,5]$.
(a) Find and plot the n-degree polynomial $p_{n}(x)$ that interpolates f on the equally spaced points $x_{i}=-5+\frac{10 i}{n}, i=0,1, \ldots n$. Consider $n=3,6,10$.
(b) Find and plot the n-degree polynomial $p_{n}(x)$ that interpolates f on the points $x_{i}=5 \cos \left(\frac{\pi(2 i+1)}{2(n+1)}\right), i=0,1, \ldots n$. Consider $n=3,6,10$.
(c) Plot the function $w_{n}(x)=\prod_{j=0}^{n}\left(x-x_{j}\right)$ for $n=2,3, \ldots, 10, x \in[-5,5]$, where the points x_{j} are as in part (a), and when the points x_{j} are as in part (b).
(d) Using interpolation theorem, discuss your observations in parts (a) and (b) on the basis of w_{n} graphs.

Note: if you were not able to write the functions evaluate and interpolate in the first exercise, you can use Matalb/pyhton functions like polyval and polyfit in this exercise.

Mohammad Motamed
MATH 505, Fall 2022 - HW \# 1, Posted: Sep. 7, 2022
3. Consider the functions $f(x)=x-x^{3}$ and $q(x)=\frac{1}{4} x$, with $x \in[-1,1]$.
(a) Using the Oscillation Theorem, show that q is the minimax polynomial of degree 1 for the function f on the interval $[-1,1]$. State the theorem hypotheses and sho that they are satisfied.
(b) Show that q is also the minimax polynomial of degree (at most) 2 for the function f, over the interval $[-1,1]$.
(c) Write the interpolation error $f-p$, where p is the polynomial of degree (at most) 2 interpolating f at the points x_{0}, x_{1}, x_{2} over the interval $[-1,1]$. Show that p is the minimax polynomial if x_{0}, x_{1}, x_{2} are taken to be the Chebyshev points. Why is this statement false for a generic (smooth) function f ?
(d) Calculate the polynomial p of degree (at most) 2 that interpolates f at the Chebyshev points and verify that, indeed, p is the minimax polynomial for u, that is, $p(x) \equiv q(x)$ on $[-1,1]$.

