Stat 453/553: Assignments

HW 1: (due on February 7th Friday)

Note that for all the problems related to finding pdf, you will need to specify the domain of the random variable)

- Textbook: 5.6, 5.10c, 5.15, 5.16, 5.17cd, 5.21, 5.24, 5.27
- Problem 1: Let X have the density $f(x) = \frac{2}{9}(x+1), -1 \le x \le 2$. Find the density of $Y = X^2$
- Problem 2: Consider the following joint density function

$$f(x, y) = 8xy, \quad 0 < y < x < 1.$$

Let U = X + Y and W = X - Y. Find the joint pdf of U and W.

- Problem 3: Consider a random sample of size n from a distribution with pdf and CDF given by f(x) = 2x and $F(x) = x^2$; 0 < x < 1. Let $R = X_{(n)} X_{(1)}$ be the range of the sample.
 - (1) Give a general form of the density function of R
 - (2) Find the density function of R when n = 2.

HW 2: (due on February 19th Wed)

- Textbook: 5.29, 5.34, 5.43(a), 5.44
- Problem 1: 1.Assume that X_1, X_2, \ldots, X_n denote a random sample from a population with the following probability density function :

$$f_X(x|\alpha) = \frac{\alpha\beta}{(\alpha+\beta x)^2}, \ x > 0$$

where $\alpha > 0$ and $\beta > 0$.

find the limiting distribution of $n\beta X_{(1)}$.

- Problem 2: Assume that X_1, X_2, \ldots, X_n denote a random sample from a poisson population with parameter λ . If the limiting distribution exists, $\sqrt{n}(\sqrt{\bar{X_n}} - \sqrt{\lambda}) \rightarrow N(0, C)$, find C.
- Problem 3: Suppose X_1, \ldots, X_n are a random sample from the $Gamma(\alpha, \beta)$ for unknown $\alpha > 0$ and $\beta > 0$.

Find c and d such that

$$\sqrt{n}\left(\frac{n}{\sum_{i=1}^{n} X_i} - c\right) \xrightarrow{d} N(0, d).$$

- Textbook: 6.9, 6.12, 6.17
- Problem 1: Let X₁,..., X_n be iid observations from a pdf or pmf that belongs to an exponential family given by
 f(x|θ) = h(x)c(θ)exp(∑^k_{i=1} w_i(θ)t_i(x)),
 find a sufficient statistic for θ
- Problem 2. Let X_1, \ldots, X_n be independent random variables with pdfs

$$f(x_i|\theta) = \begin{cases} \frac{1}{2i\theta} & \text{if } -i(\theta-1) < x_i < i(\theta+1) \\ 0 & \text{otherwise} \end{cases}$$

- (a) Find a sufficient statistic for θ .
- (b) Is it a minimal sufficient statistic?
- Problem 3. Let X_1, \ldots, X_n be iid variables with distribution $N(\theta, a\theta^2)$ where a is known and $\theta > 0$.
 - (a) Show $T = (\bar{X}, S^2)$ is a sufficient statistic for θ .
 - (b) Is it a minimal sufficient statistic?
 - (c) Show it is not complete.
- Problem 4. Let $X_1, ..., X_n$ be an i.i.d. sample from a geometric distribution with parameter p. Define U as

$$U = \begin{cases} 1, & \text{if } X_1 = 1, \\ 0, & \text{if } X_1 > 1. \end{cases}$$

(a) find E(U).

- (b)find a sufficient statistic T for p.
- (c) Is U a sufficient statistic? Why?

(d)find E(U|T)

HW 4: (due on Mar 25th Wed)

• Textbook: 6.20, 6.23, 6.31 (a)